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Abstract 

Most approaches to model-based diagnosis describe 
a diagnosis for a system as a set of failing com- 
ponents that explains the symptoms. In order to 
characterize the typically very large number of diag- 
noses, usually only the minimal such sets of failing 
components are represented. This method of char- 
acterizing all diagnoses is inadequate in general, in 
part because not every superset of the faulty compo- 
nents of a diagnosis necessarily provides a diagnosis. 
In this paper we analyze the notion of diagnosis in 
depth exploiting the notions of implicate/implicant 
and prime implicate/implicant. We use these no- 
tions to propose two alternative approaches for ad- 
dressing the inadequacy of the concept of minimal 
diagnosis. First, we propose a new concept, that 
of kernel diagnosis, which is free of the problems of 
minimal diagnosis. Second, we propose to restrict 
the axioms used to describe the system to ensure 
that the concept of minimal diagnosis is adequate. 

1 Introduction 

The diagnostic task is to determine why a correctly de- 
signed system is not functioning as it was intended - 
the explanation for the faulty behavior being that the 
particular system under consideration is at variance in 
some way with its design. One of the main subtasks of 
diagnosis is to determine what could be wrong with a 
system given the observations that have been made. 

Most approaches to model-based diagnosis [4] char- 
acterize all the diagnoses for a system as the minimal 
sets of failing components which explain the symptoms. 
Although this method of characterizing diagnoses is ad- 
equate for diagnostic approaches which model only the 
correct behavior of components, it does not general- 
ize. For example, it does not necessarily extend to ap- 
proaches which incorporate models of faulty behavior 
[24] or which incorporate strategies for exonerating com- 
ponents [19]. In particular, not every superset of the 
faulty components of a diagnosis necessarily provides a 
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diagnosis. In this paper we analyze the notion of diagno- 
sis in depth and propose two approaches for addressing 
the inadequacy of minimal diagnoses. First, we propose 
an alternative notion, that of kernel diagnosis, which is 
free of the problems of minimal diagnosis. Second, we 
propose to restrict the axioms used to describe the sys- 
tem to ensure that the concept of minimal diagnosis is 
adequate. 

The extended version of this paper [lo] expands on 
the results, includes proofs for all the theorems, develops 
restrictions on the system description that allow the use 
of minimal diagnosis, and uses the approach to analyze 
current model-based diagnostic systems in more detail. 

2 Problems with minimal diagnosis 

Insofar as possible we follow Reiter’s [20] framework. 

Definition 1 A system is a triple (SD,COMPS,OBS) 
where: 

1. SD, the system description, is a set of first-order sen- 
tences. 

2. COMPS, the system components, is a finite set of con- 
stants. 

3. OBS, a set of observations, is a set of first-order sen- 
tences. 

Most model-based diagnosis papers [7; 8; 13; 19; 20; 
241 define a diagnosis to be a set of failing components 
with all other components presumed to be behaving nor- 
mally. We represent a diagnosis as a conjunction which 
explicitly indicates whether each component is normal 
or abnormal. This representation of diagnosis captures 
the same intuitions as the previous definitions but gen- 
eralizes more naturally. 

We adopt Reiter’s [20] convention that AB(c) is a lit- 
eral which holds when component c ECOMPS is be- 
having abnormally. (S ome of the model-based diagnosis 
literature uses 101<(c) instead of AB(c) but this is just 
terminology and does not affect the results of this pa- 
per.) Depending on the exact definition of fault for the 
diagnostic task being addressed, abnormality will mean 
something different. This is reflected in how AB is used 
in the sentences of SD. For example, in GDE [7], being 
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abnormal does not restrict the possible behaviors in any 
way since AB only appears in the form TAB(~) + M 
where M is the correct behavior of component 2. In [19] 
being abnormal means that component behavior nec- 
essarily deviates from correct behavior since AB only 
appears in the form TAB(~) z M. 

Definition 2 Given two sets of components Cl and C2 
define V(C1, C2) to be the conjunction: 

[ A Am] * [ A -AB(c)] - 
CECl cEC2 

A diagnosis is a sentence describing one possible state 
of the system, where this state is an assignment of the 
status normal or abnormal to each system component. 

Definition 3 Let A CCOMPS. A diagnosis for 
(SD,COMPS,OBS) is V(A, COMPS - A) such that 
SD U OBS U (V(A, COMPS - A)} is satisfiable. 

The following important observation follows directly 
from the definition (similar to proposition 3.1 of [20]): 

Remark 1 A diagnosis exists for (SD,COMPS,OBS) 
iff SD U OBS is satisfiable. 

Unfortunately, there may be 21COMPSl diagnoses. 
Therefore we seek a parsimonious characterization of the 
diagnoses of a system. 

Definition 4 A diagnosis V(A, COMPS - A) is a 
minimal diagnosis i$ for no proper subset A’ of A is 
V(A’, COMPS - A’) a diagnosis. 

Thus a minimal diagnosis is determined by a minimal 
set of components which can be assumed to be faulty, 
while assuming the remaining components are function- 
ing normally. 

Note that these definitions subsume Reiter’s [20]. Re- 
iter’s definition of the concept of diagnosis corresponds 
to our notion of minimal diagnosis. Reiter provides no 
definition corresponding to our notion of a diagnosis. 
All the results of [20] therefore apply to our concept of 
a minimal diagnosis. 

The following is an easy consequence of the above def- 
initions: 

Remark 2 If V(A, COMPS - A) is a diagnosis, then 
there is a minimal diagnosis V(A’, COMPS- At) such 
that A’ 5 A. 

Most previous approaches to model-based diagno- 
sis have assumed that the converse holds, i.e., if 
V(A”,COMPS - A’) is a minimal diagnosis and if 
A’ C A, then V(A, COMPS - A) is a diagnosis. How- 
ever, as we relax the commonly made assumptions, for 
example by allowing fault models or exoneration axioms, 
the converse fails to hold and we must explore alternative 
means for parsimoniously characterizing all diagnoses. 

Remark 3 If V(A’, COMPS - A’) is a minimal diag- 
nosis and A’ c A, then V(A, COMPS - A) need not 
be a diagnosis. 

Figure 1: Two inverters 

Thus, not every superset of the faulty components of a 
minimal diagnosis need provide a diagnosis. To see why, 
consider the following two simple examples. The first 
example arises if we presume we know all the possible 
ways a component can fail such as in [24]. 

Example 1 Consider the simple two inverter circuit of 
Fig. 1. If we are considering making observations at dif- 
ferent times, then we must represent this in SD in some 
way. One scheme is to introduce observation time t as a 
parameter. Thus the model for an inverter is: 
INVERTER(x) ----) 

TAB(~) ---+ [in(x,t) = 0 f out(x,t) = 11. 
We assume that SD is extended with the appropriate 
axioms for binary arithmetic, etc. Suppose the input is 
0 and the output is 1: in(li, To) = 0, out(I2,To) = 1. 
There are three possible diagnoses: AB(I1) A lAB(I2), 
AB(I~)A~AB(I,) and AB(Il)AAB(Iz); these are char- 
acterized by the first two diagnoses, which are minimal. 
Suppose we know that the inverters we are using have 
only two failure modes: they short their output to their 
inputs or their output becomes stuck at 0. We model 
this as: 

INVERTER(x) A AB(x) - [SAO(x) v SHORT(x)], 

SAO(x) + o&(x, t) = 0, 

SHORT(x) --+ o&(x, t) = in(x, t). 

From these models we can infer that it is no longer pos- 
sible that both 11 and 12 are faulted. Intuitively, if 12 is 
faulted and producing the observed 1, then it cannot be 
stuck at 0, and must have its input shorted to its out- 
put. Hut then 11 must be outputting a 1 and there is no 
faulty behavior of 11 which produces a 1 for an input of 
0. Thus, AB(I1) A AB(12) is no longer a diagnosis, but 
the minimal diagnoses (remain) unchanged. 

The only way to determine which of 11 or 12 is actu- 
ally faulted is to make additional observations. For ex- 
ample, if we observed out(Il, To), we could distinguish 
whether 11 or 12 is faulted. Suppose 11 is faulted such 
that out (11, To) = 0. To identify the actual failure mode 
of 11 we have to observe out(Il, Tl) or out(I2, Tl) given 
in(Il,Tl) = 1. 

This example shows that the use of exhaustive fault 
models such as in [24] leads to difficulties with the usual 
definition of diagnosis. One way to avoid this difficulty 
is not to presume all the faulty behaviors are known 
as in [8]. However, if we do not know all the faulty 
behaviors, then nothing useful can ever be inferred from 
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a component being abnormal which defeats the purpose 
of fault modes in the first place (this is addressed in [S]) 
by introducing probabilities). 

Example 2 The usual definition of diagnosis encounters 
similar difficulties with the TRIAL framework of [19]. In 
this framework a component is considered faulty if it is 
actually manifesting a faulty behavior given the current 
set of inputs. If we are only concerned with one set of 
inputs, then every component is modeled as a bicondi- 
tional. Thus, the inverters of Fig. 1 are instead described 
by: 
INVERTER(x) --, 

lAB(x) = [in(x) = 0 f out(x) = 11. 
Suppose the input and output are measured to be 0. 
There are only two diagnoses (the second of which is 
minimal) : 

AB(h)AAB(4), lAB(I1) A -7AB(12). 

It is not possible that one inverter is faulted and the 
other not. Each inverter exonerates the other. In terms 
of [19], each inverter is an alibi for the other. Thus, 
although lAB(Il) A lAB(I2) is a minimal diagnosis, 
neither -AB(I;) A AB(12) nor AB(Il) A lAB(I2) are 
diagnoses. Again, we see that by including axioms which 
restrict faulty behavior in any way, the usual definition 
of diagnosis is inadequate to characterize all diagnoses. 

In the remainder of this paper we explore two ap- 
proaches to address this problem: (1) find an alternative 
means to characterize all diagnoses, and (2) restrict the 
form of SD U OBS such that the notion of minimal di- 
agnosis does characterize all diagnoses. We first require 
some preliminaries. 

3 Minimal diagnoses 

The minimal diagnoses are conveniently defined in terms 
of the familiar [17] notions of implicates and implicants 
(see [16; 211 for similar uses of these notions). 

Definition 5 An A B-literal is AB(c) or -A B(c) for 
some c E COMPS. 

Definition 6 An AB-clause is a disjunction of AB- 
literals containing no complementary pair of A B-literals. 
A positive AB-clause is an AB-clause all of whose liter- 
als are positive. 

Note that the empty clause is considered a positive 
AB-clause. 

Definition 7 A conflict of (SD,COMPS, OBS) is an 
AB-clause entailed by SD U OBS. A positive conflict 
is a conjlict all of whose literals are positive. 

If SD U OBS is propositional, then a conflict is any 
AB-clause which is an implicate of SD U OBS. 

The conflicts provide an intermediate step in deter- 
mining the diagnoses and are central to many diagnostic 
frameworks. The reason for this can be understood in- 
tuitively as follows. The diagnostic task is to determine 

malfunctions, and therefore the primary source of diag- 
nostic information about a system are the discrepancies 
between expectations and observations. A conflict rep- 
resents such a fragment of diagnostic information. For 
example, the conflict AB(A)VAB(B) might result from 
the discrepancy between observing x = 1 while expect- 
ing it to be 2, if components A and B were normal. As 
a consequence, we infer that at least one of A or B is 
abnormal, i.e., the conflict AB(A) V AB(B). Most re- 
searchers have focused only on positive conflicts. (As 
most previous research has focused on the positive con- 
flicts, they usually represented conflicts as sets of ab- 
normal components.) Wowever, as we see in Section 4, 
the non-positive conflicts are important when modeling 
faults and doing exoneration. 

Remark 4 A diagnosis exists for (SD, COMPS,OBS) 
in the empty clause is not a conflict of 
(SD, COMPS, OBS). 

Theorem 1 Suppose (SD,COMPS,OBS) is a sys- 
tem, n is its set of conflicts, and A E COMPS. 
Then V(A, COMPS - A) is a diagnosis iff n U 
{D(A, COMPS - A)) is satisfiable. 

Definition 8 A minimal conflict of (SD, COMPS, OBS) 
is a conflict no proper subclause of which is a conflict of 
(SD, COMPS, OBS). 

Thus, if SD U OBS is propositional, then a minimal 
conflict is any AB-clause which is a prime implicate of 
SD u OBS. 

Theorem 2 Suppose (SD,COMPS, OBS) is a system, 
rI is its set of minimal conflicts, and A s COMPS. 
Then V(A, COMPS - A) is a diagnosis ifl II U 
{D(A, COMPS - A)} is satisfiable. 

Remark 5 If all the minimal conflicts of (SD,COMPS, 
0BS)are non-empty and positive, then D(COMPS, {}) 
is a diagnosis. 

As the minimal conflicts determine the diagnoses, 
play a central role in most diagnostic frameworks. 

they 

Example 3 Consider the familiar circuit of Fig. 2. Sup- 
pose the component models are: 

ADDER(x) + [TAB(~) + out(x) = inl(x) + in2(x)] 

MULTIPLIER(x) -j 
[TAB(~) + out(x) = inl(x) x inZ(x)]. 

As before we assume that SD is extended with the ap- 
propriate axioms for arithmetic, etc. With the given 
inputs, there are two minimal conflicts: 

AB(Al) v AB(M1) v A+&), 
AB(A1) v AB(M1) v AB(M3) v AB(A2), 

and four familiar minimal diagnoses: 
'D({Al),{Az,Ml,M2rn/13}) : 

AB(A,)A~AB(A2)A~AB(M1)A~AB(M2)AlAB(M3) 
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D({W), {AI, A’L, M2, M3)) : 

AB(Ml)A~AB(A,>A~AB(A2)A~AB(M2)A~AB(M3) 

D(W2, M3h {Al, A29 MI)) : 

AB(M2) A AB(M3) A lAB(A1) A lAB(A2) A lAB(Ml) 

‘D((A2, M2), {Al, MI, M3)) : 

AB(A2)AAB(M2)AlAB(A1)~~AB(Ml)hAB(M3). 

Definition 9 A conjunction C of literals covers a con- 
junction D of literals i$ every literal of C occurs in D. 

Definition 10 Suppose C is a set of propositional for- 
mulas. A conjunction of literals rr containing no pair of 
complementa y literals is an implicant of C i# rr entails 
each formula in C. rr is a prime implicant of C i$ the 
only implicant of C covering R is rr itself. 

Theorem 3 (Characterization of minimal diagnoses) 
V(A, COMPS - A) is a minimal diagnosis of 
(SD,COMPS,OBS) i$ AeEA AB(c) is a prime im- 
plicant of the set of positive minimal conflicts of 
(SD, COMPS, OBS). 

This theorem underlies many model-based diagnos- 
tic algorithms. The first step, conflict recognition, finds 
positive minimal conflicts, and the second step, can- 
didate generation, finds prime implicants. Clearly, if 
we were only interested in minimal diagnoses, then we 
would only be interested in identifying the positive min- 
imal conflicts, but, in general, we must consider the non- 
positive minimal conflicts as well. 

We now have the machinery to state precisely when 
the minimal diagnoses characterize all diagnoses. 

Theorem 4 The following are equivalent: 

If tV( A’, COMPS - A’) is a minimal diagnosis for 
(SD,COMPS,OBS), then V(A, COMPS- A) is a di- 
agnosis for (SD, COiWPS,OBS) for every A such that 
COMPS _> A _> A’ (i.e., every superset of the faulty 
components of a minimal diagnosis provides a diagno- 
sis). 

All minimal conflicts of (SD,COMPS, OBS) are posi- 
tive. 

In Example 1, AB( II) A lAB(I2) was a diagnosis, but 
AB(Il) A AI?( which h as more faulty components, 
was not. By theorem 4 this must arise because one of 
the minimal conflicts is not positive. In this example, 
the negative clause, lAB(Il) V lAB(I2), is a minimal 
conflict, which follows directly from the fault models of 
11 and 12. 

4 Partial diagnoses 

Suppose we have the following two diagnoses for a three 
component system: AB(cl) A AB(c2) A AB(c3) and 
AB(cl) A AB(c2) A lAB(c3). We can interpret this as 
saying that cl and c2 are faulty, and that cs may or may 
not be faulty. Thus, the two diagnoses may be repre- 
sented more compactly by AB(cl) A AB(c2). In fact, 
we can view this as a ‘partial’ diagnosis in which we 
are uncommitted to the status of ca; no matter what 
that status is, it leads to a diagnosis. This is the ba- 
sis for Poole’s observation [lS] that a diagnosis need not 
commit to a status for each component whenever that 
status is a ‘don’t care’. Accordingly, we introduce the 
concept of a partial diagnosis. This concept also has the 
nice side effect of providing a convenient representation 
characterizing the set of all diagnoses. 

Definition 11 A partial diagnosis for (SD,COMPS, 
OBS) is a satisfiable conjunction P of AB-literals such 
that for every satisfiable conjunction of AB-literals 4 
covered by P, SD U OBS U 4 is satisfiable. 

The following is an easy consequence of this definition: 

Remark 6 If P is a partial diagnosis of (SD,COMPS, 
OBS) and C is the set of all components mentioned in 
P, then P A AcECOMPSsC A(c) is a diagnosis, where 
each A(c) is AB(c) or lAB(c). 

Thus, a partial diagnosis P represents the set of all di- 
agnoses which contain P as.a subconjunct. It is natural 
then to consider the minimal such P’s, which we call 
kernel diagnoses. 

Definition 12 A kernel diagnosis is a partial diagnosis 
with the property that the only partial diagnosis which 
covers it is itself. 

The following easy result provides exactly the character- 
izing property we have been looking for: 

Theorem 5 (Characterization of 
V(A, COMPS - A) 

diagnoses) 
is a diagnosis i$ there is a kernel 

diagnosis which covers it. 
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Consider the example of Fig. 1. Without the in- 
troduction of fault models there were three diagnoses: 
AB(11)AlAB(12), lAB(Il)AAB(12), AB(11)AAB(12) 
which are characterized by the two kernel diagnoses: 
AB(I1) and AB(I2). With the addition of the fault mod- 
els, the kernel diagnoses become: AB(Il) AlAB and 
lAB(I1) A AB(12). 

Partial and kernel diagnoses can be particularly easily 
characterized in terms of prime implicants and minimal 
conflicts. Recall that a conjunction of literals ?r contain- 
ing no pair of complementary literals is an implicant of 
C iff 7r entails each formula in C. 

Theorem 6 The partial diagnoses of (SD,COMPS, 
OBS) are the implicants of the minimal conflicts of 
(SD, COMPS, OBS). 

Corollary 1 (Characterization of kernel diagnoses) 
The kernel diagnoses of (SD, COMPS, OBS) are the 
prime implicants of the minimal conflicts of SD U OBS. 

As a consequence of this corollary and theorem 3, if 
all minimal conflicts are positive, then there is a simple 
one-to-one correspondence between minimal diagnoses 
and kernel diagnoses. 

Corollary 1 provides a direct way of computing the 
kernel diagnoses. One way of doing this is to convert the 
CNF-form of the minimal conflicts to DNF and simplify 
as follows (we omit the proof): 
1. ‘Multiply’ the minimal conflicts to give a disjunction 

of conjunctions. 
2. Delete any conjunction containing a complementary 

pair of literals. 
3. Delete any conjunction covered by some other con- 

junction. 
4. The remaining conjunctions are the prime implicants 

of the original minimal conflicts, and hence the kernel 
diagnoses. 

Example 4a Consider Example 3. There are two min- 
imal conflicts: 

AB(Al) v AB(Ml) v AB(&), 
AB(A1) V AB(M1) v AB(M3) v AB(A2), 

and four kernel diagnoses: 

AB(A), AB(Ml), 

AB(M2) A AB(M3), AB(M2) A AB(A2). 

As all minimal conflicts are positive, these diagnoses cor- 
respond one-to-one to the familiar minimal diagnoses. 

Example 4b If we considered a component to be faulted 
only if it manifested a faulty behavior under the current 
set of inputs (such as in [19]), then we would use slightly 
different component models: 

ADDER(x) - [-AB(x) - [out(x) = inl(x) + &2(x)]] 

MULTIPLIER(x) - 
TAB(X) E [out(x) = inl(x) x in2(x)]. 

In this case the minimal conflicts become: 

A&%) V AB(Ml) v AB(M:!), 

AB(A1) v AB(A2) v AB(M1) v AB(M& 

AB(A2) v lAB(M2) v AB(M3), 

AB(A2) v AB(M2) v lAB(M3) 

1AB(A2) v AB(M3) V AB(M2), 

and the kernel diagnoses become: 

lAB(A2) A AB(M1) A lAB(M2) A lAB(M3), 

AB(A2) A AB(Ml) A AB(&), 
AB(A1) A lAB(A2) A lAB(M2) A lAB(M3), 

AB(Al) A AB(A2) A AB(&), 

AB(A2) A AB(M2), AB(M2) A AB(M3). 

Note that because the positive minimal conflicts are 
unchanged, the set of minimal diagnoses remains un- 
changed. 

In this example there are only a few more kernel di- 
agnoses than minimal diagnoses (6 vs. 4). However, one 
possible disadvantage of this approach is that there may 
be exponentially more kernel diagnoses than diagnoses. 

It is interesting to note that the set of minimal con- 
flicts may be redundant. In Example 4b, the first and 
third minimal conflicts entail the second: 

AB(A1) v AB(M1) v AB(M2) 
AB(A2) v yAB(M2) v AB(M3) 

AB(A1) v AB(A2) v AB(M1) v AB(M3) 

Therefore, the second minimal conflict is redundant. 
Such redundancy can only occur if there are non-positive 
minimal conflicts. Unfortunately, these observations do 
not seem to be of much practical use because there is 
no easy way to tell whether there are enough minimal 
conflicts without first finding them all. 

Definition 13 A set of kernel diagnoses is irredundant 
i$ it is a smallest cardinality set with the property that 
every diagnosis is covered by at least one of its elements. 

Theorem 7 If all minimal conflicts are positive there is 
exactly one irredundant set of kernel diagnoses, namely 
the set of minimal diagnoses. 

Note that a system 
of kernel diagnoses. 

can have multiple irredundant sets 

Example 5 Consider a circuit having three components 
A, B, C and the two minimal conflicts: 

AB(A)vAB(B)vAB(C), lAB(A)vlAB(B)vlAB(C) 

These have six prime implicants (i.e., kernel diagnoses). 

AB(A)A~AB(B), ~AB(A)AAB(C), AB(B)ATAB(C), 

lAB(A)AAB(B), AB(A)A~AB(C), lAB(B)~AB(C). 
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There are two irredundant sets of kernel diagnoses: 
{AB(A)/bAB(B), ~AB(A)AAB(C), AB(B)kAB(C)} 

{lAB(A)AAB(B), AB(A)kAB(C), lAB(B)/\AB(C)}. 
Our analysis of kernel diagnoses corresponds exactly 

to the classical analysis in switching theory of so-called 
two level minimization of boolean functions (e.g., the 
Quine-McCluskey algorithm [ 14; 171). The problem 
there is to synthesize a circuit realizing a given function 
as a disjunction of conjunctions of literals in such a way 
as to minimize the number of and-, or- and not-gates. 
Such circuits are characterized by irredundant sets of 
prime implicants of the given function. In the case of 
diagnosis, the given boolean function is specified by HI, 
the set of conflicts of SD U OBS. The kernel diagnoses 
are the prime implicants of II, and the minimal sets of 
kernel diagnoses sufficient to cover every diagnosis are 
the irredundant sets of prime implicants of II. It is well 
known from switching theory experience that the mini- 
mization problem is computationally intractable; there 
may be too many prime implicants, and even if there 
aren’t, finding an irredundant subset of them is NP- 
hard. Designers of VLSI circuits have developed vari- 
ous approximation techniques [l]. Because of the exact 
correspondence with diagnosis, we can expect to profit 
from these techniques. 

5; Prime diagnoses 

Raiman [19] proposes a notion of prime diagnosis to 
characterize diagnoses. In his TRIAL architecture com- 
ponents are individually incriminated and exonerated. 
Therefore, he characterizes the diagnoses of a system in 
terms of the diagnoses involving its individual compo- 
nents. The following is a generalization of his definition. 
Definition 14 Given (SD,COMPS,OBS), a prime di- 
agnosis for CECOMPS is a minimal diagnosis for 
(SD, COMPS,OBS u {AB(c))) 

Prime diagnoses characterize all diagnoses as follows. 
Theorem 8 (F&man) Suppose V( A, COMPS - A) 
is a diagnosis. Then for each ci E A there is a prime 
diagnosis D(Ai, COMPS - Ai) for cd such that A = 
Ui Ai. 

Unfortunately, Example 1 shows that not every union 
leads to a diagnosis. The prime diagnoses are: 

P(h) = {AB(b) A lAB(b)}, 
P(12) = {AB(12) A lAB(I& 

However, AB(I1) A AB(I2) is not a diagnosis. Thus, 
prime diagnoses are inadequate to characterize diag- 
noses. 

Raiman [19] implicitly assumes all minimal conflicts 
contain at most one negative literal. In this case Raiman 
shows that the converse of Theorem 8 holds which makes 
prime diagnoses adequate for characterizing diagnoses. 
This useful property holds if SD U OBS is horn, but we 
do not know of any more general practical condition on 
SD U OBS which ensures it. 

6 Restricting the system description 
Our overall objective is to find methods of characterizing 
all diagnoses. We saw that minimal diagnoses were in- 
adequate for this task in general and we examined kernel 
and prime diagnoses as alternatives. Another approach 
is to restrict the form of the system such that minimal 
diagnoses do characterize all diagnoses. We know from 
Theorem 4 that a necessary and sufficient condition en- 
suring that every superset of the faulty components of a 
minimal diagnosis provides a diagnosis is that all min- 
imal conflicts be positive. Unfortunately, we are not 
aware of any simple necessary and sufficient condition 
on the syntactic form of a system which ensures that all 
minimal conflicts are positive. Clearly both OBS and 
SD need to be restricted because definition 1 allows non- 
positive AB-clauses to be part of OBS and SD. In the 
extended paper we explore some commonly used practi- 
cal restrictions on OBS and SD that suffice to ensure 
that the minimal diagnoses are adequate to characterize 
all diagnoses. 

7 Summary 

The notions of minimal and prime diagnosis are inade- 
quate to characterize diagnoses generally. We argue that 
the notion of kernel diagnosis which designates some 
components as normal, others abnormal, and the re- 
mainder as being either, is a better way to character- 
ize diagnoses. We avoid significant complexity if kernel 
diagnoses contain only positive literals (i.e., all minimal 
conflicts are positive). This can be achieved by limit- 
ing the description of the system to ensure this. Most 
current model-based techniques take this approach[lO]. 

There are usually a large number of minimal conflicts 
and kernel diagnoses (or minimal diagnoses). There- 
fore, the brute-force application of the techniques sug- 
gested in this paper is not practical. The contribution of 
this paper is that it provides a clear logical framework 
for characterizing the space of diagnoses in the general 
case. It thus provides the specification for an ideal diag- 
nostician. In practice, some focusing strategy must be 
brought to bear. One approach is to exploit hierarchical 
information as in [13]. Another approach is to focus the 
reasoning to identify the most relevant conflicts in order 
to find the most probable diagnoses [8; 111. However, 
both of these approaches require additional information: 
the structural hierarchy and probabilistic information. 
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