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Abstract 

Abduction is an important inference process un- 
derlying much of human intelligent activities, in- 
cluding text understanding, plan recognition, dis- 
ease diagnosis, and physical device diagnosis. In 
this paper, we describe some problems encoun- 
tered using abduction to understand text, and 
present some solutions to overcome these prob- 
lems. The solutions we propose center around 
the use of a different criterion, called explana- 
tory coherence, as the primary measure to eval- 
uate the quality of an explanation. In addition, 
explanatory coherence plays an important role in 
the construction of explanations, both in deter- 
mining the appropriate level of specificity of a 
preferred explanation, and in guiding the heuris- 
tic search to efficiently compute explanations of 
sufficiently high quality. 

1 Introduction 
Finding explanations for properties and events is an 
important aspect of text understanding and of intelli- 
gent behavior in general. The philosopher C.S. Peirce 
defined abduction as the process of finding the best 
explanation for a set of observations; i.e. inferring 
cause from effect. The standard formalization of ab- 
ductive reasoning in artificial intelligence defines an 
explanation as a set of assumptions which, together 
with background knowledge, logically entails a set of 
observations [Charniak and McDermott, 19851. 

Natural language understanding has recently been 
studied in terms of abduction [Charniak, 1986, 
Hobbs et al., 19881. Specifically, abduction has 
been used to solve problems ranging from resolv- 
ing anaphoric references and syntactic ambiguity 
[Hobbs et al., 19881 t o recognizing characters’ plans in 
a narrative [Charniak, 19861. 

*This research is supported by the NASA Ames Re- 
search Center under grant NCC-2-429. The first author 
was also partially supported by a University of Texas MCD 
fellowship. 

We have built an understanding system called AC- 
CEL (Abductive Construction of Causal Explanations 
for Language) that is capable of constructing deep, 
causal explanations for natural language text (both 
narrative and expository text) through the use of ab- 
duction. In this paper, we focus on several problems 
that arise when applying abduction to text under- 
standing. These problems include: (1) the inadequacy 
of the frequently used simplicity criterion, i.e. “Oc- 
cam’s Razor”, in selecting the preferred abductive ex- 
planation; (2) the determination of an abductive proof 
of the appropriate level of specificity; and (3) the com- 
putational intractability of abduction. The solutions 
we propose to these problems center around the use of 
a different criterion, called explanatory coherence, to 
construct and evaluate abductive explanations. 

2 The Basic Abductive Mechanism 

A generic abductive inference procedure operates as 
follows. The background knowledge is encoded in 
Horn clause axioms. Given a conjunction of positive 
literals which encodes the input sentences, the abduc- 
tive inference procedure computes all possible abduc- 
tive proofs by backward-chaining on the input literals 
using the Horn clause axioms in the knowledge base, 
much like Prolog. However, when there is no fact or 
consequent of a rule in the knowledge base that uni- 
fies with a subgoal in the current partial proof, instead 
of the proof failing, the abductive procedure has the 
choice of making that subgoal an assumption, if it is 
consistent to do so. Inconsistency is detected by call- 
ing a theorem prover to try to deduce a contradiction. 
Since consistency checking is undecidable in general, 
we impose a depth bound in the theorem prover such 
that it only tries to search for a proof of inconsistency 
within the depth bound. 

Hence, an abductive proof is a proof of the conjunc- 
tion of the input literals using Horn clause rules and 
facts in the knowledge base, together with a set of 
assumptions. An abductive proof is considered an ex- 
planation, or an interpretation of the input sentences. 
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3 Problems and Solutions “John was happy. The exam was easy.” 

The basic abductive mechanism has several problems. 
These problems and their solutions are described be- 
low. 

(name j jolm) (haps j) 

4 
(succeed j e) 

3.1 Occam’s Razor Isn’t Sharp Enough 
Most previous research on abduction, whether applied 
to plan recognition, language understanding, disease 
diagnosis, or physical device diagnosis, only uses “Oc- 
cam’s Razor”, i.e. the simplicity criterion, as the ba- 
sis for selecting the best explanation. For instance, in 

(exam e) (easy e) Wdy j 6 We j e) 

Interpretation 1 
E= l,A=2 

Simplicity metric = E/A = l/2 
Coherence metric = (1+1)/(7*(4*3/2)) = 0.048 

[Charniak, 19861, the best interpretation is one that la 
maximizes E 

- .- 

i A, where E 

- - 
incorporates the assumption of minimizing the num- 

= the number of ex- 
plained observations, and A = the number of assump- 
tions made. 

ber of top level events in deducing the plan that an 

The work of [Hobbs et al., 19881 also 
adopts a similar simplicity criterion. In [Reiter, 19871, 
he proposed a simplicity criterion based on subset- 
containment minimality. Other related work, though 
not explicitly utilizing abduction, also relies on some 
kind of simplicity criterion to select the best explana- 
tion. For example, IKautz and Allen, 19861 explicitly 

(name j john) (happy j) (exam e) (easy e) 

+ 
(optimist j) 

Interpretation 2 
E=l,A= 1 

Simplicity metric = E/A= l/l 
Coherence metric = 0 

lb 

agent is pursuing. 
Though an important factor, the simplicity criterion 

is not sufficient by itself to select the best explanation. 
We believe that some notion of explanatory-coherence 
is more important in deciding which explanation is the 
best. This is especially true in the area of language un- 
derstanding and plan recognition. Consider the sen- 
tences: “John was happy. The exam was easy.” The 
sentences translate into the conjunction of the follow- 
ing 1iterals:l b=e j john), (happy j>, (exam e), 
(easy e). A knowledge base of axioms relevant to 
these input literals are: 

(happy ?x) <- (optimist ?x) 
(happy ?x) <- (succeed ?x ?y> 
(succeed ?x ?y) <- (exam ?y> (easy ?y) 

(study ?x ?y> (take ?x ?y) 

Based on these axioms, there are two possible in- 
terpretations of these sentences, as shown in Figure 
la and lb. Relying on the simplicity metric results 
in selecting the interpretation that John was happy 
because he is an optimist, someone who always feels 
good about life in general (Figure lb). This is in con- 
trast with our preferred interpretation of the sentence 
- John was happy because he did well on the easy 
exam (Figure la).2 

Intuitively, it seems that the first interpretation 
(Figure la) is better because the input observations 

Figure 1: The importance of explanatory coherence 

are connected more “coherently” than in the second 
interpretation (Figure lb). We manage to connect 
“John was happy” with the “easy exam” in the first 
interpretation, whereas in the second interpretation, 
they are totally unrelated. This is the intuitive no- 
tion of what we mean by explanatory coherence. It is 
clear that “Occam’s Razor”, i.e. making the minimum 
number of assumptions, is not the dominant deciding 
factor here at all. Rather, we select an explanation 
based on its coherence, i.e. how well the various ob- 
servations are “tied together” in the explanation.3 

That sentences in a natural language text are con- 
nected in a coherent way is reflected in the well known 
“Grice’s conversational maxims” [Grice, 19751, which 
are principles governing the production of natural lan- 
guage utterances, such as “be relevant”, “be informa- 
tive”, etc. Although the notion that natural language 
text is coherently structured has long been recognized 
by researchers in natural language processing (see for 
example [Allen, 1987]), p revious work on abduction 
applying to the tasks of text understanding and plan 
recognition has not included this criterion in its eval- 
uation of explanations. The use of explanatory coher- 
ence here attempts to remedy this problem. 

’ Since we do not focus on the parsing aspect of language 
understanding, we assume the existence of some appropri- 
ate parser that translates the given set of input sentences 
into a logical representation consisting of a set of literals. 

2Note that the simplicity criterion of [Reiter, 19871 
based on subset minimality also does not work well for this 
example - it is indifferent towards both interpretations, 
instead of choosing the preferred one. 

3[Thagard, 19891 h as independently proposed a com- 
putational theory of explanatory coherence that applies to 
the evaluation of scientific theories. However, his theory of 
explanatory coherence consists of seven principles - sym- 
metry, explanation, analogy, data priority, contradiction, 
acceptability, and system coherence. Independent criteria 
like simplicity and connectedness have been collapsed into 
one measure which he termed “explanatory coherence”. 
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We would like to formulate our coherence metric so 
as to possess several desirable properties. In particu- 
lar, explanations with more connections between any 
pair of observations, as well as those with fewer dis- 
joint partitions are more coherent. Also, a coherence 
metric with values lying in a unit range O-l will facil- 
itate the comparison of explanations. 

We have developed a formal characterization of 
what we mean by explanatory coherence in the form of 
a coherence metric that satisfies the above mentioned 
properties. The metric is defined as follows : 

where 

): Ni,j 

C= 
l<i<j<l 

N ii ( > 

d = the total number of observations; 
N = the total number of nodes in the proof graph; 

z 

( > 2 = Z(Z - 1)/2; 

Ni,j = the number of distinct nodes nk in the proof 
graph such that there is a (possibly empty) sequence 
of directed edges from nk to ni and a (possibly empty) 
sequence of directed edges from nk to nj , where ni and 
nj are observations. 

The numerator of this metric is a measure of the 
total number of nodes in the explanation connecting 
pairs of observations. This measure is constructed so 
that it increases with the number of nodes in the expla 
nation which simultaneously lend support to a given 
connection. The denominator of the metric simply 
scales the result according to the size of the explana- 
tion so that the final value falls between 0 and 1. 

To illustrate the computation of the coherence met- 
ric, consider the explanation in Figure la. Let n1 = 
(name j john), n2 = (happy j), n3 = (exam e), n4 = 
(easy e), 725 = (succeed j e), n6 = (study j e), and n7 
= (take j e). In th is explanation, the total number of 
nodes N = 7, and the total number of observations I 
= 4. N2,3 = 1, since there is exactly one node (namely 
n3) such that there is a directed path from n3 to n2 
and also a directed path from n3 to n3 (the trivial 
empty path). Similarly, N2,4 = 1. All other Ni,j = 
0. This results in the coherence metric C = 0.048, as 
shown in Figure la. 

The coherence metric as defined above can be effi- 
ciently computed. Using a standard depth-first search 
graph algorithm4, it can be readily shown that C 
can be computed in time 0(a . N + e), where I = 
the total number of observations, N = the total 
number of nodes in the proof graph, and e = the 
total number of directed edges in the proof graph 
[Ng and Mooney, 19891. Based on the coherence met- 
ric, ACCEL has successfully selected the best in- 

*We assume he re that the proof graph contains no cy- 
cles, since circular justification is not considered a good 
trait of an explanation. 

terpretation for a half dozen examples of exposi- 
tory and narrative text that we have tested. (See 
[Ng and Mooney, 19891 for the list of examples suc- 
cessfully processed by ACCEL.) 

We note here some additional advantages of our co- 
herence metric. One observation is that coherent ex- 
planations also tend to be simple explanations. This is 
because in a coherent explanation, propositions tend 
to be more tightly connected. This increases the like- 
lihood of assumptions being unified, and leads to a re- 
duction in the number of assumptions made and thus 
a simpler explanation. 

In addition, compared to the simplicity metric, the 
coherence metric is less vulnerable to changes in the 
underlying representation of the knowledge base. It 
is relatively easy to encode the axioms in a knowl- 
edge base in a slightly different way so as to change 
the number of assumptions made in an explanation. 
However, connections between propositions are less 
dependent (relatively speaking) on such changes. For 
example, suppose we change the axioms in the given 
example slightly so that as long as one takes an easy 
exam, one will succeed in the exam without having 
to study for it. Also, suppose one has to be wealthy 
as well as an optimist to be happy. Given this mod- 
ified set of axioms, the first interpretation now only 
requires one assumption, while the second interpreta- 
tion requires two. So all of a sudden, the first inter- 
pretation becomes the simpler explanation of the two. 
However, the coherence metric of the first interpreta- 
tion (= (1+1)/(6*(4*3/2)) = 0.056) is still higher than 
that of the second (which remains at zero). 

3.2 Deciding on the Appropriate Level 
of Specificity of Explanations 
Another problem in constructing a good explanation 
is determining the appropriate level of specificity of an 
abductive proof. Previous approaches fall into one of 
three categories : most specific abduction, least spe- 
cific abduction, and weighted abduction.5 

In most specific abduction, the assumptions made 
must be basic, i.e. they cannot be “intermediate” 
assumptions that are themselves provable by assum- 
ing some other (more basic) assumptions. This 
is the approach used in the diagnosis work of 
[Cox and Pietrzykowski, 19871. In least specific ab- 
duction, the only allowable assumptions are literals 
in the input observations. [Stickel, 19881 claims that 
least specific abduction is best suited for natural lan- 
guage interpretation. He argues that what one learns 
from reading a piece of text is often close to its sur- 
face form, and that assuming deeper causes is unwar- 
ranted. In weighted abduction [Hobbs et al., 19881, 
weights (or costs) are assigned to the antecedents of 

5[Stickel, 19881 d escribes yet another form of abduction 
known as predicate specific abduction, which has been used 
primarily in planning and design-synthesis tasks. In pred- 
icate specific abduction, the predicate of any assumption 
made must be one of a pre-specified set of predicates. 
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(worker ?w johnl) 

(place-of-work ?w sml) 

@St go1 going) 

(goer go1 johnl) 

(dest go1 sml) 

johnl) 

(thing-worn ?w ul) (thing-put-on put-on1 ul) 

(iist ul uniform) 

“John went to the supermarket. 
He put on the uniform.” 

Coherence metric (without backchainmg on (ii sml smarket)) = 0.0537 
Coherence metric (with backchainmg on (it sml smarket)) = 0.0474 

Figure 2: The level of specificity of explanation 

backward-chaining rules in order to influence the de- 
cision on whether to backchain on a rule. In this case, 
the best interpretation is the one with assumptions 
that have the lowest combined total cost. 

However, none of these approaches is completely 
satisfactory. Consider the sentences “John went to 
the supermarket. He put on the uniform.” Both least 
specific and most specific abduction fail to generate 
the preferred interpretation in this case, which is that 
John is working at the supermarket. Figure 2 shows 
the proof graph of the preferred interpretation of this 
example (excluding the dashed lines and boxes). (See 
[Ng and Mooney, 19891 for the details of the relevant 
axiomatization.) 

Note that nowhere in the input sentences is the con- 
cept of “working” mentioned at all. It has to be in- 
ferred by the reader. Since this preferred interpreta- 
tion includes making the assumptions that there is a 
working event, that John is the worker of this working 
event, etc, it is evident that least specific abduction, 
in which the only allowable assumptions are input lit- 
erals, is incapable of arriving at this explanation. 

On the other hand, most specific abduction will not 
do the job either. Recall that most specific abduction 
always-prefers backchaining on rules to prove a sub- 
goal if possible rather than making that subgoal an 
assumption. Thus, applying most specific abduction 
to this example results in backchaining on the input 
literal (inst sml smarket) to the assumptions (inst ?s 
smarket-shopping) and (store-of ?s sml), since in the 

present knowledge base, this is the only backchain- 
ing rule with a consequent that unifies with (inst sml 
smarket).6 That is, we explain the going action, its 
agent and its destination by assuming that John is 
working there, and we are also forced to assume, by 
the requirement of most specific abduction, that there 
is some supermarket shopping event to explain the 
supermarket instance. 1 This is because most specific 
abduction requires that we have an explanation for 
why John went to the supermarket as opposed to some 
other workplace. This is clearly undesirable. 

However, determining the level of specificity of an 
explanation based on coherence produces the desired 
interpretation. That is, we backchain on rules to prove 
the subgoals in an explanation only if doing so in- 
creases its overall coherence, and thus we make as- 
sumptions just specific enough to connect the obser- 
vations. In the current example, backchaining on (inst 
sml smarket) results in a decrease in the coherence 
metric value, since the total number of nodes in the 
proof graph increases by two but there is no increase 
in the number of connections among the input obser- 
vat ions. Intuitively, explaining the supermarket in- 
stance by assuming a supermarket shopping event is 
completely unrelated to the rest of the explanation 
that John is working there. The coherence metric has 
been successfully used in ACCEL to determine the ap- 
propriate level of specificity of explanations, where the 
desired specificity is one which maximizes coherence. 

The weighted abduction of [Hobbs et al., 19881 
would presumably arrive at the correct interpretation 
given the “appropriate” set of weights. However, it 
is unclear how to characterize the “semantic contri- 
bution” of each antecedent in a rule in order to assign 
the appropriate weights. In contrast, our method does 
not rely on tweaking such weights, and it produces the 
preferred interpretation with the desired level of speci- 
ficity in all of our examples. We believe that allowing 
arbitrary weights on rules is too much of a burden on 
the knowledge engineer. It also provides too many 
degrees of freedom, which can lead to the knowledge 
engineer “hacking up” arbitrary weights in order to 
get the system to produce the desired explanation. 

3.3 Taming the Intractability Problem 
Finding a simplest abductive explanation has 
been shown to be NP-hard [Reggia et al., 1985, 
Bylander et al., 19891. H owever, an optimal explana- 
tion in our system is one with the highest coherence, 
as opposed to the simplest explanation, and so none 
of the proofs in the above research applies directly. 
Nonetheless, we have a proof that finding a maximally 
coherent explanation that satisfies simple contradic- 
tion restrictions in a two-level, propositional abduc- 

‘(inst sml smarket) denotes “sml is an instance of a 
supermarket” ; (inst ?s smarket-shopping) denotes “?s is 
an instance of a supermarket shopping event; and (store- 
of ?s sml) denotes “the store of the shopping event ?s is 
sml” . 
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tion model is NP-hard. As such, the use of heuristic 
search to explore the vast space of possible solutions 
seems to be a good strategy to adopt. In fact, we have 
implemented a form of beam search that has success- 
fully computed the preferred interpretation of all of 
our examples very efficiently. 

We use a beam search algorithm with two beam 
widths, called inter-observation beam width (@inter) 
and in-&u-observation beam width (&tra), in order to 
reduce the explored search space. A queue of best 
explanations is kept by the beam search procedure, 
forming the “beam” of the beam search. At all times, 
explanations in the queue are sorted by coherence, 
where the best explanation is the one with the highest 
coherence.7 Only at most Pinter number of the best ex- 
planations are kept in the queue after completing the 
processing of each input observation. Within the pro- 
cessing of an input observation, at most /?intra number 
of best explanations are kept in the queue. We have 
adopted two beam widths instead of one as in a typical 
beam search algorithm since we have found out em- 
pirically that optimal solutions can be computed most 
efficiently using two beam widths of different sizes. 

Figure 3 shows how the quality of the best explana- 
tion varies with run time for the supermarket working 
example with different values of flinter and @intra. We 
use the ratio of the coherence metric value of an ex- 
planation over that of the optimal explanation to rep- 
resent the quality of an explanation. All the run times 
reported in this paper are the actual execution times 
on a Texas Instruments Explorer II Lisp machine. 

Each data point in the Figure represents a quality- 
time pair obtained by using some specific values of 
P inter and ,&tra. Each curve connects all the data 
points with the same @inter but different ,Dintra. With- 
out using any heuristic search (i.e., if a complete search 
is made), it takes more than 3 hours to compute the 
optimal solution, while setting @inter = 3 and Pintra 
= 8 yields the optimal solution in 0.89 min, which 
represents a speed up of over 200 times! Also, fixing 

P. anter = 4 and /3intra = 13, the optimal explanations 
are computed in about one minute on average for the 
half dozen examples of expository and narrative text 

that we have tested. 

4 Related Work 
Several research efforts have focused on abduc- 
tion as an important inference process in plan 
recognition [Charniak, 19861, natural language un- 
derstanding [Hobbs et al., 19881, disease diagno- 
sis [Pople, 19731, and physical device diagnosis 
[Cox and Pietrzykowski, 19871. In the area of natu- 
ral language understanding, [Hobbs et al., 19881 de- 
scribes the use of abduction in solving the four lo- 
cal pragmatics problems of text understanding. This 

7Ties are broken based on the simplicity metric of E/A, 
where E is the number of observations explained and A is 

the number of assumptions made. 

Explanation Quality versus Run Time 
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Figure 3: Explanation Quality versus Run Time 

work differs from ours in that unlike their empha- 
sis on mostly linguistics issues like reference resolu- 
tion and syntactic ambiguity resolution, ACCEL is 
concerned with constructing deep, causal explana- 
tions of the input text. The work of [Charniak, 19861 
and [Charniak and Goldman, 19891 are most similar 
to ours. However, they are primarily concerned with 
recognizing characters’ plans and goals in narrative 
stor’ies, whereas ACCEL is also capable of construct- 
ing causal explanations for expository text. For exam- 
ple, a complete understanding of an encyclopedia text 
describing animals requires understanding the purpose 
or reason for the various features of the animals. (See 
[Ng and Mooney, 19891 for a list of expository text 
sentences that can be processed by ACCEL.) Also, 
explanations are evaluated based on their explanatory 
coherence in our work, as opposed to the simplicity 
criterion of [Charniak, 19861 and the probability crite- 
rion of [Charniak and Goldman, 19891. Furthermore, 
the work of [Charniak, 19861 used marker passing to 
restrict the search for explanations, whereas we used 
a form of beam search for the efficient construction of 
explanations. 

The Bayesian probabilistic approach to plan recog- 
nition and text understanding has been proposed by 
[Charniak and Goldman, 19891. Besides the problem 
of engineering the numerous prior and posterior prob- 
abilities of the nodes in a Bayesian network, this ap- 
proach does not take into account the importance of 
text coherence. For instance, in the sentences “John 
got a gun. He entered the grocery store.“, one can set 
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up reasonable probability estimates such that the con- 
ditional probability that John was both hunting and 
shopping is higher than that of John robbing the store 
(given the propositions stated in the text). However, 
selecting an interpretation based solely on the prob- 
ability of propositions about the situation being de- 
scribed is ignoring the fact that these propositions are 
adjacent sentences in a natural language text, not just 
random facts observed in the world. As illustrated by 
this example, text coherence dominates and results in 
the reader selecting the more coherent interpretation 
that John was robbing the store. 

5 Future Research 
We plan to investigate the efficiency gain which 
may be brought about by incorporating an ATMS 
(Assumption-based Truth Maintenance System) into 
the abductive inference procedure, so as to efficiently 
keep track of the dependency among the assumptions 
and propositions of various competing explanations. 

Since uncertainty and likelihood information is 
needed in order to achieve a complete understanding 
of natural language text, and because a straightfor- 
ward application of Bayesian probability theory does 
not give a completely satisfactory solution (as we have 
illustrated here), an approach that will integrate both 
the importance of text coherence and likelihood infor- 
mation is an important issue in future research. 

6 Conclusion 
In summary, we have described some problems en- 
countered using abduction to understand text, and 
have presented some solutions to overcome these prob- 
lems. The solutions we propose center around the use 
of explanatory coherence to evaluate the quality of ex- 
planations, to determine the appropriate level of speci- 
ficity of explanations, and to guide the heuristic search 
to efficiently compute explanations of sufficiently high 
quality. These solutions have proven to be very effec- 
tive on a range of examples in text understanding. 
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