
Physical Impossibility Instead of Fault Models 

Gerhard Friedrich, Georg Gottlob, Wolfgang Nejdl 
Christian Doppler Laboratory for Expert Systems 

Technical University of Vienna, Paniglgasse 16, 
A-1040 Vienna, Austria - friedrich@vexpert .at 

Abstract 

In this paper we describe the concept of physical im- 
possibility as an alternative to the specification of fault 
models. These axioms can be used to exclude impos- 
sible diagnoses similar to fault models. We show for 
Horn clause theories while the complexity of finding a 
first diagnosis is worst-case exponential for fault mod- 
els, it is polynomial for physical impossibility axioms. 
Even for the case of finding all diagnoses using physical 
impossibility axioms instead of fault models is more ef- 
ficient, although both are exponential in the worst case. 
These results are used for a polynomial diagnosis and 
measurement strategy which finds a final sufficient di- 
agnosis. 

1 Introduction 

Model-based diagnosis has traditionally been based on 
the use of a correct behavior model. Faulty components 
were assumed to show arbitrary behavior modeled by 
an unknown fault mode. 

An interesting extension to this approach is the in- 
clusion of specific fault models, which have been intro- 
duced in [3] and [S]. [3] retains an unknown fault mode 
and uses fault models to assign different probabilities to 
different behavior modes. [6] shows how to exclude im- 
possible diagnoses (“the light of a bulb is on although 
no voltage is present”) by deleting the unknown fault 
mode. However, in this case the fault models have to be 
complete to find the correct diagnoses. While the cor- 
rect model behavior can often be expressed as a Horn 
clause theory (with polynomial consistency checking’) 
the introduction of fault models leads to a non Horn 
clause theory in any case and thus to a computationally 
more complex algorithm for finding diagnoses. 

‘In this paper we assume a system model guaranteeing a re- 
stricted term depth of all arguments and a restricted number of 
argument positions. Otherwise the problem would of course be 
undecidable or exponential. 

In this paper we investigate a third approach, which 
excludes impossible diagnoses by specifying physical 
impossibility axioms in the form of negative clauses. 
This approach does not enlarge the diagnosis complex- 
ity compared to a correct behavior based system, but 
usually excludes the same diagnoses as fault models. 
Starting from a Horn clause description of the correct 
behavior, the introduction of physical impossibility ax- 
ioms retains the Horn property. On the other hand the 
introduction of fault models leads to a non Horn theory 
resulting in an exponential algorithm for finding even 
a first diagnosis. Our approach is therefore advanta- 
geous in cases where the additional information which 
can be expressed by specific fault models (like proba- 
bilities of different behavior modes) is not needed or 
not available. 

In Section 2 we describe the concept of physical im- 
possibility and discuss the relationship between phys- 
ical impossibility and fault models. Section 3 shows 
the computational advantages of our approach and dis- 
cusses the worst-case complexity of finding diagnoses. 
A polynomial algorithm for finding a final sufficient di- 
agnosis is given which is not possible if we use fault 
models. 

Because of the space limitations formal definitions 
and complete proofs are given in a longer version of 
this paper. 

2 hysical Impossibility 

To describe the notion of physical impossibility, let us 
first analyze the possible behavior of the components 
of a device. This behavior can be represented by speci- 
fying constraints between the state variables describing 
the component. We assume a finite domain for these 
variables. Each state variable can have only one value. 

The domain of a component can be specified by a fi- 
nite set of value tuples denoting all possible value com- 
binations which can be assigned to the state variables 
of the component. The arity of a tuple is equal to the 
number of variables describing a component. 
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Figure 1: Tuple domain of a component including cor- 
rect behavior and fault model tuples. 

To diagnose a system various subsets of this domain 
may be specified. The relations of these sets are de- 
picted in Figure 1. We will discuss the following sets 
(using Sl \ S2 to denote S1 minus Sz): 

l correct behavior set denoted by ok 
o fault model set -ok 
o physical impossibility set (Domain \ (lok U ok)) 

In the following paragraphs we will describe how to 
represent correct, faulty, and impossible behavior. For 
each definition we show the appropriate rules used for 
the bulb example which has been introduced in [6]. 
Note, that the specific formalism used for describing 
a system model depends on the inference mechanism 
used. The general concepts defined here do not depend 
on it. 

In Figure 2 a simple circuit is shown, consisting of 
a power supply and three bulbs. Wires connect these 
components in parallel. The domain theory specifies 
the correct behavior of the circuit as usual, as described 
below. The literal ok(X) denotes that the component 
X works correctly. 

202 w4 w6 

Figure 2: Three bulbs and one voltage supply in par- 
allel 

The following axioms describe the correct behavior of 
our components. Variables are stated by capital letters 
and are universally quantified. In order to achieve a 
clear and simple presentation, we assume without los- 
ing generality that wires always behave correctly. 

(1) bulb(X) A ok(X) A vad(port(X), +) 
-+ val(light(X),on). 

(2) bulb(X) A ok(X) A val(port(X),O) 
--+ val(light(X), ofl). 

bulb(X) A ok(X) A val(light(X),ofl) 
-+ val(port(X), 0). 

bulb(X) A ok(X) A vad(light(X),on) 
+ val(port(X), +). 

SUPPlY A ok(X) 
--+ val(port(X), +). 

Values are propagated along connections, each state 
variable can have only one value. 

val(Port1, Vaa) A conn(Portl,Port2) 
+ val(Port2, Vaa). 

va/(Portl, Var) A conn(Port2, Portl) 
+ val(Port2, Val). 

vad(Port, Vaal) A val(Port, Vu&?) 
+ Vail = Va12. 

supply(s). conn(po~(s),port(bl)). 
bulb(bl). conn(port(s),port(b2)). 
bulb(ba). conn(port(s),port(b3)). 
bulb(b3). 

Additionally the following observations are made: 

val(dight(bl), 08). vad(light(bs), on). 
vaZ(light(ba), o#). 

The construction of conflict sets leads to four min- 
imal conflict sets (s,bl), (s, bz), (bl, b3) and (bz, b3) 
which determine two diagnoses [s, bs] and [b,, bz]. 

Now usually one would not consider bl and b2 to be 
correct while b3 and s are faulty producing light when 
there is no power supply. The additional information 
a diagnosis expert uses in this case is the knowledge 
about what is physically possible. If this knowledge is 
omitted (because only the correct behavior is modeled), 
“miracles” are possible. 

Using the principle of physical impossibility, we sim- 
ply exclude all tuples which are impossible. This can 
alwa.ys be done by completely negative clauses and thus 
without adding a non Horn clause to the description of 
the correct behavior. In our case: 

7 (bulb(X) A val(!ight(X), on) A vaI(port(X),O)). 

Using domain closure axioms stating that a light can 
be on or ofl and that the volta.ge can be 0 or +, we 
get the following rules, which subsume rule 2 and 4 of 
our correct behavior rules. They can be used instead 
of the physical impossibility axiom. 

bulb(X) A val(/ight(X),on) + val(port(X), +). 
bulb(X) A vaI(port(X), 0) + val(iight(X), 08). 

On the other hand, a f&t m,oded consists of the 
following axiom to eliminate the undesirable diagnosis 
[s, b31: 
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bulb(X) A 7 ok(X) 
-+ (val(port(X),O) A val(light(X),off)) V 

(val(port(X), +) A val(light(X),o$)). 

This axiom can be simplified to 

bulb(X) A 7 ok(X) -+ val(light(X),o$). 

The introduction of fault models into a Horn the- 
ory describing the correct behavior always leads to a 
non Horn theory. (If we use the literal ah(X) denoting 
abnormal behavior, we have to include the additional 
axiom ah(X) H lok(X)). 

Both approaches reduce the conflict sets (s, bl), 
(+a) to (h) and (b2). This results in the elimina- 
tion of diagnosis [s, b3]. The reason for the conflict set 
reduction using the fault model approach is that ok(bg) 
can be deduced without assuming it, since the light is 
on. Therefore each single assumption ok(bl) and ok(b2) 
is inconsistent with the system description and the ob- 
servations. By using physical impossibility, we simply 
exclude the possibility, that a light is on with no volt- 
age present. Transforming the physical impossibility 
axiom using the domain axioms even lets us directly 
deduce the presence of voltage. (Note, that we use the 
domain axioms only during transformation, not for the 
final generation of the model.) 

This example suggests an equivalence between fault 
models and physical impossibility axioms. This equiv- 
alence can be formally described by the following the- 
orem: 

Theorem 1 If the domain and the model of correct 
behavior is represented and -ok(X) only appears in 
the clauses representing the correct behavior (e.g., 
ok(ci) + . . .) then the additional specification of a fault 
model is equivalent to the additional specification of the 
physical impossibility axioms for the task of diagnosis. 

We use the usual component oriented description and 
the assumption that faults are independent from each 
other. Rules like lok(ca) --) -ok(cj) are excluded. 

Proof (informal): Using domain axioms and the ax- 
ioms describing correct and faulty behavior we can de- 
duce the physical impossibility axioms. No additional 
conflict will result if we add the physical impossibility 
axioms to the system model. 

On the other hand using domain axioms, correct be- 
havior and physical impossibility axioms (which are 
specified by negative clauses), we can deduce the pos- 
sible behavior. Additionally for each component ca in 
a diagnosis we can deduce -ok(ci) otherwise the diag- 
nosis would not be minimal. This can be deduced only 
by using the correct behavior clauses, as -ok(c;) does 
not appear in any other clauses. Therefore every cor- 
rect behavior tuple leads to a contradiction. Using the 

possible behavior, we can now derive at least a subset 
of the faulty behavior subsuming the fault model. 

Let us denote the correct behavior axioms as &, the 
faulty behavior axioms as BF, the physical impossibil- 
ity axioms as al and the domain axioms as 2). 

Then we can write the equivalence of fault models 
and physical impossibility axioms for the purpose of 
finding all diagnoses somewhat informally as 

In most systems (especially those based on value 
propagation) only Horn clauses are used for describing 
correct and faulty behavior modes. Explicit domain ax- 
ioms are not included in the system model. Notwith- 
standing the potential incompleteness caused by this 
omission, we usually use such a simplified theory to 
avoid combinatorial explosion. Its incompleteness with 
respect to diagnosis decreases with an increasing set of 
measurements. 

What we would therefore like to prove is the fol- 
lowing equivalence of physical impossibility and fault 
models (without domain axioms) : 

Although this is indeed valid in many cases it is pos- 
sible to construct situations where the addition of Horn 
clause fault models yields a more complete theory than 
the addition of physical impossibility. If domain axioms 
are omitted physical impossibility axioms can there- 
fore only be a reasonable approximation. However, al- 
though Horn clause fault models yield better results 
in some cases, they are themselves an approximation 
(except if completely unrestricted clauses are used). 

In Section 3 we will show that physical impossibil- 
ity axioms do not degrade the efficiency of the diag- 
nosis algorithm. We can still construct a polynomial 
algorithm finding a final sufficient diagnosis for such a 
theory. On the other hand we show that fault models 
are intractable, something we wanted to avoid when we 
excluded the domain axioms initially. So we are faced 
once again with the well-known completeness/efficiency 
tradeoff often encountered in AI. 

3 Efficiency and Complexity 

3.1 Efficiency Considerations 

To allow efficient consistency checking and diagnosis 
generation, we use Horn clauses for our system model 
as much as possible. This corresponds to the use of 
value propagation as inference engine. Usually only the 
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subset of the correct behavior which can be expressed o fault models (all 6 modes): 22.9 
by functional dependencies is used in the system model. In this example we achieved a runtime improvement 

It is clear that by extending such a Horn clause the- factor of 22.9 by using physical impossibility axioms in- 
ory by physical impossibility axioms (which are nega- stead of fault models. Note, that this does not depend 
tive or definite clauses) we do not increase the complex- on our algorithm, but simply mirrors the combinato- 
ity of the diagnosis process, while even the inclusion of rial explosion caused by the non Horn theory (see also 
Horn clause fault models automatically makes the the- [4]). Each fault model introduces alternative rules used 
ory non Horn, leading to the well-known combinatorial 
explosion. 

for value propagation and we have exponentially many 
combinations of fault models. 

Example 1 We use the standard d74 circuit depicted 
in Figure 3.1 with six different behavior modes (as used 
in [4], see Figure 3.1). 

a 

3 
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ml 

b f 
2 al - 

2 
C 

m2 - Y 
2 

d a2 g 
3 8 

e m3 

3 

1. output is correct 
2. output is zero 
3. output is left input 
4. output is right input 
5. output is one 
6. output is shifted left one bit 

Figure 3: D74-circuit 

On the other hand physical impossibility is barely 
affected by the introduction of additional fault models, 
as only the checks to exclude impossible diagnoses get 
slightly more complicated. No new values are deduced 
because of the physical impossibility axioms. Consis- 
tency has to be checked only for a Horn clause theory. 

3.2 Complexity 

In the following we will concentrate on Horn clause the- 
ories for the correct and faulty behavior and the phys- 
ical impossibility axioms. This is sufficient for most 
cases and usually used by value propagation systems. 
It also allows us to capture all functional dependencies. 

For consistency based model-based diagnosis we can 
state the following complexity theorems. They are in- 
dependent of the inference strategy used. 

Theorem 2 Assume a description of the correct be- 
havior by a (propositional) Horn clause theory, a set of 
observations and a set of (already found) diagnoses Z?. 
The complexity of deciding whether a next diagnosis 
exists which is not in 2, is n/p-complete. 

We do not use an unknown fault mode, as such a 
mode would allow any possible behavior. Such a fault 
mode is therefore only interesting if we rely on proba- 
bility ranking. 

Proof (informal): The problem is obviously in NP. 
By reduction to SAT we can show that it is also NP- 
complete. 

out the additional fault mode information. 

Initial measurements are a = d = e = 3, b = c = 2, 
f = 2 and g = 8. The two double fault diagnoses 
for these measurements are [(ul, right), (m2,left)] and 
[(ml, zero), (m2, left)]. Using physical impossibility 
we get the same diagnoses as using fault models, with- 

However, 
if we just want to change the faulty components, the 
exact fault mode is irrelevant. (In this example, the 
physical impossibility axioms define that any behavior 
not covered by the behavior modes is inconsistent.) 

Using the MOM0 system described in [5] we got the 
following normalized model generation times (for find- 
ing all diagnoses) : 

Let C be a set of propositional clauses in SAT form. 
Let U be the set of variables used in C. Assume fur- 
ther for each x (lx) that there exists at least one clause 
c E C such that x (lx) does not occur in c. We use the 
following instance of the next diagnosis problem ND 
= (COMP, SD, OBS, D) consisting of a set of compo- 
nents, a system description, a set of observations and 
of diagnoses. 

COMP = {x,zlxaJ} 
SD = G,uG2uG3uG, 

OBS = {TZ} 
D = {{x,~}~x”:U} 

G = { [AzEe okz A /j+cok~] - f 1 c E C} 
G2 = {ok,-+f,okz~~~x~U) 
G3 = (A XcEU k - u > 
G4 = (uAf+z) 

o physical impossibility (4 or 6 modes): 1 
e fault models (first 4 modes): 7.6 
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For a diagnosis A 4 D the following truth value as- 
signment satisfies C: 

Using this assignment we can show 

C satisfiable _ 3A $! D for ND 

This complexity theorem is valid if the system de- 
scription includes just a model of correct behavior con- 
sisting of propositional Horn clauses. Extending the 
model by fault models or physical impossibility axioms 
can not decrease the complexity. 

Sometimes it is sufficient to find just one initial di- 
agnosis, especially if we take various repair or measure- 
ment strategies into account. Let us therefore compare 
the complexity of this problem for physical impossibil- 
ity and fault models. 

While both physical impossibility and fault models 
exclude impossible diagnoses, the difference between 
them is, that the use of a fault model also influences the 
candidate space and the use of physical impossibility 
does not. This is expressed by the following theorem: 

Theorem 3 If we add physical impossibility axioms to 
the correct behavior model, each superset of a diagnosis 
is consistent. 

Proof (informaZ): No clause from the description of 
the correct behavior and the physical impossibility ax- 
ioms contains the positive literal ok(c). Only negative 
literals lo/z(c) appear in the clauses describing the cor- 
rect behavior. Therefore adding loL(c) for some com- 
ponent c to a diagnosis can not lead to a contradiction 
as we cannot derive ok(c) from the given theory. 

We can define a polynomial algorithm for a system 
description consisting of correct behavior and physical 
impossibility axioms to find a diagnosis: 

Algorithm 1 (Finding the First Diagnosis) 

1. Take the candidate which assumes all components 
to be faulty. This candidate has to be correct oth- 
erwise the system description itself is inconsistent. 

2. Now remove an arbitrary component from the can- 
didate, i.e. assume the component to be correct. 
The component has to be chosen in such a way 
that the remaining candidate is consistent. Com- 
ponents need only be checked once. In a value 
propagation system new values may be deduced 
for each component which is assumed to be cor- 
rect. If the theory proves to be inconsistent, these 
values have to be retracted. 

3. Do this until no more components can be removed 
from the candidate (i.e. all components have been 
tried). The (minimal) candidate found can be out- 
put as first diagnosis. 

Proof (informa/): As the candidate space is contigu- 
ous, algorithm 1 always finds a minimal candidate. The 
inclusion of ok(C) is monotonous so the algorithm per- 
forms exactly n consistency checks. 

Note, that checking consistency of all single faults by 
a simple algorithm exhibits also a worst-case complex- 
ity of n and a average case complexity of n/2, if we set 
the cost for a consistency check to 1. If we use conflict 
sets to compute the single faults the complexity is ex- 
ponential in the worst case. (Consider the case, where 
we have exponential many conflict sets.) 

Finding the first diagnosis using a system description 
with several incompatible behavior modes is exponen- 
tial in general. For fault models which do not exclude 
any diagnosis compared to the correct behavior model 
alone (e.g. if the unknown fault mode is included), we 
can find the first diagnosis in polynomial time simply 
by deleting all fault model axioms. 

Theorem 4 Let us assume, that we extend the de- 
scription of the correct behavior by clauses describing 
the faulty behavior and that these clauses include the 
positive literal oL(ca) for the described components ci, 
which appears in negative form in the correct behavior 
clauses. Then deciding whether a first diagnosis exists 
is NF-complete. 

Proof (informal): The proof is very similar to the 
next diagnosis problem. We transform sets of assump- 
tions which are inconsistent (like {ok(q), -ok(q)}) into 
already found diagnoses. (By the way, even deciding 
whether there exists an arbitrary consistent candidate 
is n/P-complete.) 

Similar results to theorem 2 and 4 have been shown 
in an interesting paper of Bylander et al ([l]) in the 
context of abductive reasoning. However, the trans- 
formation from a consistency-based diagnosis problem 
into an abductive one sketched in their paper using 
conflict sets is not preferable, as the number of conflict 
sets can grow exponentially resulting in an exponential 
algorithm for the transformed problem. 

3.3 Polynomial Diagnosis Strategies 

The results described in the previous section indicate 
the complexity of the consistency based diagnosis prob- 
lem. However, it is still possible to define a polynomial 
diagnosis algorithm for finding a sufficient2 diagnosis 

as 
2By sufficient we mean a correct diagnosis we want to accept 
the final one depending on some termination criterion. 
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by using our first diagnosis algorithm for correct be- 
havior and physical impossibility axioms. 

Unfortunately, a measurement selection function de- 
rived from entropy (e.g. [2], [3]) tries only to minimize 
the number of measurements (and therefore measure- 
ment costs). What is not included in the minimization 
process are the inference costs which, however, can get 
exponential. We have to use measurement selection 
heuristics, which need to compute only one diagnosis. 

Algorithm 2 Polynomial algorithm for finding a suf- 
ficient diagnosis (if correct behavior and physical im- 
possibility rules are given): 

1. Find the first diagnosis using all available obser- 
vations (algorithm 1). 

2. If the diagnosis found fulfills the termination cri- 
terion, then exit. This could be the case if we 
can prove the components included in the diagno- 
sis to be faulty without assuming the correctness 
of other components. In other cases, an immedi- 
ate repair may be more cost efficient than further 
testing. 

3. Take additional actions to get new information 
such as 

o Take one or more additional measurements. 
o Try to prove a component to be correct or 

faulty. 
l Replace a component by a good one, etc. 

Which strategy we take and which measurements 
we choose may depend on the conflicts found so 
far, the failure probability of the components, cost 
of testing etc. Trying to prove or disprove the cur- 
rent diagnosis is also a good heuristic. If we can 
prove a component ci to be correct for the given 
exogenous variables (i.e. by measuring its direct 
inputs and outputs), it can be excluded from a 
diagnosis. We can assume ok(~) for such a com- 
ponent. This might also be done by using an in- 
ternal test. Replacing a component by a good one 
has usually the same effect. 

4. got0 1 

The difference to the algorithm used in [2] and sim- 
ilar algorithms is that only one diagnosis is computed 
at each iteration. As only polynomially many measure- 
ment points exist and the number of consistency checks 
is polynomial, the algorithm halts in polynomial time. 

4 Conclusion 

We have described the concept of physical impossibility 
as an alternative to fault models. Compared to fault 

models physical impossibility axioms result in a more 
efficient computation of diagnoses. We also described 
a polynomial algorithm for finding the first diagnosis 
using physical impossibility axioms. The inclusion of 
fault models even into a Horn clause system model was 
shown to lead to a n/P-complete decision procedure to 
check for a first diagnosis. For both finding the next 
diagnosis is exponential in general. By relaxing the op- 
timality criterion for measurement selection as defined 
in [2] we are able to define a simple algorithm for find- 
ing a final sufficient diagnosis in polynomial time using 
correct behavior and physical impossibility axioms. 
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