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Abstract 

Incrementally maintaining a qualitative under- 
standing of physical system behavior based on ob- 
servations is crucial to real-time process monitor- 
ing, diagnosis, and control. This paper describes 
the DATMI theory for dynamically maintaining a 
pinterp-spuce, a concise representation of the local 
and global interpretations consistent with observa- 
tions over time. Each interpretation signifies an 
alternative path of states in a qualitative envision- 
ment. DATMI can use domain-specific knowledge 
about state and transition probabilities to main- 
tain the best working interpretation. By maintain- 
ing the space of alternative interpretations as well, 
DATMI avoids the need for extensive backtracking 
to handle incomplete or faulty data. 

1 Introduction 
Efficient incremental interpretation of observations is 
essential for real-time process monitoring, diagnosis, 
and control. A consistent interpretation of what is hap- 
pening, along with alternatives, should continually be 
available. Since data can be incomplete and faulty, in- 
terpretations must be efficiently revised as new data ar- 
rives or inconsistencies are discovered. For example, 
the original hypothesis during the Three Mile Island in- 
cident was that the reactor core had too much water. 
The correct failure hypothesis was triggered once it was 
noticed that the symptoms remained even after a lot of 
water was removed. Capturing this kind of reasoning is 
clearly important for engineering-oriented applications 
of qualitative physics. 

This paper describes the DATMI theory and algorithm 
for efficient dynamic across-time measurement interpre- 
tation. DATMI is an extension of the ATM1 theory of 
measurement interpretation [7]. Like ATMI, we assume 
the input includes a total envisionment representing 
the qualitative states and transitions which character- 
ize all the possible behaviors of the system being ob- 
served. This envisionment serves as a finite-state tran- 
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sition graph for “parsing” the observations. Each inter- 
pretation identifies the behavior as a path through the 
envisionment. However, ATMI did not allow incremental 
updating of its interpretation and made no provision for 
handling faulty data. DATMI overcomes these limitations 
by using a concise representation of the space of possible 
interpretations, called the pinterp-space. A vocabulary 
of dependency relations allows DATMI to dynamically ad- 
just to changing data and to provide efficient hypothesis 
revision. Furthermore, DATMI can exploit two kinds of 
domain-specific information, when available: probabil- 
ities specified for states and transitions and duration 
bounds specified for states and paths. DATMI has been 
fully implemented and successfully tested on a variety 
of envisionments and data sets. 

Section 2 describes DATMI’s theoretical foundation 
and Section 3 explains its basic algorithm. Section 4 
presents an example of DATMI handling faulty data. 
Section 5 summarizes how additional domain-specific 
knowledge is used. Finally, Section 6 notes some limi- 
tations and discusses related and future work. 

2 DATMI Theory 
As in ATMI, we assume that data consists of measure- 
ments of numeric variables (such as temperature) and 
observations of symbolic properties (such as whether a 
switch is OM or OFF and whether the temperature of one 
object is greater than, less than, or equal to that of an- 
other). We also assume that the measurements have 
been smoothed to reflect their qualitative trends. Dis- 
carding data at the fringes of each qualitative change, 
to account for the temporal imprecision of smoothings, 
is allowed since DATMI handles incomplete data. 

DATMI conservatively converts measurements at time 
points into observations over time intervals, using prob- 
abilities and disjunctive values to express uncertainty in 
the sensor readings. This requires: (1) converting nu- 
merical values into qualitative ones by comparing them 
with limit points and (2) aggregating measurements 
with identical qualitative values into observations. Each 
property which signifies the ordering between a vari- 
able and a limit point has an associated conversion tu- 
ble. Each table maps ranges of distance from the limit 
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point into qualitative values having discrete probabil- 
ity assignments. Figure 1 gives an example. DATMI 
provides no means for determining these tables; it as- 
sumes that domain-specific information provides them, 
perhaps based on a priori sensor precisions and reliabili- 
ties. In lieu of probabilistic assignments, DATMI assumes 
each disjunctive value is equally probable; Section 5.1 
explains how these discrete probabilities are used. 

For comparison between variable A and limit point B: 
(A - B)/IBI E [--00,~-0.2) z$- (A < B, with probability p=l.O) 
(A - B)/IBI E [-0.2, -0.01) =S (A < B, p=O.6) I\ (A = B, p=O.4) 
(A - B)/IB( E [-O.Ol,O.Ol] 
(A - B)/IBI E (O.Ol,O.Z] 

S- (A = B, p=l.O) 

(A - WI4 E W,-1 
3 (A > B, p=O.B) A (A = B, p=O.4) 
=t- (A > B, p=l.O) 

(If B = 0 then (A - B)/jBI is replaced by (A - B)) 

Figure 1: A simple example conversion table 

As the overview in Figure 2 shows, the observations 
are concisely represented as properties of global seg- 
ments. As in ATMI, each segment represents the inter- 
val of maximal temporal extent over which all of its 
properties are identical. The interval of each segment 
meets [l] the interval of each of its two neighboring seg- 
ments. Thus, the history of segments is temporally 
totally-ordered. Gap-fill segments represent intervals 
over which no observations are available. Since DATMI 
maintains the segments as observations are gathered, it 
splits and merges segments appropriately. 

Measurements 

Global Interpretation Envisionment 
Figure 2: DATMI overview 

ATM1 introduced the notion of a pinterp: an envision- 
ment state which can possibly occur during a particular 
segment. Let P(G, S) be the pinterp which indicates 
whether state S can occur during global segment G. 
P(G, S) is considered COMPATIBLE exactly when all the 

properties describing S are compatible with all the prop- 
erties of G. P(G, S) is also considered ACTIVE exactly 
when all constraints allow S to occur during G. 

Clearly, an ACTIVE pinterp must be COMPATIBLE, to 
satisfy the constraints of its own segment. An ACTIVE 
pinterp must also satisfy the constraints of the other 
segments and the envisionment transitions. In particu- 
lar, a pinterp is ACTIVE exactly when it is COMPATIBLE 
and there is a transition consistency relation between 
it and each neighboring segment. Alternatively, a pin- 
terp is INACTIVE exactly when it is COMPATIBLE but 
not ACTIVE. Thus, each pinterp is either INCOMPATIBLE, 
INACTIVE, or ACTIVE. Figure 3 illustrates DATMI’s five 
types of transition consistency relations. A relation 
between a pinterp P(G, S) and a neighboring segment 
lV indicates a path of ACTIVE pinterps which starts at 
P(G, S) and reachs an ACTIVE pinterp of N. Each rela- 
tion signifies a consistent way to be in S during G and 
also be in a state during N. 

Spanning-State: . . . . . . 

Meeting-States: .*.I @la+@ I... 
I I . 

idden-Transition: . . . I 

Gap-Filling: . . 

Frontier-State: 

I 

Gap-fill segment 

. ..ot. 

Frontier segment 
(no observations beyond this segment) 

Figure 3: Types of transition cokistency relations 
These paths through the envisionment of Figure 2 illustrate 
the five types of ways a pinterp can lead to a pinterp of the 
next observed segment. 

Identifying hidden-transition and gap-filling paths al- 
lows DATMI to interpret even very incomplete data. For 
simplicity, DATMI considers only acyclic paths of pin- 
terps for these two relations. Thus, it will misinterpret 
behaviors where the system returns to the same state 
during a single segment. However, unless duration con- 
straints invalidate all acyclic relation paths, this simpli- 
fication will not prevent DATMI from finding some inter- 
pretation which is at least simple, if not best. 

Each global interpretation is a chain of relation paths 
across all segments. For example, the global interpreta- 
tion given in Figure 2 is a global chain of some of the 
relation paths indicated in its pinterp-space. We do not 
show the INCOMPATIBLE pinterps of the pinterp-space; 
so, the INACTIVE ones are exactly those for which no 
relation paths are shown. 
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3 The DATMI algorithm 
DATMI dynamically maintains the pinterp-space by keep- 
ing track of the status of each pinterp (IPKoMPATIBLE, 
INACTIVE, or ACTIVE) as segment properties are as- 
serted and retracted. It determines which pinterps are 
COMPATIBLE the same way as ATM1 did; it uses a lookup- 
table precomputed from the envisionment that indicates 
every state compatible with a given property. It deter- 
mines whether a COMPATIBLE pinterp is ACTIVE by using 
graph search through the envisionment to find the best 
relation path between the pinterp and each neighboring 
segment. As shown in this section, breadth-first graph 
search suffices to find the simplest paths. Section 5.1 
explains how least-cost graph search finds the most- 
probable paths. In both cases, the best global paths 
are built from the best local (relation) paths. 

After determining a relation path between a pinterp 
and a neighboring segment, DATMI caches that path 
as a dependency path for that pinterp. Each ACTIVE 
pinterp is assigned exactly two dependency paths: a 
b-dependency path reaching a pinterp of the backward 
neighboring segment and a f-dependency path reaching 
a pinterp of the forward neighboring segment. Since 
global chains of relation paths indicate global interpre- 
tations, so do global chains of b-dependency paths or 
f-dependency paths. 

By finding dependency paths using breadth-first 
graph search which expands each state at most once, 
the interpretation indicated by a chain of b-dependency 
paths is the simplest (i.e. shortest) one. This search 
through the envisionment starts at the pinterp P(G, S) 
whose dependency path is sought and finds the sim- 
plest path (if any) to each ACTIVE pinterp of the neigh- 
boring segment by expanding only from P(G, S) and 
ACTIVE pinterps of G. To ensure finding the simplest b- 
dependency chains, DATMI records the cost (i.e. number 
of transitions) of the chain of b-dependency paths lead- 
ing up to each pinterp P(G, S) when its b-dependency 
path is found. This allows b-dependency path search for 
each pinterp P(F, f) of the forward neighboring segment 
F to sum P(G, S) ‘s recorded cost with the cost of the re- 
lation path found from P(F, f) to P(G, S). DATMI com- 
pares that sum against the sums for the simplest paths 
found to other ACTIVE pinterps of G, to decide which 
one offers the simplest chain of b-dependency paths to 
P(F, f )* 

The above discussion assumes that each gap-fill seg- 
ment is treated as an ordinary segment whose pinterps 
all happen to be COMPATIBLE. For efficiency, however, 
DATMI does not actually maintain pinterps for gap-fill 
segments. It uses a lookup-table precomputed from 
the envisionment that indicates the best path through 
the envisionment between any two particular states. 
This table, along with the recorded b-dependency chain 
costs, suggests the best b-dependency path across the 
gap-fill segment which connects a particular pinterp of 
the forward neighboring segment with an ACTIVE pin- 
terp of the backward neighboring segment. (This is why 

the gap-fill path in Figure 3 involves three segments.) 
If desired, one can determine if a particular pinterp of 
a gap-fill segment is ACTIVE - by checking this table 
to see if paths exist from it to ACTIVE pinterps of the 
neighboring segments. 

As explained below, dependency paths play one other 
key role: they indicate which pinterps must find new re- 
lation paths when a pinterp of a neighboring segment 
ceases to be ACTIVE. In that sense, they are analogous 
to TMS justifications [5]. H owever, for our task, caching 
alternative dependency paths would not lead to the ef- 
ficiencies that one might expect. As explained in [4], 
if the alternative path is short, it is more efficient to 
find it as needed; if it is long, it is not likely to be best 
or even consistent (i.e. contain only ACTIVE pinterps) 
when the current best path becomes inconsistent. 

Asserting properties for a segment can make some 
pinterps of that segment cease to be ACTIVE because 
they are no longer COMPATIBLE. These changes can cause 
other pinterps to become INACTIVE if they depend on 
those newly INCOMPATIBLE pinterps. So, a replacement 
dependency path must be sought for each pinterp which 
has a newly INCOMPATIBLE pinterp in its dependency 
path. A pinterp which fails to find replacements be- 
comes INACTIVE, which then affects the pinterps de- 
pending on it. Loss of activation is thus globally propa- 
gated in two segment-wise sweeps out from the segment 
with new properties. To ensure that the recorded cost 
of b-dependency chains (as mentioned above) is propa- 
gated correctly, the backward sweep is performed before 
the forward one. 

When asserting the initial properties for a new fron- 
tier segment or what was a gap-fill segment, initial re- 
lation paths from the COMPATIBLE pinterps of that seg- 
ment to the neighboring segments must be sought. All 
of these COMPATIBLE pinterps are first assumed to be 
ACTIVE, to allow them to be expanded during breadth- 
first searches to find these initial dependency paths. 
Each one is considered INACTIVE only if dependency 
paths cannot be found for it. All ACTIVE pinterps of 
both neighboring segments then seek (initial) depen- 
dency paths to that segment, propagating loss of acti- 
vation as before. 

As explained in the next section, pinterps can also 
become ACTIVE when dubious properties are retracted 
from a segment. For this to happen, some pinterps of 
that segment must first become newly COMPATIBLE with 
the reduced set of properties. The newly COMPATIBLE 
pinterps which find dependency paths (i.e. become 
ACTIVE) can allow other (INACTIVE) pinterps to become 
ACTIVE as well. Furthermore, newly ACTIVE pinterps 
can allow some ACTIVE pinterps to obtain better b- 
dependency paths. An inefficient technique would be to 
start from the first segment and re-compute dependency 
paths from scratch. However, by allowing intermediate 
steps to temporarily create dependency paths involving 
INACTIVE pinterps, efficient incremental propagation of 
activation is achieved (see [4]). 
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3.1 Handling Faulty Data 

DATMI's conservative conversion from measurements to 
disjunctive qualitative values cannot always avoid the 
effects of faulty data. Inconsistencies due to faulty data 
can only be prevented if the conversion tables never as- 
sert any qualitative value to have zero probability. How- 
ever, in that case, each path through the envisionment 
would be a consistent global interpretation. So, DATMI 
provides a means for modifying segment properties to 
recover from faulty data which do sneak past the con- 
servative conversions. 

DATMI detects inconsistencies between the envision- 
ment and the observations as soon as all of some seg- 
ment’s pinterps cease to be ACTIVE. That segment is 
called an inconsistent segment. Since DATMI assumes 
that the envisionment itself is sound and complete, it 
attempts to recover from inconsistency by generating 
and testing sets of property changes to remove hypoth- 
esized faulty data. Associated with each hypothesis are: 
1) a set of property changes, 2) its plausibility, and 3) 
the conditions under which it remains valid. 

Because the faulty data might not be in an inconsis- 
tent segment’s own properties, all segment properties 
are suspect. To avoid considering the power set of pos- 
sible property changes, DATMI currently limits itself to 
an especially common subset of these. In particular, 
it considers forgetting properties that could arise from 
non-intermittent sensor failures. An example of such a 
failure is when a flow-rate seems constant because its 
sensor has gotten stuck. 

Each DATMI sensor failure hypothesis suggests forget- 
ting (i.e. retracting) all recent segment properties hav- 
ing the most-recent value for one type of property. This 
assumes that each sensor only contributes to one type 
of property. So, in the above example, it would for- 
get all the recent observations of that flow-rate being 
constant, back until it was last observed to be chang- 
ing. For simplicity, DATMI considers the plausibility of a 
sensor failure hypothesis to be the a priori probability 
that the particular most-recent value is due to that sen- 
sor failure. Determining these probabilities is outside of 
our theory; we currently use arbitrary values reflecting 
commonsense intuitions. Finally, the hypothesis holds 
as long as that type of property is not observed to have 
a different value at later times, since the hypothesized 
failure is non-intermittent. 

DATMI generates these hypotheses in order of plausi- 
bility and then tests each by propagating any pinterp 
activations due to the reduced number of segment prop- 
erties, as explained earlier. A useful aspect of forgetting 
properties, without asserting any replacements, is that 
no new inconsistencies can be introduced during this 
test. If all segments are not consistent after propagat- 
ing activation, the forgotten properties are reasserted. 
By resorting to such reassertions, to avoid excessive re- 
moval of constraints on the interpretation space, DATMI 
cannot recover from an inconsistency caused by multiple 
sensor failures. 

The generate-and-test process continues until there 
are no inconsistent segments or each hypothesis has 
been tried. If an inconsistent segment still remains, the 
pinterp-space is partitioned by that segment and each 
part is interpreted separately. In any case, if the con- 
ditions of a successful hypothesis are later violated, it 
must be retracted by reasserting the forgotten proper- 
ties. Inconsistencies will then be redetected and rehan- 
dled unless some later successful hypothesis (that fixed 
some later arising inconsistencies) happened to fortu- 
itously fix those inconsistencies as well. In the case of 
our sensor failure hypotheses, such fortuitous fixes can 
occur if the earlier hypothesis recovered solely from the 
early inconsistencies arising from a sensor failure. 

4 Example 
We now highlight an implemented example of DATMI 
handling incomplete and faulty data. This example uses 
a pump-cycle system of two containers of water con- 
nected by a valved path and a pump, as illustrated in 
Figure 4. The QPE [8] envisionment (not shown here 
due to space limitations) consists of 42 states and 61 
transitions. This envisionment differentiates states by 
ten types of properties, of which the following five are 
observed: P3 (the comparison between Ll and L2) P4 
(the ON/OFF status of PUMP), P7 (the direction of change 
in Ll), P8 (the direction of change in L2), and PlO (the 
direction of change in FR). Partial, perturbed results 
of a numeric simulation provided the incomplete, faulty 
measurements for determining those five types of prop 
erties. 

As Figure 4 shows, DATMI interprets the measure- 
ments for the first 15.0 seconds with no problem. Note 
that properties are not asserted for every segment, as in- 
dicated by the “?” values. This is because the conserva- 
tive conversions did not specify exact times for changes 
between qualitative values, since they are indeterminate 
from the sampled data. The arrows in the pinterp-space 
show the backward and forward dependency paths. The 
best working global interpretation for the first 15.0 sec- 
onds is found by following the chain of b-dependency 
paths starting at state 40 in Seg30 and ending at state 
39 in Segl. 

However, no COMPATIBLE pinterps exist for the prop- 
erties observed for Seg32. Thus, when those properties 
are asserted, Seg32 becomes inconsistent because it has 
no ACTIVE pinterps. To fix this inconsistency, DATMI 
considers five sensor failure hypotheses, one for each of 
the five types of observed properties. 

DATMI first tries forgetting properties for PlO; for this 
example, each hypothesis is considered equally plausi- 
ble. Since PlO’s most-recent observed value is INCREASE 
in Seg24 and its last different value is STEADY in Segll, 
the sensor failure hypothesis is to forget all proper- 
ties for PlO after Segll. DATMI quickly finds that for- 
getting PlO from Segl8, Seg22, and Seg24 fails to fix 
the pinterp-space. Indeed, in this case forgetting PlO 
could not possibly help since the pinterps of Seg32 are 
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Figure 4: The pinterp-space when inconsistency first detected 
Ll= (FLUID-LEVEL cANi), L2= (FLUID-LEVEL cAN2) ,and FR= (FLOW-RATE PATH). 

all INCOMPATIBLE, which requires changing the proper- 
ties of Seg32 itself. However, to illustrate the general 
case, we do not treat this case specially for this exam- 
ple. Even hypotheses which modify only properties of 
consistent segments are generally useful since they may 
allow INACTIVE pinterps of an inconsistent segment to 
become ACTIVE. In any case, DATMI then tests hypothe- 
ses to forget P8 (after Seg9) and forget P7 (after SegS), 
also with no success. 

DATMI succeeds by forgetting P4 after Segl8, as shown 
in Figure 5. This reflects the hypothesis that the pump 
indicator failed sometime after Segl8 and continues to 
indicate that the pump is OFF, perhaps because the indi- 
cator light burnt out. The OFF values for P4 are shown 
in parenthesis since they are now forgotten and do 
not constrain the pinterps. While propagating activa- 
tion due to these forgotten properties, the dependency 
paths are updated appropriately, yielding a new sim- 
plest global interpretation where the pump is never OFF 
after Seg9. Of course, the pinterp-space also allows in- 
terpretations where the pump is OFF after Segll). How- 
ever, the pump must become ON again in Seg32 because 
its pinterps are INCOMPATIBLE otherwise. So, those 
alternative interpretations involve more state changes 
than DATMI's (simplest) working interpretation does. 

5 Using Additional Knowledge 
5.1 Probabilities 
DATMI can use numeric probabilities associated with 
the envisionment states and transitions to maintain the 
most-probable working global interpretation, instead of 

the simplest one. This requires that those probabilities 
have been estimated by some external means, such as 
the stochastic analysis technique of [6]. DATMI composes 
these probabilities using Bayes’ chain rule by assuming 
independent events [12]. Thus, the a priori probabil- 
ity of a chain of b-dependency paths is considered the 
product of the a priori probability of the earliest state 
and the conditional probabilities of all the transitions 
in that chain. 

This composition is valid assuming that each transi- 
tion is truly independent of which states occurred ear- 
lier in the chain, which is typically the case for paths 
through sufficiently detailed envisionments. It overes- 
timates the probability of spanning-state dependency 
paths relative to other types, since other types involve 
more transitions during the same period of time. Since 
spanning-state paths provide simpler interpretations, 
this is usually acceptable. 

To reflect uncertainty in the measurements, the seg- 
ment property probabilities from the conversion tables 
(e.g. Figure 1) can also be included in this composi- 
tion. DATMI assumes that a segment’s properties are 
independent, which is most reasonable when the obser- 
vations are never redundant. The total property proba- 
bility for a particular pinterp is then the product of the 
probabilities of the segment property values with which 
its state is compatible. Thus, DATMI multiplies the a 
priori probability of a chain of b-dependency paths by 
the product of the property probabilities for each pin- 
terp in that chain to get a more accurate probability for 
that chain. Furthermore, to accurately reflect the prob- 
ability of a b-dependency chain that is conditional on 
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Segl Seg9 SeglO Segll SeglS Segl8 Seg22 Seg24 Seg30 Seg32 Seg33 

4.5 7.0 14.0 mtant) 14.0 < t c 15.0 
Figure 5: The pinterp-space when hypothesized faulty data retracted 

the set of observations, one must redistribute the a pri- 
ori probability associated with pinterps which are not 
ACTIVE to the ACTIVE ones, as described in [4]. 

Standard exhaustive graph search for least-cost paths 
between all pairs of nodes [ll] suffices for finding the 
most-probable b-dependency paths. DATMI records the 
composed probability of the chain of b-dependency 
paths leading up to each pinterp when its b-dependency 
path is found. It finds the most-probable paths from 
each COMPATIBLE pinterp of a segment G to each ACTIVE 
pinterp of the backward neighboring segment $3 using 
least-cost path search over all those pinterps, with the 
following cost assignments. The cost of each pinterp of 
B is the inverse of its (recorded) composed probabil- 
ity. The cost of each pinterp of G is the inverse of its 
property probability. The cost of each transition is the 
inverse of its conditional probability. The total cost of 
a path is thus the product of the costs it entails. 

Actually, DATMI avoids the cubic time cost of ex- 
haustive least-cost path search by performing efficient 
best-first search for each pinterp, resorting to least-cost 
search only when some cubic function of states have 
been examined without success, as detailed in [4]. 

5.2 Durations 
Space limitations do not permit an explanation of how 
DATMI uses duration bounds to prune candidate b- 

dependency paths during best-first search. However, it 
is important to realize that such bounds can be incorpo- 
rated into the DATMI framework to avoid interpretations 
which are inconsistent with those constraints. One sim- 
ple example is indicated by the b-dependency paths in 
Figure 5. The b-dependency path for state 19 in seg- 
ment Segll includes state 17 in segment SeglO instead 
of state 19 in SeglO. State 19 cannot span from SeglO 
to Segll because it is an instantaneous state. 

6 Discussion 

DATMI incrementally maintains a concise interpretation 
space, which allows it to quickly detect faulty data 
and then efficiently recover by doubting observations. 
It provides a framework for integrating domain-specific 
knowledge, such as probability and duration estimates, 
with the causal constraints given by qualitative simula- 
tion. Its use of dependency paths makes maintenance 
efficient and provides the best working global interpreta- 
tion at all times. Furthermore, it indicates which states 
can consistently occur during each segment, making it 
suitable for monitoring tasks and providing strong focus 
for finding alternative global interpretations. DATMI has 
been fully implemented and tested on several examples 
from both QPE and FROB [9] domains, suggesting that it 
is applicable to any system of qualitative physics. 
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To avoid intractable temporal reasoning during in- 
terpretation, DATMI accepts two key limitations. First, 
global interpretations are not always most appropriately 
represented by DATMI’s linear sequences of states. For 
example, partial orderings provide more general expla- 
nations, but DATMI's use of global segmentation and lo- 
cal dependency paths precludes them. Second, DATMI 
requires an appropriate envisionment as input. By refer- 
ring to an available envisionment, DATMI's pinterp-space 
maintenance requires time at most cubic in the number 
of envisionment states. This bound is based on the cu- 
bic worst-case time cost for finding the most-probable 
b-dependency paths; DATMI's overall cubic worst-case 
complexity is analyzed in [4]. 

Although envisioning itself can be exponential in the 
number of system variables, we suspect that it is more 
efficient to cleanly separate envisioning from interpret- 
ing for tasks where a large fraction of the envisionment 
states are likely to occur or where observations are very 
sparse. This intuition is based on the efficient tech- 
niques developed for total envisioning, such as those 
described in [8]. To handle the other cases, we are 
currently developing incremental envisioning techniques 
which could provide DATMI with previously unavailable 
states and transitions when suitable interpretations can- 
not be found using a working partial envisionment. 

By not accepting DATMI's two key limitations, related 
approachs allow other gains while sacrificing the ability 
to interpret incomplete, faulty data as efficiently and ro- 
bustly as DATMI. For example, 42 [lo] can exploit more 
of the quantitative information in the measurements as 
it generates consistent histories. However, to ensure 
that it can always offer some interpretation, Q2 must be 
able to follow every branch during history generation, 
which can be exponential in the number of states. Al- 
though the number of paths through an envisionment 
is also exponential in the number of states, DATMI never 
needs to consider more than a cubic number of them 
(during dependency path search) because of the factor- 
ization of the problem provided by global segmentation. 

GDE [3] provides an alternative means for handling in- 
consistencies between the measurements and the model. 
It is not directly suited for our problem because its fo- 
cus is on determining faults in the system itself, not the 
observations. Although it acknowledges sensor failure 
rates, it does not attempt to reason about the nature 
of such failures, as DATMI does with sensor failure hy- 
potheses. Also, GDE does not reason over time. The 
consequences of using TCP [13] with GDE to allow across- 
time reasoning, which deKleer and Williams suggest as 
future work, are not clear. Although TCP's concise his- 
tories could represent partially-ordered interpretations, 
that approach would suffer from overhead that DATMI's 
globally-segmented pinterp-space avoids. 

The DATMI framework suggests future research in sev- 
eral directions. Continued progress in qualitative mod- 
elling, along with incremental envisioning, is needed. 
Multiple faults might be handled by not always retract- 

ing a hypothesis when it fails to recover from all the 
inconsistencies by itself. Also, more formal, general 
techniques for generating fault-recovery hypotheses are 
needed, perhaps based on knowledge groups as in [2]. 
Finally, the data selection problem (i.e. using the most 
informative data first) might be addressed by preferring 
observations at times nearest the segments having the 
most ACTIVE pinterps. 
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