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Abstract 
Quantitative predictions are typically obtained by 
characterizing a system in terms of algebraic re- 
lationships and then using these relationships to 
compute quantitative predictions from numerical 
data. For real-life systems, such as mainframe 
operating systems, an algebraic characterization 
is often diicult, if not intractable. This paper 
proposes a statistical approach to obtaining 
quantitative predictions from monotone relation- 
ships -- non-parametric interpolative-prediction 
for monotone functions (NIMF). NIMF uses 
monotone relationships to search historical data 
for bounds that provide a desired level of statis- 
tical confidence. We evaluate NIMF by com- 
paring its predictions to those of linear 
least-squares regression (a widely-used statistical 
technique that requires specifying algebraic re- 
lationships) for memory contention in an IBM 
computer system. Our results suggest that using 
an accurate monotone relationship 
better quantitative predictions than 
proximate algebraic relationship. 

can produce 
using an ap- 

1. Introduction 

Numerical or quantitative predictions of system be- 
havior are frequently required in tasks such as fore- 
casting, diagnosis, and planning. TypicaJb, 
quantitative predictions are obtained by characterizing 
a system in terms of algebraic relationships and then 
using these relationships to compute quantitative 
predictions from numerical data. Unfortunately, for 
real-life systems an algebraic characterization is often 
difficult, if not intractable. This paper describes an 
approach to obtaining quantitative predictions from 
monotone relationships, and applies this approach to 
predicting memory contention in an IBM computer 
system. 

Why is it often so difficult to obtain accurate al- 
gebraic characterizations of real-life systems? Our 

experience with analyzing measurements of computer 
systems, in particular the IBM operating system Vir- 
tual Machine/System Product (VM,‘SP), suggests that 
the major impediment to an algebraic characterization 
is the absence of sufficiently detailed information 
about the system’s operation. For example, the per- 
formance of VM/SP systems is often constrained by 
contention for the frost sixteen megabytes of main 
memory (referred to as low memory), even though 
there may be sixty-four megabytes or more of main 
memory. Low-memory contention is a consequence 
of the operating system using twenty-four bit ad- 
dressing and requiring that many system services use 
memory that is directly addressable by the operating 
system. A key indicator of low-memory contention 
is the rate at which pages below sixteen megabytes are 
taken from users in the multi-programming set. 
Constructing an algebraic relationship between this 
measure and parameters such as the virtual machine 
input/output rate and the number of logged-on users 
requires using these parameters to quantify the fre- 
quency and execution times of operating-system 
service-requests (e.g., spool operations, messages ex- 
changed through the inter-user communication vehi- 
cle, and file opens) as well as the low-memory 
demands of each service requested (e.g., bytes re- 
quired, page and/or cache alignments, and algorithm 
used when fixed-sized pools are empty). Unfortu- 
nately, such detailed information is rarely available. 

When we are unable to construct algebraic re- 
lationships, we often have qualitative knowledge in 
the form of monotone relationships. For example, in 
VM/SP intuition and experience strongly suggest that 
low-memory contention increases with the virtual 
machine input/output rate and the number of 
logged-on users. Another example in CPU-bound 
VM/SP systems is the relationship between response 
time and a workload characterized by CPU utilization 
and the rate of small transactions. Again, an algebraic 
characterization appears to be intractable; however, 
we expect response time to decrease with the rate of 
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small transactions (since more small transactions 
means fewer large ones, in a resource-constrained 
system) and to increase with CPU utilization. Still 
other examples where monotone relationships apply 
but algebraic relationships are difficult to construct 
include the following: relating lock contention to user 
activity, relating disk operations to the virtual ma- 
chine input/output rate, and relating working set size 
to the virtual machine input/output rate and CPU 
demands. 

If an accurate algebraic characterization of the 
system is unavailable, how can we obtain quantitative 
predictions? One approach is to approximate the 
unknown algebraic relationship by a simple function, 
such as a polynomial. Herein, we present an alterna- 
tive approach in which quantitative predictions are 
computed directly from monotone relationships. Our 
experience with this approach, as shown in section 3, 
suggests that using an accurate monotone relationship 
frequently results in better predictions than using an 
approximate algebraic relationship. 

Our approach to prediction is statistical. Referred 
to as non-parametric interpolative-prediction for 
monotone functions (NIMFj , our approach assumes 
the existence of historical data, which is appropriate 
for domains such as computer performance, financial 
analysis, and demographic studies. Often, the histor- 
ical data is highly variable; indeed, providing a point 
estimate (e.g., an expected value) may be meaningless. 
For this reason, NIMF produces prediction intervals 
at a user-specified confidence level (e.g., 75%). A 
prediction interval consists of a lower bound bL) and 
an upper bound ofH), with the following interpreta- 
tion: The probability that the predicted value lies 
between ye and yH is at least as large as the confidence 
level. NIMF uses monotone relationships to search 
the historical data for ye and yH. 

Monotone relationships have been used in many 
contexts, such as predicting changes in qualitative 
state (e.g., (Forbus, 1984), (Kuipers, 1986), and 
(DeKleer84))) monitoring dynamic systems (Dvorak 
and Kuipers, 1989), and explaining quantitative 
predictions produced by algebraic relationships (e.g., 
(Apte and Hong, 1986)). More recently, there has 
been interest in the probabilistic semantics of qual- 
itative influences (Wellman, 1987) and probabilistic 
considerations in qualitative simulation ((Dvorak and 
Sacks, 1989)). Our work further extends the applica- 
tion of monotone relationships by demonstrating 
their use in quantitative, statistical prediction for sit- 
uations in which numerical data are available but an 
algebraic characterization is intractable. 

The remainder of this paper is organized as fol- 
lows. Section 2 describes the NIMF technique. 
Section 3 evaluates NIMF by comparing its pred- 
ictions to those of least-squares regression, a widely- 
used statistical technique that requires specifying 
algebraic relationships. Our conclusions are con- 
tained in section 4. 

2. Approach 

Our approach to obtaining quantitative predictions 
from monotone relationships was motivated by ob- 
servations of performance analyst who tune VMjSP 
computer systems. One aspect of tuning is workload 
assignment, in which users of computing services are 
assigned to one of several computer systems in a 
manner so that computing resources (e.g., CPU, 
input/output bandwidth, and memory) are utilized 
within prescribed guidelines. Clearly, this task re- 
quires an ability to predict the resource utilizations 
of an assignment. The most common approach to 
predicting the performance of computer systems is 
based on queueing theory (Kleinrock, 1975). 
Queueing theory characterizes computer systems in 
terms of stochastic processes, which permits deriving 
algebraic relationships between measurement vari- 
ables. While queueing theory has proven effective for 
modeling “active” resources (e.g., CPU, input/output 
operations), it has not been particularly effective for 
modeling “passive” resources, such as memory. In 
large VM/SP computer systems, contention for low 
memory is often the primary performance bottleneck. 

How then do performance analysts predict low- 
memory contention? Lacking a formal approach to 
the problem, analysts often use an informal approach. 
We illustrate this by predicting LOSTEALRAT (the 
rate at which pages in low memory are taken from 
users in the multi-programming set) from LOGGED 
(the number of logged-on users) and VI0 (virtual 
machine input/output rate). (All three variables can 
be obtained from the Virtual Machine Monitor 
Analysis Program (VMMAP) (IBM, 1985).) Sup- 
pose that a workload assignment would result in a 
computer system having an average of 500 logged-on 
users with an average aggregate VI0 rate of 500. Al- 
though we know of no algebraic equation that relates 
LOSTEALRAT to LOGGED and VIO, we do have 
an excellent understanding in terms monotone re- 
lationships. Specifically, for each logged-on user, data 
structures are allocated in low memory to describe the 
virtual address space; so we expect LOSTEALRAT 
to increase with LOGGED. Further, each VI0 re- 

HELLERSTEIN 389 



l 

. 

Figure 1. Scatter plots 

quires that transient data structures be allocated in 
low memory, and so LOSTEALRAT should increase 
with VI0 as well. That is, 

MRl: LOSTEALRAT increases with VI0 and LOGGED. 

M& provides analysts with an approach to 
searching historical data for potential bounds. For 
example, to fmd a lower bound for the point VI0 = 
500 and LOGGED = 500, the analyst considers data 
for which VI0 5 500 and LOGGED I 500. Simi- 
larly, finding an upper bound involves examining data 
for which VI0 2 500 and LOGGED 2 500. 

Once the sets of potential bounds are identified, 
analysts often resort to heuristics, such as setting yL 
to the largest element in the set of potential lower 
bounds and yH to the smallest element in the set of 
potential upper bounds. Unfortunately, such 
heuristics do not indicate the confidence level of the 
resulting prediction interval, and they certainly do not 
permit choosing bounds so that a particular con& 
dence level is achieved. 

Translating the above approach into a formal sta- 
tistical technique requires that we address randomness 
in the measurement data. For example, Figure 1 
displays scatter plots of LOSTEALRAT vs. 
LOGGED and LOSTEALRAT vs. VI0 for meas- 
urements taken from a VM/SP computer system; 
these plots suggest a high degree of randomness. We 
say that a monotone relationship exists between the 
response variable y (e.g., LOSTEALRAT) and the 
explanatory variables x1, . . . , xJ (e.g., x1 = VI0 and 
x2 = LOGGED) 3, and only if, there is a monotone 
function g such that 

yi = g(xi) + q, (1) 

where yi is the i-th measurement of the response var- 
iable, x, = (x~,~, . . . , xiJ) is the i-th measurement of the 
explanatory variables, and .zi is the i-th error term. 
Randomness is handled by the E,, which are assumed 
to be realizations of continuous, independent, and 
identically distributed random variables. We make 
no assumption about g’s functional form. However, 
we do assume that g’s directional effects are known; 
that is, for the j-th explanatory variable (x,), we know 
if g is non-increasing or non-decreasing. (If g is 
differentiable, this is equivalent to knowing the sign 
of g’s frost derivatives.) Since we do not assume that 
error terms are drawn from a specific distribution and 
we make no assumption about g’s functional form, 
our approach is non-parametric. Further, the ap- 
proach that we will describe is appropriate only if 
there are existing measurements within the region in 
which a prediction is desired; that is, our approach 
provides interpolation, not extrapolation. These 
characteristics of our approach as well as its being 
applicable only to monotone functions motivate the 
name non-parametric inrerpolative-prediction for 
monotone func lions (NIMF) . 

The NIMF procedure takes as input 
e x*- values of explanatory variables at which a 

prediction is desired 
8 a description of g in terms of its directional ef- 

fects 

0 (xl, yl), . . . ,(x1, yI) - historical data containing val- 
ues of explanatory variables paired with the cor- 
responding value of the response variable 
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NIMF computes prediction intervals by finding a 
lower bound (yL) and an upper bound (yH) for the 
unknown response (Y) such that 

P(jJLIY*<y&+a, (2) 

where 1 - a is the desired confidence level. Typical 
values for 1 - a are 75%, 90%, or 95%. 

NIMF consists of three steps. The fast step selects 
sets of potential bounds by using the monotone re- 
lationship that describes g. This is accomplished by 
observing that a monotone relationship imposes a 
partial order on values of explanatory variables. 
Specifically, given x1 and x2, the partial order x1+x2 
holds if, and only if, the following relationship is 
present for all explanatory variables (xj): 
e xlj I xzj, if g is non-decreasing in xj 
e Xl, 2 X2j, if g is non-increasing in Xj 

The set of potential lower bounds, SL, is the subset of 
& 1 xi-(x’) that consists of the M yi whose xi are 
closest to x*. (“Closest to” is defined as the Euclidean 
distance measure normalized by standard deviation.) 
By picking x, close to x*, we hope to reduce 
I g(xJ - a*) I and h ence reduce the width of predic- 
tion intervals. The set of potential upper bounds, SHY 
is a subset of Gyi 1 x*<xi), and is chosen in the same 
manner as SL. 

NIMF’s second and third steps select yL from SL 
and yH from SH in a manner so that at least a 1 - a 
confidence level is obtained. Our approach is similar 
to that taken by Bradley (1968) to obtain confidence 
intervals for distribution percentiles. Assuming that 
yL I yH, it suffices to pick yL and yH such that 

P(yLS Y*)2 1-+ 

P(jQ.+Y*)zl-$- 

To find y,, we proceed by considering its compo- 
nents. Let yi E SL, with yi = g(xJ + zi. If g is 
monotone and we know the directional effect of each 
xj, then g(xJ < g(x*) (by construction). SO 

P(ji 5 Y*) = P(g(xJ + &i 22 g(x*) + EL) 

2 P(&i I E*) 
= .5. 

(The last step is a result of the error terms being 
continuous, independent, and identically distributed.) 
Let NL = size(SL), and let EL,k be the event that at 
least k elements in SL are smaller than Y’. Since the 
ci are realizations of independent and identically dis- 
tributed random variables, the binomial distribution 
applies: 

Let yL,I( be the k-th smallest element in SL. A key 
observation is that the event EL,A is equivalent to the 
event that yL,I( 5 Y”(Waite, 1987) . Hence, 

P@,,, 5 Y*) 2 f (%).5% 
k=n 

NIMF’s second step fmds kL such that 

P@L,k,< y*)k 1 -$, 

and kH such that 

@H,kHk y*)> 1-q. 

To minimize the width of prediction intervals, NIMF 
finds the largest kL and the smallest kH that satisfy the 
above inequalities. In its third step, NIMF selects the 
prediction interval bounds; ye = ye, kL and YH = YH, kH. 

We illustrate the second and third steps of the 
NIMF procedure by computing a prediction interval 
for LOSTEALRAT when VI0 = 500 and 
LOGGED = 500. Let 1 - a = 75%, and assume 
that the following potential-bounds sets have been 
constructed: 

SL = (0, .l, .2, .3, .6, 1.2) 
S,= (.5, .7, l.l., 1.4, 1.5, 1.6) (3) 

From Eq. (3), we see that both sets have six elements, 
SO NL= NH= 6. Let +(N, a) be defined as follows 

4(N, a) = max (k 1 f (:).5N2 1 - $- >. (4) 

Then, 
k, = W’,, a) 

= 4(6, .25), 

Or, 

4(6, .25) = max (k 1 i (z).56 2.875). 
n=k 

Performing the necessary computations, we determine 
that kL = 2. For kH, we have 

kH =NH- +cNH, a) + 1 
=6-2+1 
= 5. 

We use these indexes to fmd the prediction interval 
bounds; yL is the second smallest element in SL, and 
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yH is the fifth smallest element in S’H. That is, ye = . 1, 
and y, = 1.5. 

NIMF’s ability to produce prediction intervals de- 
pends on the historical data provided and the 
monotone relationships used. When NIMF cannot 
compute a lower bound, yL = - 00; when an upper 
bound cannot be computed, yH = 00. One situation 
in which NIMF cannot produce a bound is when 
there is insuffkient historical data; that is, NL (NH) is 
so small that kL = 0 (kH = NH + 1) at the 1 - a confi- 
dence level. In most computer installations, data are 
cheap to collect and plentiful; so a missing bound can 
often be obtained by simply including more data. 
Alternatively, the analyst can reduce the confidence 
level. 

There is a second situation in which NIMF can 
produce prediction intervals, but the results are in- 
consistent with the monotone relationship. This sit- 
uation occurs when ye > yH. A statistically valid 
prediction interval can be produced by taking yL to 
be the smaller bound and yH to be the larger bound. 
However, our feeling is that this situation suggests an 
error in the underlying model, which should be sur- 
faced to the user. 

3. Case Study 

This section presents a case study in which NIMF’s 
predictions are compared to those of linear least- 
squares regression (hereafter, just regression), a 
widely-used statistical technique that requires an al- 
gebraic specification of variable relationships (Draper 
and Smith, 1968). We compare NIMF and regression 
by using the data in Figure 1 as the historical data 
from which NIMF potential-bounds sets are obtained 
and regression constants are estimated. Prediction 
intervals are then constructed at values of VI0 and 
LOGGED (the x* variables) contained in separately 
acquired test data; the test data also include measure- 
ments of LOSTEALRAT at each x*, which we use 
to evaluate the prediction intervals. 

Prediction intervals are typically evaluated based 
on two criteria: 
e coverage (percent of LOSTEALRAT values in 

the test data that lie in their prediction interval) 
0 prediction interval width 

Since confidence level is a user-specified parameter, 
coverage is viewed as a constraint rather than an op- 
timization criteria. So, the preferred technique is the 

one that minimizes prediction interval width subject 
to the constraint that coverage is at least as large as 
the specified confidence level. 

First, we briefly describe the regression procedure. 
A regression model takes the same form as Eq. (l), 
but stronger assumptions are made: g’s functional 
form must be known, and (to obtain prediction in- 
tervals) Ed must be normally distributed. A functional 
form is an algebraic relationship with unknown con- 
stants. For example, 

Where: 
jj = i-th estimated LOSTEALRAT 
J!,~ = i-th measured LOGGED 
vi = i-th measured VI0 

Here, the unknown constants are the bjs In essence, 
regression is a curve-fitting technique: Unknown 
constants are estimated by using the historical data to 
find values that minimize the total squared error, 
where Ei = y, - jj. The quality of a regression model 
can be evaluated by R2, which is the fraction of the 
response variability that is accounted for by the re- 
gression model. 

To compare NIMF and regression, we need to 
construct models using both approaches. A NIMF 
model is a monotone relationship; we use MRl. For 
regression, the choice of model is more difficult since 
we must specify an algebraic relationship for an un- 
known g. Our approach is to approximate g by an 
n-degree polynomial. We choose n by considering 
polynomials of increasing degree until there is no im- 
provement in R2. Equation 5 is a first degree 
polynomial. Below are second and third degree 
polynomials. 

A 
yi= bo’ + b,‘Li + b2’Vi 

+ b3’Li 2 + b,‘LiVi + bs’ Vi 2 (6) 
A 
yi = bo“ + b,“Li + bztt Vi 

+ q”Li2 + ba”LiVi + bsftVi2 (7) 
+ bg)‘Li3 + b”Li2 Vi + bgf’LiVi2 + bg” Vi3 

For the data in Figure 1, the R2 for Eq. (5) is .26; for 
Eq. (6), .34; and for Eq. (7), .37. A fourth degree 
polynomial showed no increase in R2; so we use Eq. 
(7). 

Figure 2 plots 75% prediction intervals for the test 
data, both for regression and for NIMF’. The plots 
show the measured value of LOSTEALRAT for each 

1 We use h4=20. 
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Rcgrcssion: average prediction-interval width = 1.25 
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NIMF: average prediction-interval width - .58 
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test-data instance (depicted by a dot) and the associ- 
ated prediction interval (indicated by a vertical line 
with a horizontal bar at each end). Both techniques 
achieve adequate coverage: 94% for regression and 
83% for NIMF. However, the average width of 
NIMF prediction intervals (.58) is less than half that 
of the regression prediction intervals (1.25). Also, in 
several instances the regression prediction interval in- 
cludes negative values, which is impossible for 
LOSTEALRAT ( a rate). In contrast, NIMF predic- 
tion intervals are constrained to lie within the meas- 
ured data; so NIMF predicts only non-negative values 
for LOSTEALRAT. 

The foregoing is one of eighteen case studies in 
which we compared NIMF to regression using meas- 
urements of VM,SP computer systems (Hellerstein, 
1987). The results of the other studies parallel those 
contained in Figure 2: In all cases adequate coverage 
is provided by both techniques, but NIMF consist- 
ently (17 out of 18 case studies) produces smaller 
prediction intervals. 

Why does NIMF produce smaller prediction in- 
tervals? One reason is that regression assumes a spe- 
cific algebraic relationship between the response and 
explanatory variables. If the wrong equation is cho- 
sen, then the fit is poor and prediction intervals are 
large. This shortcoming can, in part, be avoided by 
using other curve fitting techniques (e.g., cubic 
splines), which consider families of curves. However, 
these techniques still implicitly assume algebraic re- 
lationships, and are complex to apply to multivariate 

data. NlMF avoids these problems by not making any 
assumption about the form of the unknown monotone 
function. Instead, NIMF uses the function’s 
monotonicity to construct sets of potential bounds 
from which prediction-interval end-points are se- 
lected. 

4. Conclusions 

Frequently, we require quantitative predictions for 
systems in which numerical data are available but the 
following situation exists: 
9 There is no known algebraic characterization for 

the system. 
@ The system can be characterized easily in terms 

of monotone relationships. 

One could obtain quantitative predictions by ap- 
proximating the unknown algebraic relationship by a 
simple function, such as a polynomial. This paper 
presents an alternative approach: generating quanti- 
tative predictions directly from monotone relation- 
ships. 

Our approach, non-parametric interpolative- 
prediction for monotone functions (NIMF), is statis- 
tical, and hence assumes the presence of historical 
data (which is reasonable for domains such as com- 
puter performance, financial analysis, and demo- 
graphic studies). NIMF uses the partial order 
imposed by a monotone relationship to construct sets 
of potential bounds; SL is the set of potential lower 
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bounds, and SH is the set of potential upper bounds. 
A simple technique based on non-parametric statistics 
is then employed to select the lower bound of the 
prediction interval @L) from SL, and the upper bound 
bH) from SH. 

Do we obtain better predictions by using an accu- 
rate monotone relationship instead of an approximate 
algebraic relationship? Although the answer depends 
on many factors (e.g., the system being studied and 
the approximation used), our experience with pre- 
dicting low-memory contention in VM/SP suggests 
that using an accurate monotone relationship with the 
NIMF procedure can produce significantly better 
predictions than using a polynomial approximation 
of the unknown algebraic relationship and employing 
least-squares regression. Admittedly, NIMF’s supe- 
rior results are not solely a consequence of using 
monotone relationships instead of algebraic relation- 
ships, since NIMF also makes weaker assumptions 
about the distribution of error terms. However, 
avoiding unnecessary assumptions about algebraic 
relationships is clearly an advantage in terms of pre- 
dictive accuracy. Also, using monotone relationships 
simplifies model building and greatly facilitates ex- 
plaining predictions. 

NIMF has been implemented in APL and Prolog; 
the results presented here are from the Prolog imple- 
mentation. Prolog is a particularly good implemen- 
tation language for NIMF since monotone 
relationships are easily expressed as facts, and simple 
predicates can be used to fmd the sets of potential 
bounds. . 
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