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Abstract 
Diagnosis of multiple disorders can be made efficient us- 
ing a new representation and algorithm based on symptom 
clustering. The symptom clustering approach partitions 
symptoms into causal groups, in contrast to the existing 
candidate generation approach, which assembles disorders, 
or candidates. Symptom clustering achieves efficiency by 
generating aggregates of candidates rather than individ- 
ual candidates and by representing them implicitly in a 
Cartesian product form. Search criteria of parsimony, sub- 
sumption, and spanning narrow the symptom clustering 
search space, and a problem-reduction search algorithm ex- 
plores this space efficiently. Experimental results on a large 
knowledge base indicate that symptom clustering yields a 
near-exponential increase in performance compared to can- 
didate generation. 

Introduction 
Many challenges in artificial intelligence derive from 
the intractability of reasoning. One ubiquitous but 
computationally hard reasoning task is diagnosis, es- 
pecially when it involves multiple disorders. The suc- 
cess of multidisorder diagnosis depends heavily on the 
efficiency of the algorithm employed. This paper aug- 
ments the capabilities of diagnostic reasoning by devel- 
oping an efficient representation and algorithm based 
on a symptom clustering approach. 

The current approach to multidisorder diagnosis is 
based on candidate generation. A candidate is a set of 
disorders that explains a given set of symptoms. Set- 
covering approaches to diagnosis [5] explore a “candi- 
date space” [ 11, 1 a so called a “hypothesis graph” [4] or 
“hitting set tree” [6]. In contrast, the approach intro- 
duced in this paper is based on symptom clustering. 
Whereas a candidate assembles disorders, a symptom 
clustering partitions symptoms into clusters. It struc- 
tures symptoms into causal groups, with symptoms in 
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the same cluster hypothetically caused by the same dis- 
order. Experience with our implemented system SYN- 
OPSIS indicates that the symptom clustering approach 
offers increased efficiency for multidisorder diagnosis. 

In the rest of the paper, we develop the symptom 
clustering representation and show how it is related to 
candidate generation. We introduce search criteria to 
help narrow the symptom clustering search space and 
then devise a problem-reduction search algorithm that 
explores this space efficiently. Finally, we verify the 
performance gains of the symptom clustering approach 
empirically on a large, real-world knowledge base. 

The Candidate Generation Approach 
In set-covering approaches to diagnosis, the task is to 
find minimal candidates that explain a case, where a 
case is a set of symptoms to be explained. Each symp- 
tom has a set of possible causes, which is called a con- 
flict set. In this paper, we will usually refer to this con- 
flict set as the causes relation, represented as Causes(s) 
for symptom s. A candidate explains a symptom if it 
contains a disorder in Causes(s). A candidate is valid 
for a case if it explains every symptom in the case. A 
candidate is minimal for a case if it is valid and none 
of its subsets is also valid for that case. 

Minimal candidates can be generated recursively. 
Suppose we already have a minimal candidate for some 
symptoms S and consider a new symptom s. If the 
candidate explains s, no change is necessary since the 
candidate is already minimal for (S U {s}). Otherwise 
expand the candidate by creating, for each element of 
Causes(s), a new candidate that includes that element. 
Finally, prune any candidates that are nonminimal. 

An example of the candidate generation algorithm, 
taken from [l], is shown in Figure 1. There are two 
features of the candidate generation process worth not- 
ing. First, candidates are generated individually, so 
that each node in the search tree has only one can- 
didate. Second, candidates often share elements; for 
example, the candidates [A2M2] and [A&M21 share 
M2. These two features are notable in contrast to the 
symptom clustering approach. In symptom clustering, 
candidates are generated aggregately rather than indi- 
vidually, and these aggregates are represented implic- 
itly rather than explicitly. By implicit representation, 
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Figure 1: Candidate generation algorithm for a faulty cir- 
cuit with two symptoms. One symptom can be explained 
by adders A1 or AZ or multipliers Ml or Ms. The other 
symptom can be explained by AI, MI, or MS. Pruned 
candidates, shown with x’s, are nonminimal. 

we mean that shared elements are factored completely 
into a Cartesian product form. For instance, the ex- 
plicit representation, [A&f21 and [M&z], can be rep- 
resented implicitly as a Cartesian product: {AsA&} x 
{Mz}. For this small example, the difference may seem 
minor, but it can become critical for large knowledge 
bases. The implicit representation is much more com- 
pact than the explicit representation and 
one source of combinatorial explosion. 

helps reduce 

The Symptom Clustering Approach 
The symptom clustering approach [S] changes the 
search space from subsets of disorders to clusterings 
of symptoms. A symptom clustering is a partition of 
symptoms into clusters. It denotes a possible inter- 
pretation of a case, hypothesizing which symptoms are 
caused by a common disorder and which by separate 
disorders. A disorder explains a cluster if it can cause 
every symptom in that cluster. For example, the symp- 
tom clustering (ABD)(C) indicates that two disorders 
are present: one that explains A, B, and D, and one 
that explains C. 

The sets of disorders that meet this interpretation 
are called di$erentiaZ diagnoses, or simply differentials. 
Each differential contains disorders that can explain 
one cluster. Differential diagnoses are usually subject 
to parsimony criteria, which means that they may be 
shaped by the symptoms in other clusters as well as 
their own clusters. The Cartesian product of the differ- 
ential diagnoses implicitly represents an aggregate of 
candidates. A more precise definition of differentials 
will be presented later in this paper. 

The symptom clustering approach offers a novel view 
of diagnosis. Whereas candidate generation views di- 
agnosis as the assignment of cause, symptom clustering 
views it as the assignment of structure. It tries to de- 
termine the best way to decompose a problem, since 
a symptom clustering essentially represents a problem 
reduction. Its clusters represent the subproblems and 
its differentials contain solutions to each subproblem. 
Specifically, a symptom clustering may be expressed 
as a two-level AND/OR graph, since it contains a con- 

junction of clusters, and the differential associated with 
each cluster contains a disjunction of disorders. 

Thus, diagnosis becomes primarily a matter of find- 
ing the correct structure for a problem and secondar- 
ily a matter of finding the correct causes. Focusing on 
structure in diagnosis opens a rich source of heuristics 
which might be called structural heuristics; these seem 
to be used commonly in everyday reasoning. Detec- 
tives often begin by piecing together evidence rather 
than trying to identify a culprit for each piece of evi- 
dence. In medical diagnosis, problem solving is facil- 
itated by compiled knowledge about clusters of com- 
monly co-occurring symptoms called syndromes. An- 
other structural heuristic that ties symptoms together 
is temporal co-occurrence: symptoms that occur si- 
multaneously are usually related. Structural heuristics 
such as these appear to be powerful and widely avail- 
able. However, exploiting them requires viewing prob- 
lem solving as the search for structure, a view that is 
inherent to the symptom clustering approach. 

Relations between Representations 
In a sense, candidates and symptom clusterings are 
duals, since candidates group disorders, while cluster- 
ings group symptoms. This duality can be expressed 
formally as a satisfaction relation from candidates to 
symptom clusterings. Formally, we say that candi- 
date D satisfies clustering C if there exists a complete 
matching between clusters in C and disorders in D that 
can explain them. 

For example, let us postulate a knowledge base con- 
taining four symptoms (A, B, C, and D) and seven 
disorders (dr , dz, . . . , d7). The causes for each symp- 
tom are given below: 

Symptom Causes 
A (4 &&d4) 

E 
(dhW7) 
(hW5) 

D (&&&&) 
Then the candidate [d3d5] satisfies the clustering 
WWC) b ecause d3 can explain A, B, and D, while 
d5 can explain C. 

The inverse of the satisfaction relation is the entail- 
ment relation: C entails D if and only if D satisfies 
C. We are interested in knowing the set of clusterings 
that a given candidate satisfies and the set of candi- 
dates that a given clustering entails. In the next two 
subsections, we see how to compute these sets. 

Computing the Satisfaction Relation 

The satisfaction relation for a given candidate and case 
can be computed as follows. List the possible effects 
for each disorder in the candidate. Then select each 
symptom in the case once, making sure to select at 
least one effect in each list. The selected symptoms 
from each list form a cluster in the clustering. For 
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example, consider the candidate [d&&J: 

d3 - A B D 

( 

A B D 
6 -+ B C or B C 
6 - D D 

There are two ways to select the symptoms A, B, C, 
and D, as shown in boldface in each of the above ma 
trices. These selections correspond to the two clus- 
terings satisfied by [dadgdc], namely, (AB)(C)(D) and 
@DC)@). 

In addition to the satisfaction relation, the valid- 
ity or minimality of a particular case can be deter- 
mined. Validity testing is simple: Each symptom in 
the case must appear in the effects matrix; otherwise, 
some symptom cannot be explained. Minimality test- 
ing is a bit trickier. Each disorder must have a justifi- 
cation, a symptom in the case that appears in exactly 
one effects list. When each disorder has a justification, 
the candidate is minimal. For instance, the candidate 
[d3d5d6] shown above is not minimal, because d6 lacks 
a justification. (Its only effect, D, appears also as a 
possible effect of da .) However, removing d6 yields a 
minimal candidate: 

d3 - A* B D* 
hi - B C* 

Each disorder has a justification (shown as starred), so 
[dsds] is minimal. 

Computing the Entailment Relation 
The inverse of satisfaction is entailment: Given a 
symptom clustering, what are all candidates that sat- 
isfy it? Actually, we may be interested in finding ei- 
ther valid candidates or minimal candidates that sat- 
isfy the clustering. Thus, we need two entailment re- 
lations: V-entailment to obtain valid candidates and 
M-entailment to obtain minimal candidates. 

The V-entailment relation can be computed as fol- 
lows. Given a clustering, find the causal intersection 
for each cluster c, by intersecting the possible causes 
for each symptom s in that cluster: 

Int(c) = n Causes(s) 
SEC 

The valid candidates are then the Cartesian product 
of the causal intersections, excluding sets with dupli- 
cate elements. This exclusion ensures that the num- 
ber of disorders (cardinality) in the candidate equals 
the number of clusters (dimension) in the clustering. 
For example, consider the clustering (AC)(B)(D). The 
causal intersections of the three clusters are {dldz), 
{dld3d5d7}, and (dld3d4d6), respectively, yielding 22 
valid candidates: 
V-entails((AC)(B)(D)) = 
khW41, [dld&], [W&], [Wrid4], [d&id& [W&], 
[kh-bl, [ddvk], [&&&], [&dd4], [&d&], [&Wl], 
kW&], [h-k&], [&&dl], [dd&], [hd&], [&&&], 
[&d741, [&&&I, [d&d4], [&d&] 

To compute M-entailment, we use exception filtering. 
This process removes exceptions from causal intersec- 
tions to yield differential diagnoses. An exception is a 
disorder that does not appear in any of the minimal 
candidates entailed. To find and remove exceptions 
from causal intersections, we use filters. A filter is es- 
sentially a cross-cluster constraint: A filter for each 
cluster identifies exceptions in other clusters. A filter 
is composed of subfilters, each subfilter deriving from a 
symptom in the associated cluster. The subfilter rep- 
resents a situation where its corresponding symptom is 
a justification; it contains disorders inconsistent with 
this assumption. However, we may discover that some 
symptoms cannot be justifications; they impose such 
strong constraints that they would eliminate all dis- 
orders in some other cluster. The subfilters for these 
symptoms are called infeasible. Hence, an exception is 
a disorder appearing in every feasible subfilter of some 
filter. The algorithm for exception filtering follows: 

Initialize: For each cluster c, initialize its differential 
to be its causal intersection. For each symptom s in 
c, initialize its subfilter to be the intersection of s 
with all disorders in other differentials: 

Diff( c) + Int(c) 

Subfilter t Causes(s) n U Diff(c’) 
c’fc 

Filter(c) +- {Subfilter ] s E c} 

Remove infeasible subfilters: A subfilter f for a clus- 
ter c is infeasible if it subsumes another differential. 
Remove infeasible subfilters from each filter: 

Infeasible(f) _ 3~’ # c. f ,> Diff(c’) 
Filter(c) + Filter(c) - {f ] Infeasible(f)) 

At this point, every filter must have at least one 
feasible subfilter. If not, then the clustering entails 
no minimal candidates. 

Remove exceptions: Find exceptions for each filter 
by taking the intersection of its subfilters. Remove 
these exceptions from all differentials and subfilters: 

WC) +- f-J f 
f~Filter(c) 

Diff( c) +- Diff(c) - U Exe(c) 

Subfilter + Subfilter(s; - U EXC(C) 

Filter(c) c- {Subfilter ] see c) 

Terminate: If no exceptions were found in the last 
step, halt. Else repeat step 2, since the smaller dif- 
ferentials may have made more subfilters infeasible. 

An example of this process for the cluster 
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Int(ci) /Exceptions 

Remaining 
FiIter(c1) 

Figure 2: Geometric interpretation of symptom clusterings. 
A symptom clustering with n clusters bounds a region in 
n-dimensional candidate space. Minimal candidates en- 
tailed by a clustering are points within the shaded region. 
Causal intersections define the outer boundary; differentials 
define the inner boundary. Exception filtering removes ex- 
terior regions of nonminimality and represents interior re- 
gions implicitly. 

w3(BP) is shown below: 

Clusters 
03) 

The minimal candidates are contained within the 
Cartesian product of these differentials. Here, the dif- 
ferentials are (d2}, {dgd7}, and {d4d6), with a carte- 
sian...product of [d2dsd4], [dzdsd6], [dzdTd4], [dzdTd6]. 
But : the remaining exception filter (( { d4) (ds))) spec- 
ifies that candidate [dsdsdd] is nonminimal because it 
contains an element from each subfilter. The minimal 
candidates are therefore 

M-entails((AC)(B)(D)) = [&h-k], [4&&], [&&&] 
Note that these three candidates cannot be factored 

into a single implicit representation. Exception filter- 
ing handles this by representing minimal candidates in 
two implicit parts: differentials and filters. Although 
differentials may contain some nonminimal candidates 
in their Cartesian product, this enables them to repre- 
sent the minimal candidates more economically. Thus, 
exception filtering achieves efficient representation by 
ignoring details about minimality that would fragment 
aggregates of candidates. 

Geometric Interpretation 
The relationship between symptom clusterings and 
candidates is shown geometrically in Figure 2. As il- 
lustrated, the efficiency of symptom clustering results 
from three sources. First, candidates are generated 

aggregately instead of individually. This allows entire 
sets of candidates to be pruned simultaneously. Sec- 
ond, these aggregates are represented implicitly. Anal- 
ogously, we compute the boundaries of a candidate re- 
gion, rather than every point in the volume. Finally, 
minimal candidates are computed convexly. This al- 
lows internal regions of nonminimality to remain in the 
differentials, thereby maintaining the n-dimensional 
cubic shape of the aggregates. 

To a first approximation, we expect symptom clus- 
tering to achieve exponential time and space savings 
over candidate generation. If each symptom cluster- 
ing has n clusters and each differential has a geometric 
mean of V disorders, each clustering entails approxi- 
mately DDn candidates. However, the exact savings are 
difficult to determine, because some of the candidates 
are not minimal and because a candidate may satisfy 
more than one symptom clustering. Nevertheless, ex- 
perimental results presented later lend support to a 
near-exponential increase in performance. 

Search Criteria 
Even with an more efficient representation, the symp- 
tom clustering search space can still grow rapidly. 
Thus, we impose additional criteria to help prune the 
search space, namely, parsimony, subsumption, and 
spanning. Parsimony is a preference for simplicity, 
subsumption minimizes unwarranted constraints, and 
spanning avoids redundant solutions. 

Parsimony 
Parsimony is a preference for simplicity in explana- 
tions. In candidate generation, the criterion of parsi- 
mony typically used is minimality. Likewise, the symp- 
tom clustering approach can adopt parsimony criteria, 
such as validity and minimality, to help reduce search. 
We define a symptom clustering to be valid (likewise 
minimal) if it V-entails (M-entails) at least one candi- 
date: 

Valid(C) _ V-entails(C) # 0 
Minimal(C) - M-entails(C) # 0 

Determining whether a clustering is valid or mini- 
mal can be accomplished by the entailment procedures 
given previously. 

Subsumption 
In addition to parsimony, symptom clustering can re- 
duce search by exploiting subsumption. Subsumption 
occurs when a more general model or concept contains 
a more specific one. Subsumption applies in symptom 
clustering because the candidates entailed by one clus- 
tering may be a subset of those entailed by another 
clustering. Since both clusterings represent valid in- 
terpretations of the data, the more specific clustering 
is constrained unnecessarily by having its symptoms 
allocated to the “wrong” clusters. In the absence of 
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any other information, we should therefore prefer the 
more general clustering, because it represents only con- 
straints that are minimally necessary. 

We say that clustering Cl subsumes C2 if there exists 
a complete matching between their causal intersections 
under the superset relation, that is, if each causal in- 
tersection in Cl is a superset of some corresponding 
causal intersection in 62. Clusterings (5’1 and C2 are 
equigeneral if there exists a complete matching under 
set equality. Finally, Cl properly subsumes C2 if Cr 
subsumes C2 but they are not equigeneral. These defi- 
nitions lead to the subsumption criterion of generality: 
A clustering is general for a given case if no other valid 
clustering properly subsumes it. In the geometric in- 
terpretation given above, a clustering is general if its 
outer boundary is not enclosed by any other clustering. 

This definition of generality can be computed readily 
using a process of symptom rearrangement. In symp- 
tom rearrangement, if a clustering is not already gen- 
eral, symptoms are moved between clusters until it is 
general. The conditions for moving a symptom be- 
tween clusters can be expressed in terms of the follow- 
ing concepts. We say that a symptom s constrains a 
cluster c if it directly reduces its causal intersection, 
that is, if the possible causes for s do not subsume the 
causal intersection of (c - {s}): 

Constrains(s,c) _ Causes(s) 2 Int(c - {s)) 

A contrary notion is covering. We say that a symptom 
s covers a cluster c if its possible causes subsume the 
causal intersection of that cluster: 

Covers(s, c) * Causes(s) ,> Int(c) 

Finally, a symptom s in cluster cl is movable to an- 
other cluster c2 if it constrains cl and covers ~2. (For 
definitional purposes, a symptom cannot move out of 
a singleton cluster.) 

The key to symptom rearrangement is this theorem: 
A cluster is general if and only if all of its symp- 
toms are not movable. This theorem yields a proce- 
dure to turn nongeneral clusterings into general ones: 
Simply move all movable symptoms until generality is 
obtained. This process must terminate because each 
movement of s from cl to c2 has no effect on the causal 
intersection of c2 but enlarges the causal intersection 
of cr. At some point, the growth of causal intersections 
must halt. 

For example, consider the clustering (AB)(CD) 
which has causal intersections {dl) and {dlds}. This 
is not general because A is movable from cl to c2 and 
D is movable from c2 to cr. If we move A forward, we 
get WWD>, h h g w ic is eneral (but not minimal). If 
we move D backward, we get (ABD)(C), which is also 
general (and minimal). This example reveals that the 
rearrangement procedure is nondeterministic, a fact we 
will account for when we devise an algorithm to explore 
the search space. 

Spanning 
Spanning attempts to find a representative group of 
solutions by eliminating those that are redundant. Re- 
dundancy occurs in symptom clustering because some 
symptoms may be placed in several clusters without 
affecting the set of candidates entailed. Whenever the 
causes for a symptom are broad enough to covers more 
than one cluster, that symptom can be placed arbitrar- 
ily; each placement results in an equigeneral cluster- 
ing. This redundancy is especially undesirable because 
broad symptoms have little discriminatory power. We 
seek to avoid this redundancy by generating only one 
clustering from each class of equigeneral clusterings. 
This yields a spanning set of general clusterings. 

For example, suppose symptom E has possible 
causes ( dld3d4d5). Consider clustering (AD) (BC) , 
which has causal intersections of {dldsdg} and {dlds}. 
Symptom E covers either cluster, so that (ADE)(BC) 
and (AD)(BCE) are equigeneral. A spanning set 
would include either (ADE)(BC) or (AD)(BCE) but 
not both. 

Problem-Reduction Search 
The criteria given above define a set of clusterings that 
we would like to generate, namely a spanning set of 
general, minimal clusterings for a given case. We now 
present an algorithm that generates these clusterings. 
This algorithm is called problem-reduction search be- 
cause it is a state-space search with each node of the 
search tree being one possible symptom clustering. As 
we mentioned before, a symptom clustering represents 
a problem-reduction, so this algorithm combines the 
features of both the problem-reduction and the state- 
space representations. 

The algorithm processes one symptom in the case at 
a time. The first symptom can be clustered in only one 
way, a single cluster, yielding a frontier with a single 
clustering. The clusterings in each frontier are then 
expanded by another symptom from the case until all 
symptoms have been processed. Expansion consists of 
three steps: allocating a symptom to a cluster, rear- 
ranging the symptoms to achieve generality, and prun- 
ing nonminimal and equigeneral clusterings. 

Allocating Symptoms 
Symptom s may be allocated to a cluster in four ways: 
Covering: Put s into a cluster 

condition: Covers(s, 4. 
c that it covers. Pre- 

Restricting: Put s into a cluster c that it would con- 
strain. Precondition: Constrains(s, c). 

Adding: Add a cluster consisting only of s. Precon- 
dition: Causes(s) - U, Int(c) # 0. 

Extracting: Add a cluster consisting of s and a 
symptom s’ already in some cluster c’ that would 
constrain it. Precondition: Constrains(s’, c’) A 
Constrains(s’, {s}). 
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Only some of these allocations need be performed for a 
given symptom and clustering. If some covering alloca- 
tion is possible, the allocation process is finished. Else, 
all restrictions, additions, and extractions meeting the 
preconditions are invoked. 

For example, Figure 3 shows problem-reduction 
search for symptoms A, B, C, and D in our running 
example. All four types of allocation, shown on each 
arc, are illustrated for symptom D. Node (ABCD) 
comes from covering (ABC); (AD)(BC) from restrict- 
ing (A)(BC); (A)(BC)(D) from adding to (A)(BC); 
and (C)(B)(AD) from extracting A from (AC)(B). 

Rearranging Symptoms 
After allocating symptoms, they may need to be re- 
arranged. However, as we mentioned previously, re- 
arrangement can be nondeterministic. This presents 
problems in creating a spanning set of clusterings. Two 
sibling clusterings in the same frontier could rearrange 
to form the same clustering, thereby duplicating one 
clustering while failing to generate another one. We 
can eliminate this nondeterminism and create a span- 
ning set by specifying exactly how symptoms should 
be rearranged. These techniques are called incremen- 
tal and coordinated rearrangement. 

Incremental rearrangement assumes that a cluster- 
ing is general before allocating a new symptom and 
that nongenerality may be introduced during alloca, 
tion. The specific source of nongenerality can then 
be repaired. Nongenerality can be introduced in three 
ways: (1) Reducing a causal intersection for cluster c 
enables symptoms in other clusters to move into c. (2) 
Adding a cluster c enables symptoms in other clusters 
to move into it. (3) Enlarging a causal intersection for 
c enables to symptoms in c to move to other clusters. 

Thus, allocating a symptom can introduce nongener- 
ality as follows: Covering has no effect; restricting or 
adding a cluster enables that cluster to import symp- 
toms from other clusters; and extracting a symptom 
from cluster c’ to create cluster c enables c’ to export 
symptoms and c to import symptoms. We must also 
consider the secondary effects of moving symptoms. 
Moving a symptom from cl to c2 enlarges the causal 
intersection of cl, enabling cl to export symptoms, but 
has no effect on ~2. 

Incremental rearrangement is performed in two 
stages: an importing stage and exporting stage. Sup- 
pose that cluster c has been restricted, added, or newly 
created by extraction. In the importing stage, c im- 
ports all symptoms that are eligible to move to it. 
Then in the exporting stage, any cluster that has ex- 
ported a symptom exports any other symptom that 
can now move out. For extraction, the cluster with 
the extracted symptom originally also counts as an ex- 
porting cluster. 

Figure 3 illustrates an example of rearrangement, 
indicated by the starred arc. Symptom D initially 
restricts clustering (AC)(B) to give (AC)(BD). Incre- 

mental rearrangement imports symptom A to the re- 
stricted cluster, giving (C)(ABD). In the exporting 
stage, cluster (C) h as no symptoms to export, so rear- 
rangement is complete. 

Incremental rearrangement handles most cases of 
nondeterminism. Nevertheless, the exporting stage 
may still be nondeterministic, because exporting from 
cl to c2 may preclude an export from cs to cl. We say 
that these two movements confEict. Movement conflicts 
can be resolved by a coordinated rearrangement strat- 
egy. Coordinated rearrangement assumes that clus- 
ters are maintained in order of their creation. When 
two movements conflict, we favor a forward movements 
(from earlier clusters to later ones) over backward ones. 
Thus, in our example, if cl is before cs, then movement 
cs + cl is backward, and cl + c2 takes precedence. 
If cs is before cl, then conflict can be avoided by per- 
forming cs + cl before cl 3 ~2. 

This bias for forward movements depends on other 
parts of the search tree to explore missed opportunities 
that would have been generated by backward move- 
ments. To avoid foreclosing these opportunities pre- 
maturely, we also need a least-commitment strategy, 
whereby symptoms are moved to the earliest cluster 
possible, if there is more than one. Covering alloca- 
tions must also adhere to the least-commitment strat- 
egy, so a symptom is allocated to the first cluster it 
covers, if any. 

Coordinated rearrangement can be implemented 
easily. In the exporting stage, export from clusters 
in forward chronological order. For each constraining 
symptom in an exporting cluster, move it to the first 
cluster that it covers, if any. This may mean that a 
symptom moves backward, but this backward move- 
ment will not conflict with any forward movements, 
since earlier clusters will have already exported. 

Pruning 
After a clustering has been expanded and rearranged 
if necessary, its differentials are computed using the 
exception filter procedure discussed previously. If any 
filter lacks a feasible subfilter or any differential be- 
comes null, that clustering is pruned. 

In addition to nonminimal clusterings, redundant 
equigeneral clusterings must also be pruned. This can 
be done by comparing clusterings pairwise to check 
for equigeneral clusterings. This comparison will also 
uncover any duplicate clusterings that can arise. For 
example, in Figure 3, the clustering (ABD)(C) is gen- 
erated twice, so one duplicate can be removed. 

Experimental Results 
Candidate generation and symptom clustering al- 
gorithms were implemented in Common Lisp on 
a Symbolics Lisp Machine and applied to the IN- 
TERNIST/QMR knowledge base [3]. This knowledge 
base contains 600 diseases and 4300 symptoms, cov- 
ering 70% of the knowledge in internal medicine. To 
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Figure 3: Problem-reduction search algorithm. The four symptoms, A, B, C, and D, correspond to the example given in the 
text. Each node shows a clustering and its differentials, along with any remaining exception filter. Arcs are labeled with the 
type of allocation: Covering, Restricting, Adding, or Extracting. A star indicates that rearrangement was performed. 

control for effects of case variation and symptom or- 
dering, we decided to analyze a single disease profile in 
depth. Prerenal azotemia was chosen because it gen- 
erated relatively few symptoms (14, excluding age and 
sex), and these triggered various numbers of possible 
causes. The sets of possible causes ranged in size from 
2 to 76, with a median of 29. The union of possi- 
ble causes contained 147 diseases, meaning that a sub- 
graph of 147 diseases and 14 symptoms was selected 
for this experiment. 

Ten test cases were generated stochastically, by ran- 
domly selecting from the 14 symptoms for prerenal 
azotemia. These test cases contained 7-12 symptoms 
each. The probability of selecting a symptom de- 
pended on its frequency value: a frequency value of 
1 resulted in a 3% chance of selection; 2, 20%; 3, 
50%; 4, 80%; and 5, 98%. Contextual symptoms of 
age and sex were excluded, since the knowledge base 
lists all 600 disease as possible “causes”, which would 
have severely penalized the candidate generation algo- 
rithm. However, we made no other checks for medical 
accuracy. In particular, some test cases contained two 
values for the same test, such as a blood urea nitrogen 
level of both 30-59 and 60-100 mg/dl, or a creatinine 
level of both 1.5-2.9 and 3-10 mg/dl. A reasonable in- 
terpretation of these readings is the common situation 
of testing a patient multiple times. 

Solving each of the ten test cases for minimal can- 
didates, we obtain six categories of solutions, ranging 
from 27 to 39101 minimal candidates. Although cases 
were generated from a single disease, minimal candi- 
date solutions contained 1 to 5 disorders, with the fol- 
lowing distributions: 

Candidates by Cardinality 
Category I2 3 4 5 Total 

A 1 1 25 27 

i? 
1 0 39 33 73 
1 0 11 100 112 

D 1 0 6 165 165 337 
E 1 11 85 435 15 547 
F 1 21 769 8985 29325 39101 

The number of minimal clustering solutions ranged 
from 3 to 10, with the following size distributions: 

1 Clusterings by Dimensions 1 
Category 1 2 3 4 5 Total 

A 1 1 1 3 
i? 1 102 0 3 1 1 4 5 

D 1 0 1 3 1 6 
E 1 2 2 1 1 7 
F 11 3 4 1 10 

We generated ten runs for each case by randomly 
permuting the order of the symptoms, and running 
times and search tree sizes were measured for each 
run. Any candidate generation run requiring more 
than lo5 seconds (27.8 hours) was terminated. This 
eliminated 3 of the 40 runs in category A, 6 of the 20 
runs in D, and all 10 runs in F. These cases are not 
shown on our graphs, but were solved by the symp- 
tom clustering algorithm in an average of 161 seconds. 
Figure 4 compares run times and search tree sizes. 

-We see that symptom clustering is substantially 
faster and more space-efficient than candidate gener- 
ation. The roughly linear relationship on a log-linear 
scale indicates a near-exponential increase in perfor- 
mance, agreeing with the theoretically predicted re- 
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Figure 4: Comparison of candidate generation and symptom clustering for run times and search tree size. Search tree size 
is the total nodes over all frontiers after pruning. Letters correspond to the case category. Lines represent locally weighted 
scatterplot smoothing. 

sults. As the problems become more difficult, however, 
these savings diminish somewhat, perhaps indicating 
the overhead of symptom clustering or other sources 
of computational complexity. 

Conclusions and Further Research 
This paper shifts the problem representation for mul- 
tidisorder diagnosis from candidates to symptom clus- 
terings. It establishes satisfaction and entailment re- 
lations between candidates and symptom clusterings, 
and defines criteria of minimality, generality, and span- 
ning. The paper then devises an efficient algorithm to 
compute all symptom clusterings satisfying these cri- 
teria. Finally, the theoretical work is supplemented 
with empirical results that suggest a near-exponential 
increase in performance for symptom clustering. 

This work presents several opportunities for further 
research. It offers a new representation for exploring 
novel types of search strategies, probabilistic theories, 
and heuristic sources. In particular, symptom cluster- 
ing could potentially exploit “structural heuristics”- 
information about plausible groupings of evidence- 
which constitute a promising source of domain-specific 
knowledge. 

Other fields of artificial intelligence besides diagno- 
sis might benefit from the concepts here. For instance, 
previous research on learning and discovery systems [2] 
has also investigated clustering representations. Multi- 
disorder diagnosis is closely related to the problems of 
multiple constraint satisfaction, conjunctive-goal plan- 
ning and truth maintenance. Thus, some analogous 
notion of “constraint clustering” or “goal clustering” 
might be used effectively for these problems. Artifi- 

cial intelligence deals primarily with problems that are 
ill-structured [7]. This paper suggests, at least for the 
domain of diagnostic problem solving, how the explicit 
assignment of structure might facilitate the solution of 
ill-structured problems. 

PI 

PI 

PI 

PI 

Fl 

PI 

VI 

PI 

References 
J. de Kleer and B. C. Williams. Diagnosing multiple 
faults. Artijkial Intelligence, 32:97-130, 1987. 

D. Fisher and P. Langley. Approaches to conceptual 
clustering. In Proceedings, Ninth International Joint 
Conference on Artificial Intelligence, pages 691-697, 
1985. 

R. A. Miller, M. A. McNeil, et al. The Internist- 
l/Quick Medical R f e erence project-status report. 
Western Journal of Medicine, 145:816-822, 1986. 

Y. Peng and J. A. Reggia. A probabilistic causal model 
for diagnostic problem solving. IEEE Transactions on 
Systems, Man, and Cybernetics, 17:146-162 and 395- 
406, 1987. 

J. A. Reggia, D. S. Nau, and P. Y. Wang. Diag- 
nostic expert systems based on a set covering model. 
Intl. Journal of Man-Machine Studies, 19:437-460, 
1983. 

R. Reiter. A theory of diagnosis from first principles. 
Artificial Intelligence, 32:57-96, 1987. 

H. A. Simon. The structure of ill-structured problems. 
Artificial Intelligence, 4:181-201, 1973. 

T. D. Wu. Symptom clustering and syndromic knowl- 
edge in diagnostic problem solving. In Proceedings, 
Thirteenth Symposium on Computer Applications in 
Medical Care, pages 45-49, 1989. 

364 COMMONSENSEREASONING 


