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Abstract 

We present our research on defining a correct semantics 
for forward chaining production systems (PS) programs. 
A correct semantics ensures that the execution of the 
program will not produce incorrect answers and execu- 
tion will terminate; it also ensures that the answers are 
consistent. We define a class of stratified PS programs, 
and propose an operational semantics for these pro- 
grams. We define an operator TPs, which computes the 
operational fixpoint for the productions of the stratified 
PS program; the fixpoint captures the meaning of the 
PS program. The theory that can be derived from the 
productions of the PS program may be inconsistent 
with the constraints that are also derived from the PS 
program. We can then view the constraints as modify- - 
ing the theory so that the modified theory PS is con- 
sistent with the constraints. However, the same 
answers are obtained in the operational semantics of 
the stratified PS program or from the modified theory 
E. 

1. Introduction 
In recent years, much AI research and development 
has focused on forward chaining rule-based sys- 
tems which follow the production sytem (PS) para- 
digm (Hayes-Roth 1985). Large production rule- 
based expert systems have been successfully 
developed in diverse domains such as engineering 
design databases, trouble-shooting in telephone 
networks, and configuring VAX computer systems. 
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Production 

In these domains, the expert system programs often 
have to reason with large quantities of data. As 
the production rule base and the database grow 
larger, these programs have to access information 
stored on disk. Thus, for performance reasons, it 
is important that PS programs be implemented 
using database technology. Research in this area is 
reported in Delcambre and Etheredge 1988, Main- 
dreville and Simon 1988, Raschid, Sellis and Lin 
1988, Simon and Mandreville 1988, Sellis, Lin and 
Raschid 1988 and Widom and Finkelstein 1989. 

If large production systems (PS) are to be 
implemented successfully to interface with large 
(relational) databases, then it is critical that the 
semantics of PS be well understood. Unfor- 
tunately, most PS have an incomplete operational 
semantics defined for them. This can result in 
non-terminating execution of productions and 
inconsistent answers. 

In this paper, we describe our research on 
defining a correct semantics for PS programs. This 
paper is organized as follows: In section 2, we 
introduce the operational semantics of OPS5, an 
example of a PS (Forgy 1981 and Forgy 1982) and 
motivate this research using some example OPS5 
programs. We also define how a logical theory can 
be derived from the productions of the PS pro- 
gram. In section 3, we define a class of stratified 
PS programs and define an operational semantics 
for stratified PS programs. A stratified PS pro- 
gram is a stratified program, and comprises an 
extensional database (EDB) of facts, a stratified 
intensional database (IDB) of rules, and a stratified 
set of integrity constraints (IC). Both rules and 
integrity constraints correspond to productions in 
the PS program. We show that processing is 
guaranteed to terminate upon reaching the opera- 
tional fixpoint of a defined operator TPs. The 
fixpoint captures the meaning of the PS program 
and is correct and consistent. 
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The theory of the PS program, comprising the 
EDB facts and the IDB rules that are derived from 
the productions, may be inconsistent with the 
integrity constraints (IC) that are also derived 
from the productions. We can view the IC as 
modifying-the theory so that the modified stratified 
theory PS will be consistent with IC. This is 
described in section 4. We also show the 
equivalence between the answers obtained in the 
operational fixpoint and the minimal model for the 
theory E. 

2. The OPS5 Production System 
In this section we introduce the operational seman- 
tics defined for the OPS5 production system 
language and highlight some of its problems. We 
chose the OPS5 production system language (Forgy 
1981 and Forgy 1982) as an example. 

Operational Semantics of OPS5 

An OPS5 knowledge base comprises a set of pro- 
ductions and an extensional database (EDB) of 
ground positive unit clauses which may be stored 
in relations. There will be one relation correspond- 
ing to each predicate. 

An OPS5 production consists of (1) the symbol 
p, (2) the name of the production, (3) the 
antecedent or the left hand side (LHS), (4) the 
symbol +, and (5) the consequent actions or the 
right hand side (RHS), enclosed within parentheses. 

The an tecedent is a coniunction of first order 
positive literals of the form: 
v Xl, x2,+- x, P(al~ a2,-*am, xl7 
or negative literals of the form: 
v Xl, x2,- xn lQ(alr a2,--am, x 
Q are (n+m)-ary predicates c( 
EDB relations, al, a2,...a, a 

x1j x2,..xn are variables. Assum 
--- __ - ._ - _ .--1.‘.1.3 : --~~- 

x2,**xn) 

17 x2, * eXn)- P and 
lrresponding to the 
re constants and 
e that all variables 

- 11 11 1 
al-e 

in a 
TWLtJC-TCSLTZC 

literal must 
tea, i.e., 
appear 

any variance tnat occurs 
in a positive literal. The 

advantages of this restriction have been discussed 
in Sadri and Kowalski 1988 and correspond to the 
safety of evaluating queries. 

The antecedent of each production is inter- 
preted as a query against the EDB relations. For 
example, for each of the positive literals, 
P(al, a2,. .am, x1, x2,. .xn), relation P is queried, 
and a set of instantiated tuples of P satisfying each 
positive literal in the antecedent is retrieved. For 
each of the negative literals, Q, the query 
corresponding to the first order formula, 

-I ( 3 Xl, 3, **xn Q(al, a27**7am, ~17 ~2 **>Xn) ), is 
verified against the relation Q. Note that since the 

variables are range-restricted, the queries 
corresponding to the negative literals can always be 
verified. The antecedent of a production is 
satisfied if the relations contain instantiated tuples 
corresponding to each of the positive literals and 
the relations do not contain tuples corresponding 
to the negative literals. 

The consequent actions are of the form: 
(make R(a 1, a2,-,a,,x1, xz7-,x,) ) or 
(remove P(a 1, a2 ,.., a,,xi, x2 ,.., xn) ), where P and 
R are relations. Again, we assume that all vari- 
ables xi, x2, . . . , x, are range restricted. The 
interpretation of the make action is to insert the 
corresponding tuple into the R relation. Similarly, 
the remove action deletes the existing tuple from 
the P relation. This requires that the expression 
P(a,, a2,.*,a,,x1, x z,..,x,) that is referred to by the 
remove action must occur as a positive literal in 
the antecedent of that production. 

We note that the OPS5 language has many 
additional features that are not described here; we 
have not considered the effect of such features in 
our research. 

The operational semantics of an OPS5 program 
has been defined as follows: The initial state of the 
PS corresponds to an initial EDB, corresponding to 
all the tuples of the EDB relations, and a set of 
productions. Processing in a production system 
repeatedly cycles through the following sequence: 

Match 
For each production, the antecedent, inter- 
preted as above, is queried against the tuples of 
the corresponding relations. Each production 
whose antecedent is satisfied, together with its 
instantiated tuples is placed in a conflict set. 

Select 
Select one satisfied production from the conflict 
set. If there is no such production, halt execu- 
tion. 

Act 
For this selected production, execute the make 
or remove action, interpreted as above. As a 
result of the Act phase, the EDB relations are 
updated. Consequently, the next Match phase 
may produce a new conflict set. 

There is no concept of a query that retrieves 
information, in a PS program. Processing will con- 
tinue as long as productions are executed and the 
EDB relations are updated. Processing terminates 
when an operational fixpoint is reached, i.e., when 
there are no longer any productions that can 
update the EDB relations. This operational 
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fixpoint (or the updated relations) corresponds to 
the meaning of the PS program. 

Shortcomings of the Operational 

Semantics 

The operational semantics for OPS5 are incom- 
pletely defined. Consequently, an initial EDB of 
relations and a set of productions can produce dif- 
ferent answers. In some cases, an operational 
fixpoint is never reached. 

Example 1 

Consider a PS whose initial EDB has two tuples, 
{Employee(Mike). GoodWorker(Mike).), and the 
following set of productions: 
(p p1 (Employee(X), GoodWorker( + 

( make Manager(X) ) ) 
(p ps (Manager(X)) + ( make HasOffice ) ) 
(p p, (Employee(X), HasOffice( + 

( make PoorWorker ) ) 
(p p4 (Manager(X), PoorWorker( -+ 

( remove Manager(X) ) ) 

Given this initial EDB and corresponding set of 
productions, p,, p, and p, will execute in that 
sequence and the tuples Manager(Mike), 
HasOffice(Mike) and PoorWorker(Mike) will be 
added to the corresponding EDB relations. Next, 
p, executes and the tuple Manager(Mike) will be 
deleted from the Manager relation. Subsequently, 
p, and p, will execute, first inserting the tuple 
Manager(Mike) and then deleting this tuple from 
the Manager relation. Processing of p, and p4 will 
continue but an operational fixpoint is not reached. 

Example 2 

The initial EDB = {Employee(Mike).) and the 
productions are as follows: 
(P P, (EmPloYeem + ( make GoodWorker ) ) 
(p p, (Employee(X), GoodWorker( + 

( make Manager(X) ) ) 
(p ps (Employee(X), 1 GoodWorker( + 

( make PoorWorker ) ) 

If productions execute in the sequence pi fol- 
lowed by p,, then the final EDB will contain the 
set of tuples (Employee(Mike). GoodWorker(Mike). 
Manager(Mike).). If the execution sequence were 
p, followed by p, and pz, then, the final EDB 
would include the tuples, (Employee(Mike). 
GoodWorker(Mike). Manager(Mike). 
PoorWorker(Mike).). Thus, in this case there are 
two fixpoints. 

A Corresponding Logical Theory 

In order to understand the shortcomings of the 
operational semantics, and to define a correct 
semantics, we define how a logical theory can be 
obtained from the productions in the PS program. 

Definition 
Every production that has a make action in its 
consequent corresponds to a rule of an inten- 
sional database (IDB). 

For example, the following production: 
h&P;lJy, -l Q(4) + (make R(x)) ) CorresPonds to 

P(x), 1 Q(x) + R(x). 

Every production that has a remove action in 
its consequent corresponds to an integrity con- 
straint (IC). G eneral forms of integrity constraints 
and their treatment are discussed in Kowalski and 
Sadri 1989; we delay a detailed discussion of con- 
straints to a later section 4. 

Definition 
Every production that has (remove P(x) ) in 
the consequent is a constraint. The literal P(x) 
is retracted literal to restore consistency. 

Thus, the following production: 
(P ~2 O=(x), 1 Q(x)) + (remove P(x)) ) 
corresponds to the following IC: 
P(x), 1 Q(x) + . 
P(x) is retracted to maintain consistency and the 
database must not prove 
Vx P(x) ~lQ(x). 

The meaning of treating some productions as 
integrity constraints will be discussed in section 4. 

The following logical theory will be obtained, 
corresponding to the productions of Example 1: 
EDB = { Employee(Mike). GoodWorker(Mike). 3 
IDB = {Employee(X), GoodWorker + 

Manager(X). 
Manager(X) + HasOffice . 
Employee(X), HasOffice +PoorWorker(X).) 

IC = {Manager(X), PoorWorker + . 3 

We can see that the logical theory of the PS is 
inconsistent with the constraints. Thus, there can 
be no model for the theory which is also a model 
for the constraints (Lloyd 1987). In the case of 
Example 2, there is a negative literal in the 
antecedent of a rule. With Horn theories (includ- 
ing stratified theories), the modus ponens rule of 
inference is insufficient to prove negative informa- 
tion. To do so one uses the closed world rule of 
inference or the closed world assumption (CWA). 
The correct interpretation, based on the CWA, is 
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that a tuple, <ai, aa,... a,> is not true if and only 
if the IDB U EDB viewed as a logical theory can- 
not prove P(a,, a2,. . . a,). In our example, it is 
clear that the theory can prove 
GoodWorker(Mike), and 1 GoodWorker(Mike) can- 
not be proved. Thus, the interpretation of nega- 
tive literals in the operational semantics of OPS5 is 
incorrect. 

3. Stratified Production Systems 
We identify a class of stratified PS programs, and 
we define an operational semantics for these pro- 
grams. Stratification is an extension of Horn pro- 
grams to more general Horn programs that allow 
negative literals in the antecedent of a rule; recall 
that productions in OPS5 have the same feature. 
Our research draws upon existing research in 
stratified databases (Apt, Blair and Walker 1988). 

The Operational Semantics 

A stratified production system program is viewed 
as a stratified program, and comprises an exten- 
sional database (EDB) of facts, a stratified inten- 
sional database (IDB) of rules, and a stratified set 
of integrity constraints (IC). Both rules and 
integrity constraints correspond to productions in 
PS. 

The initial PS program comprises the following: 

(1) an intensional database of rules (IDB), where 
each rule corresponds to a production that has 
a make action as its consequent, 

(2) a set of integrity constraints (IC), where each 
integrity constraint corresponds to a production 
that has a remove action as its consequent, 
and 

(3) an initial extensional database of facts (EDBe). 

In the operational semantics, there must exist a 
partition so that PS is a stratified database. Thus, 

PS = PS, u PS, . . . u PS,. 

Each of the partitions PS, comprises a set of 
rules IDBi, and a set of integrity constraints .TCd, 
each of which may be possibly empty. Partition 
PS, comprises the initial extensional database 
EDB,; IDB, and IC, are null. The following con- 
ditions hold for the stratification: 

(1) IDB = IDB, (J . . . . u ID& 

(2) IC = IC, 6 . . . l-J ICn 

(3) 

(4 

(5) 

(6) 

, 

a literal is all productions in which the literal 
occurs in the make action. 

For every positive literal in the body of a rule 
in IDB,, or in the body of an integrity con- 
straint in ICi, all other integrity constraints 
where the literal occurs in the remove action 

must be contained within U ICi. 
j<i 

For every negative literal in a rule in IDB,, or 
in an integrity constraint in lCi, the definition 
of that literal must be contained within 

U IDBi. 
j<S 
For every negative literal in a rule in IDBi, or 
in an integrity constraint in ICi, all integrity 
constraints where the literal occurs in the 
remove action must be contained within 

U ICi. 
jr i 

The Operator Tps 

Once such a partition has been obtained for the 
stratified PS program, then, for each partition PS,, 
we define an operator Tps as follows: 

t 
Definition 

Ups is a Herbrand universe for the stratified PS 
comprising predicates (make P), (remove P), 
where P ranges over all propositional variables 
in the PS. 

If we consider a PS program where the proposi- 
tional variables are the set (A, B, C3, then Ups is 
the set of predicates {(make A), (remove A), 
(make B), (remove B),(make C), (remove C)>. 

In the case of predicate variables, we will use 
relations to represent Ups, two for each predicate 
symbol. Thus, for predicate P, relation makeP 
will contain all tuples P( .,.,. . .) which are added by 
some action (make P( .,. ,. . .)) and relation removeP 
will contain all tuples P( .,.,...) which are removed 
by some action (remove P( .,.,... )). 

Definition 
For each proposition P (or ground positive 
literal P( .,.,...) ), in EDB,, we replace it with 
(make P), (or we add the tuple P( .,.,...) to the 
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in IDB,, or in the body of an integrity con- 
straint in ICi, the definition of that literal must 

be contained within U IDB,. The definition of 

j<i 



relation makeP). 

Definition 
The interpretation of the predicates of Ups (for 
the propositional variable P), is defined as fol- 
lows: 

PI h-l= PI A 1 (remove P) I= P 

(2) (make P) A (remove P) L 7 P 

(3) 1 (make P) A 1 (remove P) b 1 P 

(4) 1 (make P) A (remove P) is not allowed in 
the operational semantics and represents an 
inconsistency. 

Definition 
T ps is a mapping from a subset of Ups to Ups, 

such that for any rule in IDBi or any integrity 
constraint in rCi, if there exists an interpreta- 
tion of EDBi-, , as described above, such that 
the literals in the antecedent of the correspond- 
ing production are true, then, the operator adds 
the action in the head of the production to 
EDBi . 

Each EDBi is computed as follows: 

EDB, = ED& u Tps, t w (EWJ 
‘EDB, = ED4 u TPS, t w (ED4) 

EDB, = EDB,-, u TPSa t w (EW-1) 

Obtaining an Operational Fixpoint for Tps 

Processing for each partition Psi should terminate 
when an operational fixpoint is reached, i.e., when 
there are no longer any satisfied productions that 
can update EDBi. Processing for PS terminates 
when the operational fixpoint for PS, is reached 
and EDB, is computed. 

Theorem 
Tps f w (EDBi-~) is a fixpoint for PS, = 

IDLE U ICi. 

We refer the reader to (Rasc89) for the proof. 

Example 3 

Consider a PS whose initial EDB has two tuples, 
(Employee(Mike). GoodWorker(Mike).), and the 
following set of productions: 
(p p1 (Employee(X), GoodWorker( + 

( make Manager(X) ) ) 
(p p2 (Employee(X)) + ( make HasOffice ) ) 
(p p3 (PoorWorker( HasOffice( + 

( remove HasOffice ) ) 
(p p4 (Employee(X), HasOffice( -+ 

( make Manager(X) ) ) 

The stratification conditions will place produc- 
tions p, in a higher stratum, say PS,, while the 
other three productions are placed in PS,. The 
operational fixpoint EDB, is as follows: 
CmakeEmployee(Mike). makePoorWorker(Mike). 
makeHasOffice(Mike). removeHasOffice(Mike).) 
EDB, is interpreted to prove I HasOffice(Mike) 
and Manager(Mike) will not be an answer. 

4. Maintaining Consistency with 
Integrity Constraints 

We now try to understand the meaning of main- 
taining consistency with respect to integrity con- 
straints in a stratified PS program. Informally, a 
database must satisfy its integrity constraints as it 
changes over time. Usually, an update to the data- 
base (more precisely an update to facts in the 
EDB) may cause the violation of an integrity con- 
straint; such updates are rejected or modified. 
Sometimes, the database itself, i.e., the facts and 
the rules may be inconsistent with the constraints 
and must be modified, to maintain consistency. In 
Kowalski and Sadri 1989, such a method is 
presented for transforming a theory which is incon- 
sistent with respect to a set of integrity constraints 
into a transformed theory which is consistent with 
the constraints. The transformation is syntactic. 
Although the transformation works for more gen- 
eral constraints, we restrict the discussion to denial 
constraints of the form 
A(t), Conj+. 
where Conj is a conjunction of positive or negative 
literals (and may be empty). The denial, or the 
body of the constraint, should not be true in the 
database. The atom A is the retractable atom that 
restores consistency, if the constraint is violated. 

Thus, if we consider the theory CC. C + A3 and 
the constraint A, 1B +, where the retractable atom 
is A, then, the theory is inconsistent with the con- 
straint. However, the transformed theory 
(C. C, B +A3 is consistent with the constraint. 

If we apply a similar transformation to the 
theory obtained from the productions of Example 
3, we obtain the following consistent theory: 
EDB = (Employee(Mike). GoodWorker(Mike). 3 
IDB=(Employee(X), GoodWorker(X)+Manager(X). 

Employee(X) lPoorWorker(X)+ HasOffice( 
Employee(X), HasOffice + Manager(X). 3 

We see that this theory will not prove 
Manager(Mike), just as in the operational seman- 
tics. In general, we can prove that if the PS 
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program is stratifiable as defined, then the follow- 
ing hold: (1) the logical theory derived from the 
stratified PS program, modified to be consistent 
with the constraints (also derived from the pro- 
gram), is a stratified theory. (2) the operational 
fixpoint of the stratified PS program is identical to 
the model for the modified consistent theory that is 
derived from the program. 

5. Summary 
A class of stratified PS programs and an opera- 
tional semantics for these programs have been 
defined. The theory derived from the productions 
is modified so that it forms a consistent theory, I%, 
with the integrity constraints that are also derived 
from the productions. The operational fixpoint of 
PS is identical to the model for I%. A formal 
presentation of this research is in Raschid 1989. 
Future research includes extending the semantics of 
PS programs to include PS programs that exhibit 
non-deterministic behaviour when executing pro- 
ductions. 
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