
Maintaining Consistency in a Stratified
System Program

Louiqa Raschid
Department of Information Systems and
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742
louiqa@secd.cs.umd.edu

Abstract

We present our research on defining a correct semantics
for forward chaining production systems (PS) programs.
A correct semantics ensures that the execution of the
program will not produce incorrect answers and execu-
tion will terminate; it also ensures that the answers are
consistent. We define a class of stratified PS programs,
and propose an operational semantics for these pro-
grams. We define an operator TPs, which computes the
operational fixpoint for the productions of the stratified
PS program; the fixpoint captures the meaning of the
PS program. The theory that can be derived from the
productions of the PS program may be inconsistent
with the constraints that are also derived from the PS
program. We can then view the constraints as modify- -
ing the theory so that the modified theory PS is con-
sistent with the constraints. However, the same
answers are obtained in the operational semantics of
the stratified PS program or from the modified theory
E.

1. Introduction
In recent years, much AI research and development
has focused on forward chaining rule-based sys-
tems which follow the production sytem (PS) para-
digm (Hayes-Roth 1985). Large production rule-
based expert systems have been successfully
developed in diverse domains such as engineering
design databases, trouble-shooting in telephone
networks, and configuring VAX computer systems.

This research was sponsored partially by the National Science
Foundation under Grant DMC8814989 and by the University of
Maryland Institute for Advanced Computer Studies.

The author would
Arcot Rajasekar.

like to thank Timos Sellis, Anne Litcher and

Production

In these domains, the expert system programs often
have to reason with large quantities of data. As
the production rule base and the database grow
larger, these programs have to access information
stored on disk. Thus, for performance reasons, it
is important that PS programs be implemented
using database technology. Research in this area is
reported in Delcambre and Etheredge 1988, Main-
dreville and Simon 1988, Raschid, Sellis and Lin
1988, Simon and Mandreville 1988, Sellis, Lin and
Raschid 1988 and Widom and Finkelstein 1989.

If large production systems (PS) are to be
implemented successfully to interface with large
(relational) databases, then it is critical that the
semantics of PS be well understood. Unfor-
tunately, most PS have an incomplete operational
semantics defined for them. This can result in
non-terminating execution of productions and
inconsistent answers.

In this paper, we describe our research on
defining a correct semantics for PS programs. This
paper is organized as follows: In section 2, we
introduce the operational semantics of OPS5, an
example of a PS (Forgy 1981 and Forgy 1982) and
motivate this research using some example OPS5
programs. We also define how a logical theory can
be derived from the productions of the PS pro-
gram. In section 3, we define a class of stratified
PS programs and define an operational semantics
for stratified PS programs. A stratified PS pro-
gram is a stratified program, and comprises an
extensional database (EDB) of facts, a stratified
intensional database (IDB) of rules, and a stratified
set of integrity constraints (IC). Both rules and
integrity constraints correspond to productions in
the PS program. We show that processing is
guaranteed to terminate upon reaching the opera-
tional fixpoint of a defined operator TPs. The
fixpoint captures the meaning of the PS program
and is correct and consistent.

284 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

The theory of the PS program, comprising the
EDB facts and the IDB rules that are derived from
the productions, may be inconsistent with the
integrity constraints (IC) that are also derived
from the productions. We can view the IC as
modifying-the theory so that the modified stratified
theory PS will be consistent with IC. This is
described in section 4. We also show the
equivalence between the answers obtained in the
operational fixpoint and the minimal model for the
theory E.

2. The OPS5 Production System
In this section we introduce the operational seman-
tics defined for the OPS5 production system
language and highlight some of its problems. We
chose the OPS5 production system language (Forgy
1981 and Forgy 1982) as an example.

Operational Semantics of OPS5

An OPS5 knowledge base comprises a set of pro-
ductions and an extensional database (EDB) of
ground positive unit clauses which may be stored
in relations. There will be one relation correspond-
ing to each predicate.

An OPS5 production consists of (1) the symbol
p, (2) the name of the production, (3) the
antecedent or the left hand side (LHS), (4) the
symbol +, and (5) the consequent actions or the
right hand side (RHS), enclosed within parentheses.

The an tecedent is a coniunction of first order
positive literals of the form:
v Xl, x2,+- x, P(al~ a2,-*am, xl7
or negative literals of the form:
v Xl, x2,- xn lQ(alr a2,--am, x
Q are (n+m)-ary predicates c(
EDB relations, al, a2,...a, a

x1j x2,..xn are variables. Assum
--- __ - ._ - _ .--1.‘.1.3 : --~~-

x2,**xn)

17 x2, * eXn)- P and
lrresponding to the
re constants and
e that all variables

- 11 11 1
al-e

in a
TWLtJC-TCSLTZC

literal must
tea, i.e.,
appear

any variance tnat occurs
in a positive literal. The

advantages of this restriction have been discussed
in Sadri and Kowalski 1988 and correspond to the
safety of evaluating queries.

The antecedent of each production is inter-
preted as a query against the EDB relations. For
example, for each of the positive literals,
P(al, a2,. .am, x1, x2,. .xn), relation P is queried,
and a set of instantiated tuples of P satisfying each
positive literal in the antecedent is retrieved. For
each of the negative literals, Q, the query
corresponding to the first order formula,

-I (3 Xl, 3, **xn Q(al, a27**7am, ~17 ~2 **>Xn)), is
verified against the relation Q. Note that since the

variables are range-restricted, the queries
corresponding to the negative literals can always be
verified. The antecedent of a production is
satisfied if the relations contain instantiated tuples
corresponding to each of the positive literals and
the relations do not contain tuples corresponding
to the negative literals.

The consequent actions are of the form:
(make R(a 1, a2,-,a,,x1, xz7-,x,)) or
(remove P(a 1, a2 ,.., a,,xi, x2 ,.., xn)), where P and
R are relations. Again, we assume that all vari-
ables xi, x2, . . . , x, are range restricted. The
interpretation of the make action is to insert the
corresponding tuple into the R relation. Similarly,
the remove action deletes the existing tuple from
the P relation. This requires that the expression
P(a,, a2,.*,a,,x1, x z,..,x,) that is referred to by the
remove action must occur as a positive literal in
the antecedent of that production.

We note that the OPS5 language has many
additional features that are not described here; we
have not considered the effect of such features in
our research.

The operational semantics of an OPS5 program
has been defined as follows: The initial state of the
PS corresponds to an initial EDB, corresponding to
all the tuples of the EDB relations, and a set of
productions. Processing in a production system
repeatedly cycles through the following sequence:

Match
For each production, the antecedent, inter-
preted as above, is queried against the tuples of
the corresponding relations. Each production
whose antecedent is satisfied, together with its
instantiated tuples is placed in a conflict set.

Select
Select one satisfied production from the conflict
set. If there is no such production, halt execu-
tion.

Act
For this selected production, execute the make
or remove action, interpreted as above. As a
result of the Act phase, the EDB relations are
updated. Consequently, the next Match phase
may produce a new conflict set.

There is no concept of a query that retrieves
information, in a PS program. Processing will con-
tinue as long as productions are executed and the
EDB relations are updated. Processing terminates
when an operational fixpoint is reached, i.e., when
there are no longer any productions that can
update the EDB relations. This operational

RASCHID 285

fixpoint (or the updated relations) corresponds to
the meaning of the PS program.

Shortcomings of the Operational

Semantics

The operational semantics for OPS5 are incom-
pletely defined. Consequently, an initial EDB of
relations and a set of productions can produce dif-
ferent answers. In some cases, an operational
fixpoint is never reached.

Example 1

Consider a PS whose initial EDB has two tuples,
{Employee(Mike). GoodWorker(Mike).), and the
following set of productions:
(p p1 (Employee(X), GoodWorker(+

(make Manager(X)))
(p ps (Manager(X)) + (make HasOffice))
(p p, (Employee(X), HasOffice(+

(make PoorWorker))
(p p4 (Manager(X), PoorWorker(-+

(remove Manager(X)))

Given this initial EDB and corresponding set of
productions, p,, p, and p, will execute in that
sequence and the tuples Manager(Mike),
HasOffice(Mike) and PoorWorker(Mike) will be
added to the corresponding EDB relations. Next,
p, executes and the tuple Manager(Mike) will be
deleted from the Manager relation. Subsequently,
p, and p, will execute, first inserting the tuple
Manager(Mike) and then deleting this tuple from
the Manager relation. Processing of p, and p4 will
continue but an operational fixpoint is not reached.

Example 2

The initial EDB = {Employee(Mike).) and the
productions are as follows:
(P P, (EmPloYeem + (make GoodWorker))
(p p, (Employee(X), GoodWorker(+

(make Manager(X)))
(p ps (Employee(X), 1 GoodWorker(+

(make PoorWorker))

If productions execute in the sequence pi fol-
lowed by p,, then the final EDB will contain the
set of tuples (Employee(Mike). GoodWorker(Mike).
Manager(Mike).). If the execution sequence were
p, followed by p, and pz, then, the final EDB
would include the tuples, (Employee(Mike).
GoodWorker(Mike). Manager(Mike).
PoorWorker(Mike).). Thus, in this case there are
two fixpoints.

A Corresponding Logical Theory

In order to understand the shortcomings of the
operational semantics, and to define a correct
semantics, we define how a logical theory can be
obtained from the productions in the PS program.

Definition
Every production that has a make action in its
consequent corresponds to a rule of an inten-
sional database (IDB).

For example, the following production:
h&P;lJy, -l Q(4) + (make R(x))) CorresPonds to

P(x), 1 Q(x) + R(x).

Every production that has a remove action in
its consequent corresponds to an integrity con-
straint (IC). G eneral forms of integrity constraints
and their treatment are discussed in Kowalski and
Sadri 1989; we delay a detailed discussion of con-
straints to a later section 4.

Definition
Every production that has (remove P(x)) in
the consequent is a constraint. The literal P(x)
is retracted literal to restore consistency.

Thus, the following production:
(P ~2 O=(x), 1 Q(x)) + (remove P(x)))
corresponds to the following IC:
P(x), 1 Q(x) + .
P(x) is retracted to maintain consistency and the
database must not prove
Vx P(x) ~lQ(x).

The meaning of treating some productions as
integrity constraints will be discussed in section 4.

The following logical theory will be obtained,
corresponding to the productions of Example 1:
EDB = { Employee(Mike). GoodWorker(Mike). 3
IDB = {Employee(X), GoodWorker +

Manager(X).
Manager(X) + HasOffice .
Employee(X), HasOffice +PoorWorker(X).)

IC = {Manager(X), PoorWorker + . 3

We can see that the logical theory of the PS is
inconsistent with the constraints. Thus, there can
be no model for the theory which is also a model
for the constraints (Lloyd 1987). In the case of
Example 2, there is a negative literal in the
antecedent of a rule. With Horn theories (includ-
ing stratified theories), the modus ponens rule of
inference is insufficient to prove negative informa-
tion. To do so one uses the closed world rule of
inference or the closed world assumption (CWA).
The correct interpretation, based on the CWA, is

286 AUTOMATED REASONING

that a tuple, <ai, aa,... a,> is not true if and only
if the IDB U EDB viewed as a logical theory can-
not prove P(a,, a2,. . . a,). In our example, it is
clear that the theory can prove
GoodWorker(Mike), and 1 GoodWorker(Mike) can-
not be proved. Thus, the interpretation of nega-
tive literals in the operational semantics of OPS5 is
incorrect.

3. Stratified Production Systems
We identify a class of stratified PS programs, and
we define an operational semantics for these pro-
grams. Stratification is an extension of Horn pro-
grams to more general Horn programs that allow
negative literals in the antecedent of a rule; recall
that productions in OPS5 have the same feature.
Our research draws upon existing research in
stratified databases (Apt, Blair and Walker 1988).

The Operational Semantics

A stratified production system program is viewed
as a stratified program, and comprises an exten-
sional database (EDB) of facts, a stratified inten-
sional database (IDB) of rules, and a stratified set
of integrity constraints (IC). Both rules and
integrity constraints correspond to productions in
PS.

The initial PS program comprises the following:

(1) an intensional database of rules (IDB), where
each rule corresponds to a production that has
a make action as its consequent,

(2) a set of integrity constraints (IC), where each
integrity constraint corresponds to a production
that has a remove action as its consequent,
and

(3) an initial extensional database of facts (EDBe).

In the operational semantics, there must exist a
partition so that PS is a stratified database. Thus,

PS = PS, u PS, . . . u PS,.

Each of the partitions PS, comprises a set of
rules IDBi, and a set of integrity constraints .TCd,
each of which may be possibly empty. Partition
PS, comprises the initial extensional database
EDB,; IDB, and IC, are null. The following con-
ditions hold for the stratification:

(1) IDB = IDB, (J u ID&

(2) IC = IC, 6 . . . l-J ICn

(3)

(4

(5)

(6)

,

a literal is all productions in which the literal
occurs in the make action.

For every positive literal in the body of a rule
in IDB,, or in the body of an integrity con-
straint in ICi, all other integrity constraints
where the literal occurs in the remove action

must be contained within U ICi.
j<i

For every negative literal in a rule in IDB,, or
in an integrity constraint in lCi, the definition
of that literal must be contained within

U IDBi.
j<S
For every negative literal in a rule in IDBi, or
in an integrity constraint in ICi, all integrity
constraints where the literal occurs in the
remove action must be contained within

U ICi.
jr i

The Operator Tps

Once such a partition has been obtained for the
stratified PS program, then, for each partition PS,,
we define an operator Tps as follows:

t
Definition

Ups is a Herbrand universe for the stratified PS
comprising predicates (make P), (remove P),
where P ranges over all propositional variables
in the PS.

If we consider a PS program where the proposi-
tional variables are the set (A, B, C3, then Ups is
the set of predicates {(make A), (remove A),
(make B), (remove B),(make C), (remove C)>.

In the case of predicate variables, we will use
relations to represent Ups, two for each predicate
symbol. Thus, for predicate P, relation makeP
will contain all tuples P(.,.,. . .) which are added by
some action (make P(.,. ,. . .)) and relation removeP
will contain all tuples P(.,.,...) which are removed
by some action (remove P(.,.,...)).

Definition
For each proposition P (or ground positive
literal P(.,.,...)), in EDB,, we replace it with
(make P), (or we add the tuple P(.,.,...) to the

RASCHID 287

For every positive literal in the body of a rule
in IDB,, or in the body of an integrity con-
straint in ICi, the definition of that literal must

be contained within U IDB,. The definition of

j<i

relation makeP).

Definition
The interpretation of the predicates of Ups (for
the propositional variable P), is defined as fol-
lows:

PI h-l= PI A 1 (remove P) I= P

(2) (make P) A (remove P) L 7 P

(3) 1 (make P) A 1 (remove P) b 1 P

(4) 1 (make P) A (remove P) is not allowed in
the operational semantics and represents an
inconsistency.

Definition
T ps is a mapping from a subset of Ups to Ups,

such that for any rule in IDBi or any integrity
constraint in rCi, if there exists an interpreta-
tion of EDBi-, , as described above, such that
the literals in the antecedent of the correspond-
ing production are true, then, the operator adds
the action in the head of the production to
EDBi .

Each EDBi is computed as follows:

EDB, = ED& u Tps, t w (EWJ
‘EDB, = ED4 u TPS, t w (ED4)

EDB, = EDB,-, u TPSa t w (EW-1)

Obtaining an Operational Fixpoint for Tps

Processing for each partition Psi should terminate
when an operational fixpoint is reached, i.e., when
there are no longer any satisfied productions that
can update EDBi. Processing for PS terminates
when the operational fixpoint for PS, is reached
and EDB, is computed.

Theorem
Tps f w (EDBi-~) is a fixpoint for PS, =

IDLE U ICi.

We refer the reader to (Rasc89) for the proof.

Example 3

Consider a PS whose initial EDB has two tuples,
(Employee(Mike). GoodWorker(Mike).), and the
following set of productions:
(p p1 (Employee(X), GoodWorker(+

(make Manager(X)))
(p p2 (Employee(X)) + (make HasOffice))
(p p3 (PoorWorker(HasOffice(+

(remove HasOffice))
(p p4 (Employee(X), HasOffice(-+

(make Manager(X)))

The stratification conditions will place produc-
tions p, in a higher stratum, say PS,, while the
other three productions are placed in PS,. The
operational fixpoint EDB, is as follows:
CmakeEmployee(Mike). makePoorWorker(Mike).
makeHasOffice(Mike). removeHasOffice(Mike).)
EDB, is interpreted to prove I HasOffice(Mike)
and Manager(Mike) will not be an answer.

4. Maintaining Consistency with
Integrity Constraints

We now try to understand the meaning of main-
taining consistency with respect to integrity con-
straints in a stratified PS program. Informally, a
database must satisfy its integrity constraints as it
changes over time. Usually, an update to the data-
base (more precisely an update to facts in the
EDB) may cause the violation of an integrity con-
straint; such updates are rejected or modified.
Sometimes, the database itself, i.e., the facts and
the rules may be inconsistent with the constraints
and must be modified, to maintain consistency. In
Kowalski and Sadri 1989, such a method is
presented for transforming a theory which is incon-
sistent with respect to a set of integrity constraints
into a transformed theory which is consistent with
the constraints. The transformation is syntactic.
Although the transformation works for more gen-
eral constraints, we restrict the discussion to denial
constraints of the form
A(t), Conj+.
where Conj is a conjunction of positive or negative
literals (and may be empty). The denial, or the
body of the constraint, should not be true in the
database. The atom A is the retractable atom that
restores consistency, if the constraint is violated.

Thus, if we consider the theory CC. C + A3 and
the constraint A, 1B +, where the retractable atom
is A, then, the theory is inconsistent with the con-
straint. However, the transformed theory
(C. C, B +A3 is consistent with the constraint.

If we apply a similar transformation to the
theory obtained from the productions of Example
3, we obtain the following consistent theory:
EDB = (Employee(Mike). GoodWorker(Mike). 3
IDB=(Employee(X), GoodWorker(X)+Manager(X).

Employee(X) lPoorWorker(X)+ HasOffice(
Employee(X), HasOffice + Manager(X). 3

We see that this theory will not prove
Manager(Mike), just as in the operational seman-
tics. In general, we can prove that if the PS

288 AUTOMATEDREASONING

program is stratifiable as defined, then the follow-
ing hold: (1) the logical theory derived from the
stratified PS program, modified to be consistent
with the constraints (also derived from the pro-
gram), is a stratified theory. (2) the operational
fixpoint of the stratified PS program is identical to
the model for the modified consistent theory that is
derived from the program.

5. Summary
A class of stratified PS programs and an opera-
tional semantics for these programs have been
defined. The theory derived from the productions
is modified so that it forms a consistent theory, I%,
with the integrity constraints that are also derived
from the productions. The operational fixpoint of
PS is identical to the model for I%. A formal
presentation of this research is in Raschid 1989.
Future research includes extending the semantics of
PS programs to include PS programs that exhibit
non-deterministic behaviour when executing pro-
ductions.

6. References

Apt, K-R., Blair, H.A. and Walker, A. 1988.
Towards a Theory of Declarative Knowledge. In
(Minker 1988).

Delcambre, L.M.L. and Etheredge, J.N. 1988. A
Self-Controlling Interpreter for the Relational Pro-
duction Language. In Proceedings of the ACM Sig-
mod International Conference on the Management
of Data.

Forgy, C.L. 1981. OPS5 User’s Manual, Technical
Report CMU-CS-81-135, Carnegie-Mellon Univer-
sity.

Forgy, C.L. 1982. Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Prob-
lem. Artificial Intelligence (19).

Hayes-Roth, F. 1985. Rule Based Systems. Com-
munications of the ACM(28) 9.

Kowalski, R. and Sadri, F. 1989. Knowledge
Representation without Integrity Constraints.
Technical Report, Imperial College, London, Eng-
land.

Lloyd, J.W. 1987. Foundations of Logic Program-
ming, Second, Extended Edition. Springer Verlag.

Maindreville, C. de and Simon, E. 1988. A Pro-
duction Rule Based Approach to Deductive Data-
bases. In Proceedings of the Fourth International
Conference on Data Engineering.

Minker. J., ed. 1988. Foundations of Deductive
Databases and Logic Programming. Morgan Kauf-
mann Publishers, Inc.

Raschid, L. 1989. Defining a Semantics for Pro-
duction Systems based on Stratified Databases and
Integrity Constraints, Technical Report 89-103,
University of Maryland.

Raschid, L., Sellis, T. and Lin, C-C. 1988.
Exploiting Concurrency in a DBMS Implementa-
tion for Production Systems. In Proceedings of the
International Symposium on Databases in Parallel
and Distributed Systems.

Sadri, F. and Kowalski, R. 1988. A Theorem-
Proving Approach to Database Integrity. In
(Minker 1988).

Sellis, T., Lin, C-C. and Raschid, L. 1988. Imple-
menting Large Production Systems in a DBMS
Environment: Concepts and Algorithms. In
Proceedings of the ACM Sigmod International
Conference on the Management of Data.

Simon, E. and Maindreville, C. de, 1988. Deciding
Whether a Production Rule is Relational Comput-
able. In IProceedings of the International Confer-
ence on Database Theory.

Widom, J. and Finkelstein, S.J. 1989. A Syntax
and Semantics for Set-Oriented Production Rules
in Relational Database Systems, IBM Research
Report, IBM Almaden Research Center.

RASCHID 289

