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Abstract 
Of all the possible ways of computing abductive expla- 
nations, the ATMS procedure is one of the most popu- 
lar. While this procedure is known to run in exponen- 
tial time in the worst case, the proof actually depends 
on the existence of queries with an exponential num- 
ber of answers. But how much of the difficulty stems 
from having to return these large sets of explanations? 
Here we explore abduction tasks similar to that of the 
ATMS, but which return relatively small answers. The 
main result is that although it is possible to generate 
some non-trivial explanations quickly, deciding if there 
is an explanation containing a given hypothesis is NP- 
hard, as is the task of generating even one explana- 
tion expressed in terms of a given set of assumption 
letters. Thus, the method of simply listing all expla- 
nations, as employed by the ATMS, probably cannot 
be improved upon. An interesting result of our analy- 
sis is the discovery of a subtask that is at the core of 
generating explanations, and is also at the core of gen- 
erating extensions in Reiter’s default logic. Moreover, 
it is this subtask that accounts for the computational 
difficulty of both forms of reasoning. This establishes 
for the first time a strong connection between comput- 
ing abductive explanations and computing extensions 
in default logic. 

Introduction 
Of all the possible ways of computing abductive expla- 
nations, the procedure employed by an assumption- 
based truth-maintenance system (ATMS) is one of the 
most popular (de Kleer 1986a; Reiter and de Kleer 
1987). It is therefore somewhat surprising that so lit- 
tle effort has gone into understanding in precise terms 
the nature of the computational task performed by an 
ATMS, that is, the what for which an ATMS is a how. 

What do we know in general about this task? It 
has been known since at least 1985 that in the worst 
case, any procedure that computes what the ATMS 
computes will need time that is exponential in the 
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length of its input (McAllester 1985). This is because 
there are problems for which the desired set of answers 
(where intuitively, each answer is a set of assumptions 
that would explain a given condition) is exponentially 
large. Perhaps this simple fact has discouraged fur- 
ther theoretical analysis into the worst-case difficulty 
of computing explanations. 

But it doesn’t tell the whole story. Is the fact that 
an ATMS can take exponential time only due to cases 
where an exponential number of answers need to be 
returned? What if instead of generating all the an- 
swers, we only required a procedure to reply to sim- 
ple yes/no questions about them, such as whether or 
not there is an explanation containing a given assump- 
tion? Furthermore, in many (if not most) applications, 
we expect to be dealing with a very small number of 
explanations. For example, in circuit diagnosis, ex- 
planations involve sets of possibly faulty components 
(Reiter 1987; Poole 1988), and one would not expect Ic 
components to break down independently, for large k. 
Is it still the case that generating a small number of 
explanations is hard? In other words, if an ATMS still 
runs in exponential time for problems like this (as it 
apparently does (Provan 1987)), should we be looking 
for a different procedure, or is this the best that can 
be expected? 

In this paper, we attempt to answer these questions. 
In particular, we show that certain natural variations 
of the ATMS task that do not require listing all the 
answers are nonetheless NP-hard. In our view, this 
provides concrete evidence that the ATMS is doing as 
well as can be expected. 

But something more fundamental came out of the 
analysis. We were surprised to discover a strong con- 
nection between computing explanations on the one 
hand, and computing extensions in Reiter’s default 
logic (Reiter 1980)) on the other. It turns out that both 
tasks share a common computational core. Moreover, 
it is this common subtask that leads to the computa- 
tional difficulty of both abductive and default reason- 
ing. Apart from the fact that both forms of reasoning 
use the word “assumption,” this is the first result that 
we know of to show a clear relationship between the 
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computational properties of these two apparently very 
different forms of reasoning. 

The rest of the paper is organized as follows. In the 
next section, we review Reiter and de Kleer’s analysis 
of the ATMS. Next, we show that while it is always 
easy to find at least one non-trivial explanation, deter- 
mining if there is one containing a given assumption, 
or finding one that is expressed only in terms of a given 
assumption set is NP-hard. In section 4, we consider 
a weaker version of the ATMS task (which we call the 
Support Selection Task), where explanations are not 
required to be minimal, and show that it too is NP- 
hard. In section 5, we briefly review the definitions 
from Reiter’s default logic, and show that the problem 
of computing an extension is a variant of the Support 
Selection Task where we care about maximality instead 
of minimality. It turns out that making a support set 
minimal or maximal is easy; it’s finding one in the 
first place that is hard. Finally, some conclusions are 
drawn. 

Abduction 
In this section, we formally define what constitutes an 
explanation as computed by the ATMS (Reiter and de 
Kleer 1987). W e will assume a standard propositional 
language L with propositional letters from the set P. 
We will use p, 4, r, s, and t (possibly with subscripts) 
to denote propositional letters. A clause is a disjunc- 
tion of literals (a literal is either a propositional letter, 
called a positive literal, or its negation, called a neg- 
ative literal). We will represent a clause by the set of 
literals contained in the clause. A clause is called a 
unit clause if it only contains a single literal. A clause 
is Horn if and only if it contains at most one positive 
literal. A set of Horn clauses will be called a Horn 
theory. 

Definition 1 [Explanation] Given a set of clauses 
C, called the background theory, and a letter q, an ex- 
planation for q is a minimal set of unit clauses LY such 
that 

1. CUa b q, and 
2. C U a is consistent. 

For a discussion on the desirability of the above prop- 
erties, see Levesque (1989).2 Instead of expressing ex- 
planations as sets of unit clauses, we will often give 
the logical equivalent form consisting of the conjunc- 
tion of the literals occurring in the clauses, e.g., we 
write p A q A r instead of {{p), {q}, {r}}. 

Example: Let C be the set {{p}, {q), {p, 7, S, t)}. The 
conjunctions r A s and t are explanations for t. We call 
t the trivial explanation for t; our interest lies of course 
in the other, non-trivial explanations. 

The notion of explanation defined above, is some- 
what more general than the one employed in the 

2For a quite different definition of explanation, see Reg- 
gia (1983) and Allemang et al. (1987). 
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ATMS. The ATMS only computes a certain subset of 
these explanations, namely those drawn from a distin- 
guished subset of the propositional letters, called as- 
sumptions. Assumptions stand for the hypotheses that 
we are willing to consider in the explanations, such as 
the possible failure of a component in circuit diagnosis. 
Definition 2 [Formal Specification of the 
ATMS] Given a set of Horn clauses C, a set of as- 
sumptions A C P, and a letter q, called the query, the 
ATMS procedure computes the following set: 

A[& A, q] = {(w 1 CY is an explanation for q containing 
only letters from A). 

The explanations in A[C, A, q] will be called 
assumption-based explanations. Note that when the 
assumption set includes all symbols in the language, 
every explanation is also an assumption-based one. 

Computing explanations 
We will now consider the computational cost of gen- 
erating explanations. As is well-known, there may 
be exponentially many explanations for a given letter 
(McAllester 1985; de Kleer 198613); and therefore, list- 
ing all of them may require exponential time.3 How- 
ever, this leaves open the question of what the com- 
plexity of finding some explanation is. In particular, 
what is the complexity of finding a non-trivial one? 

In case C contains arbitrary clauses, finding any ex- 
planation is easily shown to be NP-hard.4 However, 
the following theorem shows that when C is a Horn 
theory, a non-trivial explanation (if one exists) can be 
computed efficiently. 

Theorem 1 Given a set of Horn clauses C and a let- 
ter q, a non-trivial explanation for q can be computed 
in time O(kn>, where k is the number of propositional 
letters and n is the number of occurrences of literals in 
c. 

Here we only give an outline of the algorithm. Con- 
sider a clause in C of the following form: {ql, . . . , qk, q} 
with k 2 0 (if no such clause exists, return “no non- 
trivial explanation”). Now, clearly q1 A . . . A qk with 
C implies q. Subsequently, try removing a letter from 
this conjunction while ensuring that the remaining con- 
junction together with C still implies q (testing can 
be done in linear time, using the Dowling and Gallier 
(1984) procedure). Repeat this process until no more 
letters can be removed. If the remaining conjunction is 
non-empty and combined with C is consistent, return 
that one; otherwise consider another clause containing 
q and repeat the above procedure. When all clauses 

31n fact, there may be exponentially many assumption- 
based explanations, and therefore the worst case com- 
plexity of the ATMS, which lists all of them, is clearly 
exponential. 

4Since explanations only exist when C is consistent, an 
explanation procedure can be used to test the satisfiability 
of a set of clauses. 



containing Q have been explored and no explanation is the reduction, this result also holds when C consists of 
found, return “no non-trivial explanation.” an acyclic Horn theory.7 

It is clear that the above algorithm only generates 
certain, very particular explanations - which ones de- 
pend on the way the background knowledge C is ex- 
pressed. Hut if there are some non-trivial explanations 
that are easy to find, could it be that in some sense 
they are all easy to find, even if there are too many to 
list? One way to look at this question is to consider 
a procedure that generates only a single explanation, 
but must return different ones for different arguments. 
For example, if we can ask for an explanation con- 
taining the letters in 5’1 but not containing those in 
&, clearly we can generate arbitrary explanations.5 
Unfortunately, the following theorem show that there 
can be no efficient procedure for this form of “goal- 
directed” abduction, even if the set 5’1 contains only a 
single literal, and 5’2 is empty.6 

Theorem 2 Given a setwof Horn clauses C and letters 
p and q, the problem of generating an explanation for 
q that contains p is NP-hard. 

The proof of this theorem is based on a reduction from 
the NP-complete decision problem “path with forbid- 
den pairs” (or PWFP) defined by Gabow, Maheshwari, 
and Osterweil(l976). An instance of PWFP consists of 
a directed graph G = (V, E), specified vertices s, t E V, 
and a collection C = {(al, bi), . . . . (ura, bn)} of pairs of 
vertices from V. The question is: does there exist a 
path from s to t in G that contains at most one ver- 
tex from each pair in C ? This problem remains NP- 
complete even if we only consider acyclic graphs. 

Given an instance of this restricted version of PWFP, 
we now construct a background theory C. Identifying 
the vertices of the graph with propositional letters, C 
contains the following clauses: (1) for each directed -- edge (x, y), the clause {zy,z, y} where xY is a new 
propositional letter, and (2) for each forbidden pair 
(ai, bi) , the clause (z& , & } . Now, consider an explana- 
tion for t that contain s. It can be shown that if such 
an explanation exists, it will consist of a set of propo- 
sitional letters of the form :y that uniquely identify a 
path from s to t in the origmal graph (Selman 1990). 
Moreover, because of the clauses in group (2)) such a 
path goes through at most one vertex of each forbid- 
den pair. Thus, we can reduce the PWFP problem to 
goal-directed abduction. 

Intuitively speaking, theorem 2 shows that certain 
explanations will be hard to find , even if our back- 
ground theory C is Horn. And, as can be seen from 

5The set S1 could be used, for example, to identify com- 
ponents that have a high failure rate when doing circuit di- 
agnosis. For a related approach, see de Kleer and Williams 
(1989). 

‘For the purpose of this paper, and to keep the provisos 
to a minimum, we assume that P#NP. An excellent intro- 
duction to the basic concepts of computational complexity 
theory can be found in Garey and Johnson (1979). 

Finally, we consider the influence of an assumption 
set as used in the ATMS. Recall that the assumption 
set A is a distinguished subset of the propositional let- 
ters and that given a query q, the ATMS will gener- 
ate only explanations that contain letters from among 
those in A. Note that the assumption set again allows 
one to select a certain subset of all possible explana- 
tions. This way of of selecting certain explanations is 
related, but not identical, to the notion of goal-directed 
abduction. The following theorem shows that the use 
of such an assumption set dramatically increases the 
complexity of finding a non-trivial explanation (com- 
pare with theorem 1): 
Theorem 3 Given a set of Horn clauses C, a set 
of assumptions A, and a query letter q, finding an 
assumption-based explanation for q is NP-hard. 

The proof of this theorem is based on a modification 
of the reduction used in the proof of theorem 2: add 
the clause {s} to the background theory, and let the 
assumption-set contain all letters of the form zY. Now, 
an assumption-based explanation will consist of a sub- 
set of the letters in the assumption set, and as above, 
this set will uniquely identify a path from s to t not 
containing any forbidden pair. Again, the problem re- 
mains NP-hard even for acyclic theories. 

This theorem shows that apart from the fact that 
the ATMS may have to list an exponential number of 
explanations, merely finding one of them may require 
exponential time. 

Finally, we consider the experimental observation, 
reported by Provan (1987), that the ATMS can exhibit 
exponential behaviour even if the background theory is 
such that there are only a few assumption-based expla- 
nations for the query letter. Provan argues that such 
restricted theories have practical significance, for ex- 
ample, in scene interpretation. We can now show that 
in fact the intractability is inherent in the task, and not 
simply caused by the particular procedure employed in 
the ATMS: 
Theorem 4 Given a set of assumptions A, a query q, 
and a set of Horn clauses C such that q has at most one 
assumption-based explanation, finding this explanation 
is NP-hard under randomized reductions. 

To prove this theorem we use a result by Vazirani 
and Valiant (1988), h h w o s ow that determining propo- 
sitional satisfiability remains hard (unless NP = RP, 
considered to be very unlikely) even if one guarantees 
that the given instances of SAT has at most one satisfy- 
ing truth assignment. Since the reduction from SAT to 

7Given a Horn theory C, let G be a directed graph con- 
taining a vertex for each literal in C and an edge from any 
vertex corresponding to a letter on the left-hand side of a 
Horn rule to the vertex corresponding to the letter on the 
right hand-side of that rule. A Horn theory is acyclic if and 
only if the associated graph G is acyclic. 
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PWFP and the reduction from PWFP to assumption- 
based explanations are parsimonious (a’. e., the number 
of solutions is preserved), it follows that even if we 
guarantee that there is at most one assumption-based 
explanation for the query letter, finding it still remains 
hard. So, the problem of generating assumption-based 
explanations even for such special restricted back- 
ground theories remains intractable, and therefore the 
ATMS procedure is doing as well as can be expected. 

One remaining question is whether the problem is 
still hard if we are guaranteed that there are only a few 
explanations overall (including the non-assumption- 
based ones) for the query. Note that we can always 
generate at least one non-trivial explanation (see the- 
orem 1); we conjecture however that generating O(n) 
of them is again NP-hard (possibly under randomized 
reductions), where n is the number of propositional 
letters in the language. 

The Computational Core 
We have shown that finding an assumption-based ex- 
planation is intractable, even when the background 
theory C is an acyclic set of Horn clauses. In this 
section, we will isolate a subtask, called the Support 
Selection Task, which lies at the core of the computa- 
tional difficulties. 

Definition 3 [Support Selection Task] Given a set 
of Horn clauses C, a set of letters A C P, and a letter 
q, find a set of unit clauses cy, called a support set, such 
that the following conditions hold: 

I. c u (I! + q, 
2. C U cy is consistent, and 
3. cur contains only letters form A. 

Note that an assumption-based explanation is simply a 
minimal support set. We first consider the complexity 
of the Support Selection Task: 
Theorem 5 Given a Horn theory C, a set A C_ P, 
and a letter q, finding a support set for q is NP-hard. 

This result follows directly from a generalization of the 
reduction used in the proof of theorem 3. Since the 
reduction does not rely on finding a minimal set of 
assumptions to support the query, any support set for 
the query will identify a path that goes from s to t 
containing at most one vertex from each forbidden pair. 

Because an assumption-based explanation is a mini- 
mal support set, finding such an explanation is at least 
as hard as finding support sets. Hence, the intractabil- 
ity of finding an assumption-based explanation is in 
fact a direct consequence of theorem 5. Stated differ- 
ently, in order to establish the intractability of finding 
an assumption-based explanation, one need not use the 
fact that explanations are minimal. 

Furthermore, the minimality requirement does not 
further increase the computational difficulty of the 
task, as can be seen from the following argument. Con- 
sider a support set cy for q. We can minimize this set 

by removing clauses from it while each time verifying 
that the reduced set combined with C still implies q. 
Since C is a Horn theory this can be done in polyno- 
mial time. Finally, note that the Support Selection 
Task can be shown to be no harder than any problem 
in NP, and thus neither is generating an assumption- 
based explanation. 

To summarize, the Support Selection Task is at the 
core of the ATMS-style abduction task. In the next 
section, we will see how this task also is at the core of 
goal-directed default reasoning, thereby establishing a 
computational connection between abductive and de- 
fault reasoning. 

Default Reasoning 
Default Logic, introduced by Reiter (1980), is one of 
the more prominent formal proposals for represent- 
ing and reasoning with default information. We will 
first briefly define Default Logic (see Reiter (1980) 
and Etherington (1986) for further details), and sub- 
sequently consider the complexity of default logic the- 
ories . 

Reiter formalized default reasoning by extending 
first-order logic with default rules. A default theory 
is a pair (D, IV) w h ere D is a set of default rules and 
W a set of ordinary first-order formulas. A rule is of 
the form: 

a!:p 
Y 

where g is the prerequisite, y the conclusion, and p 
the justification of the rule, each of them formulas. A 
rule is intuitively understood as meaning that if a is 
known, and p is consistent with what is known, then 
+y may be inferred. 

An extension is a maximal set of conclusions that 
can be drawn from a theory. But care must be taken 
that none of the justifications of the rules used in the 
construction of an extension conflict with its final con- 
tents, and that every formula in the extension can in 
fact be derived from W and the rules. The formal def- 
inition of an extension (from Reiter (1980), Theorem 
2.1) is therefore rather complex: 
Definition 4 [Extension] A set of formulas E is an 
extension for the theory (D, W) if and only if it satis- 
fies the following equations:’ 

E. = W, and for i 2 0 
E* a+1 = Th(Ea) u 

1 I 

a:/3 
Y - E D, cy E Ei, and + e E 

Y > 

E= Ea U 
a’=0 

Note the explicit reference to E in the definition of 
E. %+I. Th denotes logical closure. 

8We assume that all formulas are 
not contain free variables. 

closed, i.e., they do 
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Computing Extensions 
Kautz and Selman (1989) give a detailed analysis of the 
computational complexity of default reasoning based 
on Reiter’s proposal. They consider a partially or- 
dered space of more and less general propositional de- 
fault logic theories . For each theory the complexity 
is determined of the following tasks: finding an ex- 
tension (credulous reasoning), generating an extension 
that contains a given set of propositions (goal-directed 
reasoning), and the problem of determining what holds 
in all extensions of a default logic theory (slceptical rea- 
soning). To avoid the difficulty of the consistency check 
needed to determine whether a rule can be applied, 
Kautz and Selman restrict the default theories to ones 
in which the set of facts W, the prerequisites, the jus- 
tifications, and the consequences each consist of a set 
of literals. Here we will consider a relaxation of these 
restrictions. In particular, we will allow W to contain 
Horn clauses. 

We will show that even for extremely simple default 
rules and a Horn theory W goal-directed default rea- 
soning is intractable, and that the computational diffi- 
culty is again appropriately characterized by the Sup- 
port Selection Task. ’ To facilitate our discussion, a 
rule of the form :p/p will be called an elementary de- 
fault - these rules are the simplest possible defaults.” 

We have the following result concerning goal- 
directed default reasoning: 

Theorem 6 Given an acyclic Horn theory W, a set 
of elementary defaults D, and a letter q, finding an 
extension of (D,W) that contains q is NP-hard.ll 

This result strengthens a recent result by Stillman 
(1989), who showed the task is NP-hard for arbitrary 
Horn theories with general normal unary defaults. But 
aside from strengthening Stillman’s result, our interest 
in this result arises from the fact that the Support Se- 
lection Task lies again at the root of the computational 
difficulty of the problem, as we will see below. 

To prove theorem 6, we first consider the relation be- 
tween goal-directed default reasoning and the Support 
Selection Task. Note that if C is a Horn theory and 
D a set of elementary defaults involving letters from 
a set A, then each extension of (D, C) is of the form 
Th(C U a), where CY is a set of unit clauses drawn from 
A. Intuitively, (Y is the set of letters that are added to 
C via the rules in D. We have the following theorem: 

‘Determining the complexity of goal-directed reasoning 
for such theories was given as one of the central open prob- 
lems in Kautz and Selman (1989). 

“Using the terminology of Kautz and Selman (1989), 
they are normal unary defaults with empty prerequisites 
and positive consequences. 

l1 Since an extension consists of an infinite set of formulas 
because of the logical closure, we are only looking for a set 
of unit clauses that represents an extension, as described 
below. 

Theorem 7 Let C be a Horn theory, q be a letter, 
A C P be a set of letters, and let D = (:p/p 1 p E A). 
Then, Th(CUa) is an extension of (D, C) that contains 
q if and only if o is Q maximal support set of q. 

This theorem follows from a more general result by 
Reiter (1987). It follows that finding extensions of the 
default logic theory that contains a given letter q, is at 
least as hard as finding a support set for q. Thus, the- 
orem 6 follows directly from the fact that the Support 
Selection Task is NP-hard (theorem 5). 

Furthermore, the fact that extensions correspond to 
maximal support sets does not further add to the dif- 
ficulty of computing extensions: given a support set, 
one can simply try adding additional letters from the 
assumption set while maintaining consistency, until a 
maximal set is obtained. Thus, as for assumption- 
based explanations, the Support Selection Task is the 
difficult part of goal-directed default reasoning. 

It is suggested in Kautz and Selman (1989) that goal- 
directed reasoning could be of use in resolution theo- 
rem provers that incorporate default information. Our 
results here suggest that such an integration will most 
likely run into computational difficulties. Much more 
promising, are credulous reasoners that search for an 
arbitrary extension. This task remains tractable for 
relatively expressive default rules combined with Horn 
theories (Selman 1990). By contrast, skeptical default 
reasoning, i. e., determining what holds in all exten- 
sions of a theory, can be shown to be strictly harder 
than goal-directed reasoning, and thus our intractabil- 
ity result carries over to skeptical reasoning. 

Conclusions 
In this paper, we have examined the problem of com- 
puting abductive explanations. We have shown that 
given a Horn theory and a letter q, some non-trivial 
explanation for q can be calculated in polynomial time. 
However, goal-directed abduction or the use of an as- 
sumption set renders the problem intractable, even for 
acyclic Horn theories. Thus, the exponential worst- 
case complexity of the ATMS is not just a conse- 
quence of having to return an exponential number of 
answers; generating even one explanation containing 
letters from the assumption set is inherently difficult. 
It appears unlikely, therefore, that the efficiency of the 
ATMS algorithm can be significantly improved. 

This work also shows that there is a strong connec- 
tion between computing explanations and computing 
extensions in default logic. Our Support Selection Task 
is at the core of both assumption-based abductive rea- 
soning and goal-directed default reasoning. We need 
to minimize support sets for the former, and maximize 
them for the latter, but neither is hard for Horn theo- 
ries. In both cases, the difficult task is deciding on an 
appropriate set of assumptions to make. 

Finally, given the difficulty of dealing with acyclic 
Horn theories, this work suggests that we may not be 
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able to trade expressiveness for tractability in abduc- 
tive reasoning. It may turn out that there are no in- 
teresting restrictions on the background theory that 
could guarantee efficient abduction (for some class of 
queries). This is quite unlike the situation with deduc- 
tive reasoning, where there is a linear time algorithm 
for propositional Horn theories (Dowling and Gallier 
1984), and with default reasoning, where there are 
polynomial algorithms for certain acyclic default theo- 
ries (Selman and Kautz 1988; Kautz and Selman 1989). 
If we want to produce explanations automatically, in ‘a 
timely fashion, and over a wide class of inputs, there 
may be no alternative to some notion of “approximate” 
explanation, or perhaps some principled form of un- 
sound or incomplete abduction (a proposal for which 
is suggested in Levesque (1989)).12 
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