
Validated Retrieval in Case-Based Reasoning 
Evangelos Simoudis 

Computer Science Department 
Brandeis University 

Waltham, MA 02254 
and 

Digital Equipment Corporation 

Abstract 
We combine simple retrieval with domain-specific vali- 
dation of retrieved cases to produce a useful practical 
tool for case-based reasoning. Based on 200 real-world 
cases, we retrieve between three and six cases over a 
wide range of new problems. This represents a selectiv- 
ity ranging from 1.5% to 3%, compared to an average 
selectivity of only 11% from simple retrieval alone. 

Introduction 
We have combined simple retrieval (based on the sim- 
ilarity of surface features) with domain-specific valida- 
tion of retrieved cases to produce a useful practical tool 
for case-based reasoning. Starting with a case base of 
200 real-world cases, we have narrowed our considera- 
tion to between three and six cases over a wide range 
of new problems. This represents a selectivity ranging 
from 1.5% to 3%, compared to an average selectivity of 
only 11% from this same case base using retrieval with- 
out validation. We are applying the same technology 
to a larger case base in a different domain, and have 
deployed a related tool with a much larger case base for 
actual use in the field. 

Our work begins with a real-world problem: a com- 
puter manufacturer’s diagnosis of system software fail- 
ures. In this domain, diagnostic knowledge exists in 
several forms: manuals, courses, production rule sys- 
tems, and knowledge bases. But the predominant start- 
ing point in current use is a set of data bases created 
by recording successfully diagnosed error conditions. In 
order to diagnose a new failure, non-expert specialists 
retrieve from a data base previously solved cases that 
appear superficially similar to the new problem. They 
then attempt to verify the similarity by performing tests 
on the new problem and comparing the results with 
those of each retrieved case. When they become con- 
vinced that a previous case is substantially the same as 
the new problem, they examine the resolution of the old 
case and report it (possibly amended or edited to more 
closely fit the new problem) to the customer. Only in 
rare cases are experts requested to examine problems - 
most are resolved from the existing data base - and 
the solutions are then added to the data base. 

3 10 COGNITIVE MODELING 

James Miller 
Computer Science Department 

Brandeis University 
Waltham, MA 02254 

and 
Digital Equipment Corporation 

This existing human system is a conscious use of case- 
based reasoning (CBR) techniques; we have improved 
the system by adding to it an automated tool using re- 
sults from AI case-based reasoning systems. In order 
to produce a tool of practical value we were forced to 
examine more closely the task of retrieval in case-based 
reasoning. Based on our experience we propose an ex- 
tension to current systems, validated retrieval, that dra- 
matically reduces the number of cases presented to the 
reasoning component (human or automated) of a case- 
based system. Validated retrieval relies on domain- 
specific knowledge about tests used to compare cases 
retrieved from the case base with newly presented prob- 
lem cases. Knowledge about the relationships among 
the various tests is captured in a validation model which 
we implement as a semantic network[Quillian, 19681. In 
order to build our validation model we are faced with a 
classic knowledge acquisition task. By perusing exist- 
ing data bases used by specialists we are able to acquire 
this knowledge with a reasonable amount of effort - 
and with only a small investment of specialists’ time. 

Retrieval in CBR 
CBR systems first retrieve a set of cases from a case 
base and then reason from them to find a solution to a 
newly posed problem. Existing systems ([Bareiss et al., 
19881, [Hammond, 1986], [Kolodner, 19831, [Kolodner et 
al., 19851, [Rissland and Ashley, 1986] and [Stanfill and 
Waltz, 19861) make two assumptions about the initial 
retrieval of cases from the case base: 

1. Very few cases will be retrieved from the case library. 
2. The retrieved 

solved. 
cases are relevant to the problem being 

In many practical applications, retrieval alone is suffi- 
cient to solve the difficult part of a task. For example, in 
our domain of diagnosis of computer software failures, 
specialists can easily respond to customer problems if 
they can quickly locate a few similar cases from their 
collective past experience. For this reason, we have con- 
centrated on the retrieval aspect of case-based reason- 
ing. In MBRTALK[Stanfill and Waltz, 19861, also, the 
essential task is retrieval; the “reasoning” component 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



consists of merely passing the retrieved information di- a justification model to relate the various applicability 
rectly to an output unit. checks to one another. 

Related Work 

Closest to our own work is the work of Koton on 
CAsEY[Koton, 1988], a CBR system which has been ap- 
plied in the domain of medical diagnosis. CASEY has 
a justification component whose goal is to determine 
whether the causal explanation of a retrieved case ap- 
plies to a new problem. This frequently allows CASEY 
to avoid invoking its causal model when creating an ex- 
planation for a new case. CASEY'S justification phase is 
similar to our validation phase. But there is an impor- 
tant difference between these two systems arising from 
different assumptions about tests. CASEY relies on pre- 
cisely two tests (EKG and X-rays), both of which are 
inexpensive and non-invasive. Both of these tests are 
performed prior to the retrieval phase and the results 
are used to provide surface features for the retrieval 
algorithm. By contrast, there are literally hundreds of 
tests to be performed in our domains and it is far too ex- 
pensive to perform all of them in advance of initial case 
retrieval. As a result, our systems devote attention to 
minimizing the number of tests that are performed. We 
not only perform tests incrementally and cache the re- 
sults, but also employ knowledge about the tests them- 
selves to reduce the number of tests performed. 

The CBR system CHEF[Bammond, 19861, whose do- 
main is Chinese cooking, also uses retrieval followed 
by justification to identify the most appropriate plans 
(recipes) to solve a new problem. In order to identify a 
relevant recipe it performs simple tests, similar to our 
surface feature comparisons, during the retrieval phase. 
Once retrieved, a recipe may fail to completely satisfy 
the requirements of the new problem. In this case, CHEF 
consults a causal model of the domain in order to de- 
termine the cause of the mismatch and effect repairs. 

Finally, in the more recent case-based reason- 
ing systems PHIAR[Kambhampati, 19891, KRITIK[Goel 
and Chandrasekaran, 19891, and cYcLops[Sycara and 
Navinchandra, 19891 also use both surface features and 
deeper knowledge, although in these systems the deeper 
knowledge is in the form of causal explanations. PRIAR 
and KRITIK use the causal explanations during case rea- 
soning to adapt existing solutions to fit new problems 
- an important area, but one that our work does not 
explore. CYCLOPS concentrates on the reverse of our 
problem: we are concerned with retrieving too many 
cases for careful scrutiny, while in CYCLOPS the con- 
cern is that no relevant cases may be retrieved. CY- 
CLOPS uses deep knowledge to modify the indices used 
during the retrieval phase, an approach that meshes 
nicely with ours to produce an automated method for 
improving the performance of surface feature retrieval. 

We have found that we can efficiently achieve our goal 
(retrieval of relevant cases) without recourse to a causal 
model by using a validation model that is significantly 
easier to construct. Our contribution is largely one of 
scale: if CHEF had a larger set of basic recipes from 
which to choose, our approach would almost certainly 
improve the performance of CHEF by limiting the num- 
ber of recipes that must be repaired before a successful 
solution is found. 

The SWALE[Leake, 19881 system concentrates primar- 
ily on modifying the explanation (contained in an expla- 
nation packet or XP) of a retrieved case to match a new 
problem. Nonetheless, it has a subcomponent, XP AC- 
CEPTER, that justifies the application of a retrieved XP 
to a current situation. The ACCEPTER verifies an XP by 
determining if it can believe the applicability checks that 
are packaged with each XP. Each such test is similar to 
the tests associated with our validation model. Because 
of the small number of cases (eight, by our count) XP 
ACCEPTER never addressed the issues of scale which 
are our major concern. Thus, SWALE never developed 

Two Phases: Retrieval and Validation 
Our goal is to take a sizable pre-existing case base along 
with a new problem and produce a small number of 
relevant cases. Like our human specialists, our systems 
perform diagnosis in two phases: 

Retrieval: it poses a query to the case base using a 
subset of the features that describe the new problem. 

Validation: it follows the validation procedure from 
each retrieved case to determine if it applies to the 
problem at hand. 

The goal of the retrieval phase is to extract from the 
case base those cases that appear to be relevant to the 
new case. Since the case base is large, and we have been 
interested primarily in sequential implementations, it 
is important that the case-base be organized in a way 
that permits efficient search based on surface similari- 
ties. For this reason, we organize the cases into a gen- 
eralization hierarchy (using UNIMEM[Lebowitz, 19871). 
The retrieval phase consists of traversing the generaliza- 
tion hierarchy to find a close match to the new problem. 
The result of this traversal is either an individual case 
(a leaf node) or a set of cases (an internal node in the hi- 
erarchy, returned as all of the cases indexed under that 
node). Unlike those systems that rely exclusively on 
UNIMEM for case retrieval, we don’t fine tune UNIMEM 
to reduce the number of cases retrieved. 

The validation phase then considers each of the re- 
trieved cases and attempts to show that the case is rele- 
vant to the problem at hand. Associated with each case 
in the case base is a set of tests and their result values 
that must be met for the stored case to be valid. We call 
the set of tests and values a validation procedure, and 
each element of this set (i.e. a single test/value pair) 
is called a validation step. The tests are applied to the 
actual problem and the results are compared with the 
results in the case. Based on this comparison both the 
current case and other retrieved cases can be removed 

SIMOUDIS ANDMILLER 311 



from further consideration. Only when all of the tests 
for a given case are successfully matched against the 
current problem is the case reported as a candidate for 
a reasoning component’s consideration. (In other do- 
mains, it may be possible to assign weights to individ- 
ual test results and use a threshold or averaging scheme 
for deciding whether or not to reject the case.) 

The Validation Model 
The validation phase of our method is straightforward 
if the individual validation tests are simple and self- 
contained. Unfortunately, in our domains, and prob- 
ably in most real-world domains, this is not the case. 
In each domain we have studied, we have found that 
the tests are interrelated in a way that is not evident 
in advance, and we have been forced to face the knowl- 
edge acquisition task head-on. In Section we describe a 
methodology for acquiring this knowledge about tests. 
We have successfully used this methodology to develop 
validation models: structures that capture much of an 
expert’s knowledge in a way that makes it easy for the 
validation phase to process the tests it requires. 

What is a validation model? 
The test space, which we represent with a validation 
model, is rich and complex. Not only are there the 
individual tests themselves, but the tests can often be 
grouped together to represent methods for testing larger 
components. Furthermore, performing one test may ei- 
ther require information gathered from earlier tests or 
generate information that modifies the meaning or need 
to perform subsequent tests. Thus, there are prece- 
dence constraints among the tests, conceptual group- 
ings of tests, and a body of inferential knowledge in- 
volving the various tests. 

For example, if we want to know why a house is hot 
(the problem), we may first want to see if the air condi- 
tioner is working. But before performing these actions 
we need to find out if the house has an air conditioner. 
In this example, the desired test (is the air conditioner 
working?) uses the output of another test (is there an 
air conditioner?). It is this knowledge, as well as knowl- 
edge about the important outcomes and implications of 
a test, that is captured by the validation model. We 
have chosen to represent this knowledge in the form 
of a semantic network whose nodes correspond to sets 
of tests and whose arcs indicate relationships between 
these sets. 

This richness is reminiscent of causal models and nat- 
urally leads us to ask about the relation between causal 
and validation models. The two forms of models en- 
capsulate different kinds of knowledge, serve to answer 
different questions, and facilitate different forms of rea- 
soning. Causal models, like declarative programming 
languages, provide a base for detailed reasoning, theo- 
rem proving, and logical deduction - they try to effi- 
ciently answer “why?” questions. Validation models, 
like functional or imperative programming languages, 

3 12 COGNITIVE MODELING 

provide control structures and efficient directed search 
mechanisms - they try to efficiently answer “how to?” 
questions. [Davis, 19841 argues that causal models can 
be used to answer the “how to?” questions of diagnosis. 
We agree, but the argument is similar to an argument 
from the programming language community: a logic 
program that clearly declares the meaning of square 
roots cm be used to calculate their values, but a func- 
tional or imperative program is likely to do so far more 
efficiently. Similarly, we believe that a validation model 
is both easier to construct and more efficient to use than 
a causal model for, at least, diagnostic tasks. 

Creating a Validation Model 

We build our validation models by first examining ex- 
isting data bases that are used by human specialists. 
These data bases may be either formalized (as in the 
case of our WPS-PLUS1 system) or merely informal 
notes prepared by the specialists for their own perusal 
(as in the case of our VAX/VMS system). In our two 
case-based systems, the existing data contains a tex- 
tual description of the steps that the specialists used 
to verify a hypothetical explanation of the problem. In 
constructing the validation model, it is our goal to cap- 
ture the interrelationships between the validation tests. 
As a result, we have built validation models that corre- 
spond to a particular case base by: 

Reading the validation procedures of each case and 
building a list of all the validation steps used in the 
entire data base. In the process of reading the data 
base and preparing this list, the implementor devel- 
ops a sense of the underlying (but unstated) relation- 
ships between tests that are mentioned in the data 
base. 

Examining the resulting list, looking for groups of 
tests that appear to form related sets. Organizing 
the list provides a basis for discussion with domain 
experts, who help “debug” the proposed organiza- 
tion. 

Refining the structure of the list through knowledge 
acquisition sessions with domain experts. During 
these sessions, significant ranges of test results are 
identified, as are inferences from these results that 
eliminate the need to perform other tests. That is, a 
dependency graph based on test results is developed. 

Iterating the above two steps after consulting addi- 
tional information such as manuals and code doc- 
umentation. The structure of the domain becomes 
clearer at each iteration. (We have found that three 
iterations are sufficient to produce a useful structur- 
ing.) The final validation model consists primarily 
of entries corresponding directly to information that 
appears in the original data base. 

‘DEC, VAX, VMS and WPS-PLUS are registered trade- 
marks of Digital Equipment Corporation. 



5. Integrating the test sets into the structure derived 
in the previous step. This integration makes explicit 
the prerequisites of each test, as well as providing 
alternative ways of obtaining information ordinarily 
provided by a particular critical test in cases where 
that test cannot be performed. 

An Extended Example 

In order to understand the validated retrieval process, 
consider the following example from the domain of au- 
tomobile diagnosis and repair We have chosen a simple 
example from this domain because it allows the reader 
to understand the details of our approach. An example 
from either of our practical domains would require the 
reader to acquire a detailed understanding of a compli- 
cated software system. For our example we assume an 
existing case base with its associated validation model. 
We are given the following new problem: 

NEW CASE 
make: MAZDA model: 626 
engine: 2.OL EFI miles: 50,000 
year: 1985 
Droblem: engine does not start. 

The retrieval phase uses the make, model, problem, 
and approximate year of manufacture to search through 
a case base of previous automobile problems. Based on 
these surface features, we retrieve three cases to be val- 
idated before presentation to a reasoning component: 

CASE 1 
make: MAZDA model: 626 
engine: 2.OL EFI miles: 10,000 
year: 1988 
problem: engine does not start. 
validat ion: The fuel injector was clogged. 

Fuel was not delivered to the 
combustion chamber for the en- 
gine to ignite. For this reason the 
engine could not start. 

solution: cleaned the fuel injector. 
CASE 2 

make: MAZDA model: 626 
engine: 2.OL miles: 60,000 
year: 1984 
problem: engine does not start. 
validation: The car had a faulty gas pump. 

Fuel could not be delivered to the 
combustion chamber. For this 
reason the engine could not start. 

solution: Replaced the gas pump. 

make: MAZDA model: 626 
engine: 1.8L miles: 20,000 
year: 1987 
problem: engine does not start. 
validat ion: A leak existed in the gas line. 

Fuel could not be delivered 
through the fuel line. For this 
reason the engine could not start. 

solution: Fixed the leak. 

The validation model contains (at least) the three 
tests that are referenced by these cases: “check if a fuel 
injector is clogged”, “check if the gas pump is working”, 
and “check if there is a leak in the fuel line”. The first 
of these is actually composed of two simpler tests: a 
test for fuel present in the reservoir of the injector and 
a test for fuel exiting the injector’s nozzle. If there is no 
fuel in the injector then we can deduce that the injector 
is not at fault. Rather, the problem lies earlier in the 
fuel system - either in the pump or the fuel line. 

The system first attempts to validate Case 1 by re- 
peating the validation steps from that case. That is, we 
wish to test if the fuel injector is clogged. In the pro- 
cess of performing this two-step test we actually acquire 
knowledge that is relevant to Cases 2 and 3: if the fuel 
reservoir is not empty we can eliminate both cases; if 
it is empty, we can eliminate Case 1. This relationship 
is encoded in the semantic network that represents our 
validation model and is used in the validation phase. 

In the best case, this validation model allows us to re- 
duce the work required to validate cases from four tests 
to two tests and simultaneously reduces the number of 
cases to be considered by the reasoner from three to one 
(selectivity of 33.3%). The first test is for an empty fuel 
reservoir; if the reservoir is full then Cases 2 and 3 are 
eliminated. We then test the nozzle for fuel exiting. 
If no fuel leaves the nozzle, then Case 1 is presented 
to the reasoner; but if fuel is leaving the nozzle we, 
unfortunately, eliminate Case 1 as well and leave the 
reasoning component to its own resources. The worst 
case requires all four tests and provides either zero or 
one case to the reasoner. 

Recent Results 

An Operating System: VMS 

The first system we developed is used for the diagnosis 
of device driver induced crashes of Digital’s VMS op- 
erating system. The knowledge about surface features 
was obtained primarily from DEC internal publications 
and was complemented by an expert from the VMS sup- 
port team during three knowledge acquisition sessions. 
It took a total of 84 hours to acquire the domain spe- 
cific knowledge about surface features. Based on this 
information, the domain knowledge used by UNIMEM in 
order to organize the cases into a generalization hierar- 
chy was implemented in five days. 

SIMOUDIS AND MILLER 3 13 



It took an additional four days of reading valida- 
tion procedures in the data base to develop a validation 
model for device drivers. In addition, four more knowl- 
edge acquisition sessions, lasting 40 hours, were needed 
to refine and improve the validation model. Encoding 
the actual validation model took about 80 additional 
days. We estimate that it took roughly 20 person- 
days to acquire the necessary knowledge and about 85 
person-days to do the full system development. 
Since this was our first attempt to build a case base and 
validation model, these numbers are much larger than 
we expect for subsequent systems. Our work to date 
on the system described in Section appears to confirm 
this expectation. 

The system was evaluated using a case base of 200 
cases that were obtained from notes written by special- 
ists. The surface feature retrieval phase of the system 
was evaluated by presenting each of the 200 cases to the 
retriever (as new problems) and preparing a histogram 
of the number of cases retrieved. UNIMEM provides 
a mechanism, known as retrieval weights, for tuning 
its retrieval capabilities. After some experimentation, 
we discovered that the use of larger retrieval weights 
(i.e. more stringent matching criteria) caused the re- 
triever to miss many relevant cases and, in many occa- 
sions, to fail to retrieve any cases at all. With less strin- 
gent criteria this problem was rectified. However, many 
of the retrieved cases were not relevant to the problem. 
With the optimal weighting, we were able to retrieve 
on average 22 cases per retrieval (11%). The validation 
phase, however, was able to reduce this number of cases 
to an average of 4.5 cases out of 200 (2.25%). 

In addition, we presented three new cases to the sys- 
tem. Based on surface features alone, we retrieved 20, 
25, and 16 cases (10, 12.5, and 8% selectivity). The 
validation phase reduced this to 3, 5 and 3 cases, re- 
spectively (1.5, 2.5, and 1.5% selectivity). Our experts 
confirm that these validated cases are the only ones rel- 
evant to the problems presented. 

A Word Processing System: WPS-PLUS 
The second system performs diagnosis of customer 
problems with the word processing component of an 
office automation product. During 15 hours of knowl- 
edge acquisition sessions, the knowledge about surface 
features was obtained from a support engineer for the 
product. It then took an additional five days to encode 
the domain knowledge for use by UNIMEM. 

The validation model was obtained from the valida- 
tion procedures of the cases in the data base, an internal 
publication, and 10 hours of knowledge acquisition with 
the same enginer. While the work is not yet complete 
(only 50 out of 340 cases have been encoded), it has 
taken only 10 days to implement the validation model. 

This system was evaluated using a case base of 340 
cases. Repeating the same experiment performed with 
the VMS case base led to an average of 26 cases per 
retrieval, or 7.6% selectivity. The validation phase re- 

3 14 COGNITIVE MODELING 

duced this to two cases, or 0.58% selectivity. Since the 
validation model for this case base is not yet fully en- 
coded, we have not presented new problems to the sys- 
tem. 

Our validated retrieval method can be applied in many 
types of tasks. The basic requirements are: an existing 
data base of previous practical experience; a set of quick 
tests that serve to reduce the search space at low cost; a 
set of more expensive tests that can further reduce the 
search space; and an understanding of the relationships 
between the expensive tests. 

We have identified four areas of potential interest, 
but we have limited our implementation work to the 
first of these: 

Diagnostic tasks. As shown in the example, we use 
the symptoms of a problem as the surface features 
for the retrieval phase. The validation procedure de- 
scribes which tests to perform in order to determine 
if the case is relevant to the new problem. 
Design tasks. The surface features are specifica- 
tions that a design must satisfy. The validation pro- 
cedure for a stored design describes how to verify that 
its key parts meet the requirements specification. 
Sales tasks. The technique can be used to help iden- 
tify sales prospects for a new product. The surface 
features are the characteristics of a customer such as: 
size of business, type of business, location of business. 
Each validation procedure describes the customer’s 
requirements that were satisfied in a previous sale. 
The validation model includes tests that determine 
whether or not a customer needs a particular type of 
product. 
Management tasks. These tasks include account- 
ing, credit analysis, investment decisions, and insur- 
ance underwriting. In each of these areas, specialists 
can identify easily recognized features in their prob- 
lem domain (type of company, size, etc.) that allow 
rapid retrieval of similar situations encountered in the 
past. They then have more detailed tests that can be 
applied (debt/equity ratio, payment history, type of 
client, balance sheets, etc.). 

Conclusions 
Our work has concentrated exclusively on the issue of 
case retrieval. A careful study of two applications in 
which people consciously use case retrieval has shown 
that retrieval based solely on surface features is not suf- 
ficiently discriminating for use with large case bases. 
It results in large numbers of cases returned to the 
reasoner, each of which must then be further exam- 
ined at great expense. Adding a validation phase that 
uses knowledge of domain-specific tests to prune the re- 
trieved cases dramatically reduces the number of cases 
that must be examined by the reasoner. 



We have found that acquiring knowledge about 
domain-specific tests is aided by an initial perusal of the 
existing data base used by specialists. With a reason- 
able amount of effort, and with only a small investment 
of specialists’ time, this information can be captured 
in a validation model represented as a semantic net- 
work. We have used this methodology to produce two 
systems. One of these systems has been successful in 
practice, and the other (incomplete) system is likely to 
be equally useful. 

While the burden of knowledge acquisition in our 
methodology is small compared with other methods, 
it is not negligible. Automating this work by combin- 
ing a natural language system to analyze existing data 
bases with AI-assisted statistical comparison of surface 
features provides a fertile area for further investigation. 
Furthermore, we suspect that a careful study of such 
a system in practice will reveal validation tests that 
are sufficiently common that it may be reasonable to 
promote them to surface features, leading to a system 
with better retrieval capabilities. This analysis, which 
must first be performed manually to validate our as- 
sumption, is itself an excellent area for the application 
AI methods. In fact, the work on CYCLOPS appears to 
be directly applicable to this problem. 

Finally, we feel that the kind of knowledge embod- 
ied in a validation model has received little serious at- 
tention. Yet this is the critical component of many 
knowledge-based tasks in the real world. The relation- 
ship between the “practical how-to” knowledge of our 
validation models and the more thoroughly explored 
“conceptually why” knowledge of causal models will 
bring important insights into the nature of knowledge 
itself. A reasonable first step in this direction would be 
to either make this distinction more precise or carefully 
argue that it is unnecessary. 

Acknowledgements 

The authors wish to thank David Waltz for his help 
with this research. In addition, we have received help- 
ful comments from Candy Sidner, Andrew Black, Mark 
Adler, and Rose Horner. 

References 

[Bareiss et al., 19881 Ray Bareiss, Karl Branting, and 
Bruce Porter. The role of explanation in exemplar- 
based classification and learning. In Proceedings of 
Case-Based Reasoning Workshop, 1988. 

[Davis, 19841 Randall Davis. Didagnostic reasoning 
based on structure and behavior. Artificial Intelli- 
gence, 24, 1984. 

[Goel and Chandrasekaran, 19891 A. Goel 
and B. Chandrasekaran. Use of device models in 
adaptation of design cases. In DARPA Workshop 
on Case-Based Reasoning, pages 100-109, 1989. 

[Hammond, 19861 Kristian Hammond. Case- Based 
Planning: An Integrated Theory of Planning, Learn- 
ing, and Memory. PhD thesis, Yale University, 1986. 

[Kambhampati, 19891 S. Kambhampati. Representa- 
tional requirements for plan reuse. In DARPA Work- 
shop on Case-Based Reasoning, pages 20-23, 1989. 

[Kolodner et al., 19851 J anet L. Kolodner, Jr. Robert 
L. Simpson, and Katia Sycara-Cyranski. A process 
model of case-based reasoning in problem solving. In 
Proceedings of the International Joint Conference on 
Artificial Intelligence, 1985. 

[Kolodner, 19831 Janet L. Kolodner. Reconstructive 
memory: A computer model. Cognitive Science Jour- 
nal, 7:281-328, 1983. 

[Koton, 19881 Phyllis Koton. Using experience in learn- 
ing and problem solving. PhD thesis, Massachussetts 
Institute of Technology, 1988. 

[Leake, 19881 David Leake. Evaluating explanations. 
In Proceedings of the Seventh National Conference 
on Artificial Intelligence, 1988. 

[Lebowitz, 19871 Michael Lebowitz. Experiments with 
incremental concept formation: Unimem. Machine 
Learning, 2:103-138, 1987. 

[Quillian, 19681 M.R. Quillian. Semantic memory. In 
Marvin Minsky, editor, Semantic Information Pro- 
cessing, pages 227-270. MIT Press, 1968. 

[Rissland and Ashley, 19861 Edwina Rissland and Ken- 
neth Ashley. Hypotheticals as heuristic device. In 
Proceedings of the Fifth National Conference on Ar- 
tificial Intelligence, 1986. 

[Stanfill and Waltz, 19861 Craig Stanfill and David 
Waltz. Toward memory-based reasoning. CACM, 
29:1213-1228, 1986. 

[Sycara and Navinchandra, 19891 Katia P. Sycara and 
D. Navinchandra. Index transformation and gener- 
ation for case retrieval. In DARPA Workshop on 
Case-Based Reasoning, pages 324-328, 1989. 

SIMOUDIS ANDMILLER 315 


