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Abstract 

We propose that a planner should be provided with an 
explicit model of its own planning mechanism, and show 
that linking a planner’s expectations about the 
performance of its plans to such a model, by means of 
explicit justification structures, enables the planner to 
determine which aspects of its planning are responsible 
for observed performance failures. We have 
implemented the ideas presented in this paper in a 
computer model. Applied to the game of chess, the 
model is capable of diagnosing planning failures due to 
incomplete knowledge of the rules, improper or overly 
optimistic focus of attention, faulty projection, and 
insufficient lead time for warning about threats, and is 
therefore able to learn such concepts as discovered 
attack and the fork. 

1 Introduction 

Learning by debugging, or fiilure-driven learning, 
has historically been the most prominent approach 
to learning how to plan in AI (see, e.g., Sussman, 
1975; Schank, 1982; Hayes-Roth, 1983; Kolodner, 
1987; Chien, 1989; Hammond, 1989). In much of 
this work, particularly in its early stages, no real 
distinction was made between the diagnosis 
methods used to uncover planning errors, and the 
repair strategies used to correct them. The hope 
was that relatively superficial descriptions of 
planning errors could be used to index directly to 
repair strategies that were likely to be useful in 
eliminating those errors. More recently, efforts 
have been made to tease these apart so that 
relatively general model-based methods for 
diagnosis can be applied to the task of finding bugs 
in faulty plans (see, e.g., Simmons, 1988). Such 
methods, derived originally from work in circuit 
debugging (see, e.g., Stallman and Sussman, 1977; 
Davis, 1984; DeKleer and Williams, 1987), depend 
upon having an explicit representation of how a 
plan is intended to function given certain 
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assumptions. The task of the diagnosis component is 
then to determine which of these assumptions are 
faulty when a plan fails to operate as expected. 
We have been developing such an approach within 
the context of learning to plan in competitive 
situations (see, e.g., Birnbaum and Collins, 1988; 
Collins, Birnbaum, and Krulwich, 1989). 

Many assumptions made during planning, 
obviously, concern the state of the world in which 
the plan will be executed. In addition, however, 
plans often depend upon assumptions about the 
capacities or properties of the agent executing 
them. Because this agent is often the planner itself, 
a planner needs some degree of self-knowledge in 
order to plan correctly. For example, if a robot 
planner were unaware of its lifting power, it might 
build plans requiring it to lift objects that were too 
heavy; if it were unaware of its width, it might 
build plans requiring it to squeeze through openings 
that were too narrow; and so on. 

Perhaps less obviously, plans do not draw only on 
the physical capabilities of a planner: They also 
depend on its cognitive capabilities. Thus, a 
planner will require some knowledge of its mental 
and perceptual processes in addition to knowledge 
about its physical properties (Collins and 
Birnbaum, 1990). For example, chemists often put a 
stopper in a test tube in which they are boiling 
something, so that the “Pop!” that occurs when 
rising pressure forces the stopper out will alert 
them to the fact that it is time to remove the test 
tube from the heat .I This is a simple instance of a 
powerful and general strategy often employed by 
human planners, namely, setting an external alarm 
to alert the planner when some task needs his 
attention, thus freeing him to attend to other 

lThanks to Ken Forbus for this example. 
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matters in the interim. The success of such a plan 
depends upon two things: First, the planner must 
actually notice the alarm, and second, he must 
recall the task which is supposed to be resumed 
when the alarm goes off. In order for a robot 
planner to successfully apply this strategy, 
therefore, it will need to know something about the 
kinds of events that attract its attention-and 
which can therefore function as an alarm-and 
something about the reasoning processes that occur 
when its attention is drawn to such an event. The 
planner’s theory of its cognitive machinery might, 
for example, specify that flashing lights, loud 
noises, and quick movements attract its attention; 
that once its attention is so attracted, the planner 
will attempt to explain the cause of the event; and 
that if the cause is due to the planner itself, the 
planner will recall its purpose in setting up the 
event. Armed with this theory, the planner can 
decide whether to attribute to itself the ability to 
be alerted by a particular type of event, for instance 
the “Pop!” of a stopper being disgorged from a test 
tube. 

When faulty assumptions in a planner’s model of 
itself cause planning errors, failure-driven learning 
can be invoked to enable the planner to identify and 
alter these assumptions, and thus improve its model 
of itself just as it would its model of anything else. 
However, in dealing with assumptions about its 
own capabilities as a planner there is another 
possibility: For in many cases, these assumptions 
about the planner are represented in terms of 
parameters that are under the planner’s own 
control. Thus, rather than changing the model to 
reflect the way the planner functions, the planner 
may be able to change the way it functions to 
conform with the model. 

2 Modelling the planner 

Developing a model-directed approach to the 
diagnosis of planning failures, as discussed above, 
requires developing explicit models of the planning 
and plan-execution mechanisms employed, and of 
how the agent’s plans depend upon those 
mechanisms. In this section, we describe models of 
two portions of a simple planner, dealing with 
threat detection and with execution scheduling. 

2.1 A model of threat detection 

Every planning domain presents 
variety of threats against its goals. 

a planner with a 
In coping with 

any particular class of threats in some domain, the 
planner has a choice of either attempting to 
permanently insulate itself from all instances in 
that class-i.e., of removing some necessary 
precondition for all instances of that sort of 
threat-or of attempting to deal with threats 
individually as they arise. We refer to these two 
approaches as the “Great Wall of China” 
paradigm, and the “Firefighting” paradigm, 
respectively. It is in the second of these two general 
strategies that the necessity for threat detection 
arises. 

We model threat detection as a simple rule-based 
process: For each known type of threat, there is a 
rule that is able to detect instances of that threat if 
it is evaluated at some point in time prior to the 
realization of the threat. The planner must take 
account of a variety of constraints in formulating 
and deploying such rules. For example, in order to 
fulfill the function of threat detection within the 
Firefighting paradigm, each rule must be capable of 
detecting its threat in time to permit the planner to 
carry out an effective counterplan. Moreover, the 
planner must formulate a control regimen for 
checking its threat detection rules that ensures that 
whenever a threat arises, the appropriate threat 
detection rule will in fact be checked in time. We 
have previously argued (Collins, Birnbaum and 
Krulwich, 1989) that, all else being equal, the 
planner’s task is simplified by attempting to detect 
threats as late as possible. In chess, that point is 
one move before the threat is carried out. A novice 
chess planner, then, starts out with a model in 
which it checks its threat rules at each turn, 
looking for threats that may be executed on the next 
turn. 

Having decided upon this control regimen, the 
planner is faced with another choice: It can 
recompute the set of outstanding threats each time 
it checks its rules, or it can incrementally compute 
this set by looking only for changes that have 
occurred since the previous check. The latter 
approach is generally more efficient when the 
number of new threats arising per detection cycle is 
small compared to the total number of threats 
outstanding, provided that an effective method for 
focussing on threats that result from changes can be 
devised. In turn-taking games such as chess, 
incremental detection of threats means computing 
the threats added and removed by each move. 
Given the rule-based framework for threat- 
detection described above, focussing on threats 
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resulting from changes can be implemented as a set 
of restrictions on the domain of application of the 
threat detection rules. In our model these 
restrictions are themselves implemented as a set of 
focus rules that specify the domain over which the 
threat detection rules will be applied. A portion of 
the model is shown in Figure 1. 

V x 3 t t s ert(x) & detect(x, t) ---, added-to(x, T, t) 

V x, tl, t2 added-to(x, T, tl) & t2 s ert(x) & 

-3 tr (tl s tr s t2 & removed-from(x, T, tr)) 

+ member-of(x, T, t2) 

V x 3 r, f, 0, t t s ert(x) & detects(r, x) & active(x, t) & 
(evaluate-rule(r, 8, t) + detect(x, t)) & 
8 E focus-results(f, t) 

plan on the queue. A portion of the model appears 
in Figure 2. 

V p, t, g execute(p, t) & t zs deadline(p) & plan-for(p, g) 
+ achieve(g) 

V p, t execute(p, t) - member-of(p, Q, t) & 
-3 pa (member-of(pa, Q, t) & 
priority(p) < priority (pa)) 

V p, ts, te added-to(p, Q, ts) 8~ ts 5 te & 
-3 tr (ts s tr s te & removed-from(p, Q, tr)) 

+ member-of(p, Q, te) 

V & t goal@ t) & call-planner& t) 8~ planner& t) = p 
* added-to(p, Q, t) 

Fieure 2: Partial model of execution scheduline 
V r, f, t, 8 8 E focus-results(f, t) -c evaluate-rule(r, 8, t) 

3 Case study: The fork 
V x, t remove-from(x, T, t) - member-of(x, T, t) & 
-active(x, t) 

Figure 1: Partial model of threat-detection;! 

2.2 A model of execution scheduling 

Since a planner has limited resources, the 
formulation of a viable plan in service of an active 
goal is not, by itself, enough to guarantee that the 
plan will be carried out. Thus, another important 
aspect of any planner is a priority-based scheduling 
mechanism for determining which plans should be 
executed when. While such a mechanism could, in 
principle, be arbitrarily complex, we have chosen 
to model execution scheduling using a simple 
priority queue, assuming discrete time (which is 
sufficient for the turn-taking games we are currently 
investigating). Given such an approach, the basic 
model of execution scheduling is as follows: Once a 
goal is formed, a plan is chosen for that goal, 
assigned a deadline and a priority, and placed on 
the priority queue. At each time increment, the 
queue is checked, and the highest priority plan on 
the queue is chosen for execution. Thus a plan will 
be successfully executed if and only if there is a time 
before its deadline when it is the highest priority 

2The predicate “ert” stands for earliest realization time, 
i.e., the earliest time at which the threatened action can 
be expected to occur. 

The models described above were developed as 
part of an account of learning in competitive 
situations-in particular, chess. We will now 
consider their application to the acquisition of a 
classic chess tactic, the fork. In our account, the 
novice chess player initially notices the fork when 
it fails to block a threat against one of its pieces. 
Such a failure leads the planner to search for a 
fault in the planning and execution mechanisms 
involved in its ability to block threats-either, 
that is, in its mechanisms for detecting the threat, 
for formulating counterplans to the threat, or for 
executing such counterplans. This search employs 
the models described in the last section, along with 
certain other assumptions that specify how the 
mechanisms they describe are being deployed in 
order to block threats in chess. For example, one of 
these assumptions states that for each threat 
against materiel that is detected, a goal to block 
that threat will be formulated. In general, these 
assumptions can be derived by regressing (see, e.g., 
Manna and Waldinger, 1979) a specification of the 
desired behavior of the planner through the rules 
that specify its planning mechanisms. 

Consider a situation in which white’s rook and 
knight are under attack from a black pawn. Though 
it is white’s turn to play, there is no move that 
would protect both pieces. Rooks are more valuable 
than knights, so white will save the rook, and 
black will capture the knight. If our planner is 
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placed in this situation, the capture of the knight 
will cause a failure of its expectation that all 
threats to its pieces will be blocked. We now give 
an informal account of how fault diagnosis must 
proceed in this case. (A more detailed description 
of the process is contained in the next two sections.) 

By the first two axioms of execution scheduling 
(see Figure 2), the planner’s ability to block a 
threat depends upon there being a time such that a 
counterplan for the threat is on the queue, it is 
before the deadline, and there is no higher priority 
plan on the queue. Thus, for blocking to have 
failed, it must have been the case that there was no 
such time, i.e., some necessary condition for 
execution must have been missing at each time when 
the plan might, in principle, have been executed. 
Thus we can group all of the times into equivalence 
classes depending upon which necessary condition 
failed to hold. 

The diagnostic process has now reached a point at 
which the planner is presented with a choice of 
ways to fix the problem, since it can choose the time 
for which it wants to reinstate the missing 
condition. For example, execution could occur at an 
earlier time if the planner could find a way to 
schedule the plan earlier; execution could occur at a 
later timt! if the planner could find a way to 
postpone the carrying out of the threat, say, by 
putting the opponent in check; and execution could 
occur at a time in between if the planner could make 
the plan for saving the knight a higher priority 
than the plan for saving the rook. In the particular 
instance that we are considering, the only possible 
approach is to try to execute the blocking plan 
earlier. However, by the axioms describing the 
execution scheduling and threat detection 
mechanisms, this requires adding the blocking plan 
to the priority queue earlier, which in turn requires 
formulating a goal to block the threat earlier, 
which in turn requires detecting the threat earlier. 
Our approach, then, makes it possible for a planner 
to determine for itself that the way to cope with 
forks is to detect them sooner, rather than needing 
this piece of advice to be built in. 

4 Diagnosing faults in plan justification structures 

The goal of fault diagnosis is to explain the 
failure of an expectation as a consequence of the 
failure of some set of underlying assumptions. In our 
model the connections between underlying beliefs 
and consequent expectations are represented in terms 

of explicit justification structures (see, e.g., DeKleer 
et al., 1977; Doyle, 1979). These justification 
structures, as alluded to above, record how the 
planner’s expectations about the performance of its 
plans are inferred from the policiesit has adopted, 
in conjunction with the axioms that constitute its 
model of the planning and execution mechanisms it 
employs. For instance, the justification structure 
underlying the expectation that the planner will 
block the threat to its knight in the fork example 
above is a conjunction of three antecedent 
expectations: That moving the knight will block 
the threat, that the move will be executed, and 
that such execution will take place before the 
opponent takes the knight. The expectation that 
the knight move will be executed is in turn justified 
by the conjunction of two prior expectations that the 
move appears on the plan queue and that it is the 
highest priority item on the queue; and so on. 
Diagnosing the fault thus involves “backing up” 
through these justification structures, recursively 
explaining the failure of an expectation as the 
result of a failure of one or more of its immediately 
antecedent expectations. This approach is similar 
to that proposed by Smith, Winston, Mitchell, and 
Buchanan (1986) and Simmons (1988). 

More generally, a justification structure links an 
expectation with a set of supporting beliefs. The 
justification may be either conjunctive, meaning all 
the supporters must be true to justify the 
expectation, or disjunctive, meaning at least one of 
the supporters must be true to justify the 
expectation. When an expectation fails, the 
diagnosis algorithm attempts to determine which 
of its supporters should be faulted. If the support 
set is conjunctive, then at least one supporter must be 
faulted. If the support set is disjunctive, then all of 
the supporters must be faulted. The basic algorithm 
nondeterministically expands the set of faulted 
expectations according to these simple rules until a 
stopping criterion is met. However, when faulting 
conjunctive supports, the degree of arbitrary choice 
required can be reduced by checking whether a 
proposition in the support set was observed to be 
true during the execution of the plan, and if so 
removing it from consideration. 

Since the goal of the diagnosis process is to 
provide enough information to allow a repair to be 
effected, the process should, in principle, continue 
until a repair is actually generated. Because of 
this, the diagnostic module in our system calls the 
repair module at each step, checking to see if the 
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current set of faulted expectations provides enough 
information for a repair to be generated. This is 
particularly important for reducing the effort 
entailed in propagating a fault through a 
disjunctive justification. Although, in principle, 
every proposition in such a support set must be 
faulted when the supported proposition is faulted, 
it does not necessarily follow that the diagnostic 
procedure must explain the failure of each disjunct. 
Since the overarching goal of the process is to fix 
the problem, and since the repair of a single disjunct 
will suffice to restore the supported expectation, it 
may be enough to explain the failure of one disjunct. 
In other words, the attempt to fault a disjunctive 
justification results in the goal to unfault one of the 
disjuncts. 

One additional point deserves special mention. 
There will be many instances in which the planner 
expects that the execution of a plan will involve 
some entity that meets a particular set of 
constraints, but does not know in advance the exact 
identity of this entity. This may be true, for 
example, of objects that will be found in the 
planning environment, including tools, raw 
materials, obstacles, and other agents. In our 
model, it is also true of execution times for plans, 
since the planner leaves the execution scheduler 
some latitude in determining when the plan should 
actually be carried out. The upshot is that some of 
the assumptions underlying the expectation that a 
plan will succeed are existentially quantified: 
They assert that a time, tool, or material meeting 
certain constraints will actually exist. Faulting 
such expectations causes special problems, stemming 
from the fact that the faulting of an existentially 
quantified proposition implies the faulting of an 
infinite set of disjuncts, one for each object over 
which the existential ranges. Of course, even in 
principle, the diagnostic engine cannot consider 
why the assertion failed for each instance of the 
variable. One solution is to partition the set of 
instances into classes in such a way that the 
elements of each class have all failed to meet 
exactly the same constraint or constraints, while 
meeting all others. This organizes the set of 
faulted instances in such a way that the unfaulter 
need only consider one instance of each type of 
failure, rather than repeatedly trying to unfault 
instances that have failed for the same reason 
about which it can do nothing. In the case of the 
fork, for example, the planner’s expectation that 
there will be a time at which it will be able to 
carry out the plan to save the knight depends on 

there being a time before the deadline when the 
plan is on the schedule queue, and is of higher 
priority than anything else on the queue. Each of 
these three constraints defines a class of times, 
namely, those at which the expectation failed 
because that particular constraint was not met.3 

5 Conclusions 

We have proposed that a planner should be 
provided with an explicit model of its own planning 
mechanism, and have shown that linking a 
planner’s expectations about the performance of its 
plans to such a model, by means of explicit 
justification structures, enables the planner to 
determine which aspects of its planning are 
responsible for observed performance failures. We 
have implemented the models of threat detection 
and execution scheduling described above in our 
test-bed system for failure-driven learning in 
planning domains (Collins, Birnbaum, and 
Krulwich, 1989). Applied to the game of chess, the 
model is capable of diagnosing planning failures 
due to incomplete knowledge of the rules, improper 
or overly optimistic focus of attention, faulty 
projection, and insufficient lead time for warning 
about threats, and is therefore able to learn such 
concepts as discovered attack and the fork. In other 
work (see, e.g., Collins, Birnbaum, and Krulwich, 
1989), we have addressed the issue of how to use 
such diagnoses as a basis for repairing the planner’s 
procedures in order to avoid such failures in the 
future. 

We are currently developing explicit models of 
other aspects of planning, including plan 
formulation and optimization. In addition, we 
have identified a number of common sense planning 
concepts that could be acquired given richer models 
of threat detection and execution scheduling. For 
example, one possible reason for a planning system’s 
failure to detect a threat in time might be that it 
does not evaluate its threat-detection rules often 
enough. In general, the frequency with which these 
rules should be evaluated must be a function of the 

31n fact, there are several other equivalence classes, 
since multiple constraints may fail for a given time. 
However, since the goal of fault diagnosis given 
disjunctive justifications is to find something to unfault, 
we start with those classes corresponding to a single 
failed constraint on the grounds that these are likely to 
prove easier to fix. 
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speed with which threats develop in a particular 
environment. It is therefore possible that a planner 
could learn the need to alter this frequency in 
different domains by applying failure-driven 
methods. Thus, extending the model of threat 
detection presented in this paper will allow us to 
provide a computational account of the acquisition 
of the common-sense planning heuristic that when 
things are happening quickly, a planner should pay 
closer attention. 
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