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Abstract 
Although computers are widely used to simulate com- 
plex physical systems, crafting the underlying models 
that enable computer analysis remains difficult. When 
a model is created for one task, it is often impossible 
to reuse the model for another purpose because each 
task requires a different set of simplifying assumptions. 
By representing modeling assumptions explicitly as ap- 
proximation reformulations, we have developed quali- 
tative techniques for switching between models. We 
assume that automated reasoning proceeds in three 
phases: 1) model selection, 2) quantitative analysis 
using the model, and 3) validation that the assump- 
tions underlying the model were appropriate for the 
task at hand. If validation discovers a serious discrep- 
ancy between predicted and observed behavior, a new 
model must be chosen. We present a domain indepen- 
dent method for performing this model shift when the 
models are related by an approximation reformulation 
and describe a Common Lisp implementation of the 
theory. 

Introduction 
Although the bulk of work in model-based reasoning 
has focussed on problems of analysis in the framework 
of a single model, we believe that no single model can 
be adequate for a wide range of tasks. Imagine trying 
to diagnose a misbehaving auto with a flat molecular- 
level description of the whole system. Quantum me- 
chanics may be the right level to reason about bond 
angle in impure hydrocarbon fuels, but it does not pro- 
vide a useful model of the spark plugs or transmission. 

To achieve robust performance when reasoning 
about complex systems, analytic programs must do 
what human experts do: switch between models, dy- 
namically choosing perspectives and simplifying as- 
sumptions that are appropriate to the task at hand. 
Since different assumptions are warranted depending 
on the analytic question being answered, a program 
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that uses multiple models should validate its choice in 
the context of the problem at hand. Thus the critical 
step is enabling the program to reason explicitly about 
modeling assumptions. 

In this paper we address the problem of INTER- 
MODEL COMPARATIVE ANALYSIS: qUdh.tiVdy com- 
puting the differences in the behaviors predicted by 
two different models. As input, inter-model compara- 
tive analysis takes two models and a mapping (called a 
reformulation) that links vocabulary terms in the two 
models. As output, inter-model comparative analysis 
predicts the how the time-varying behavior predicted 
by one model differs qualitatively from that predicted 
by the other. The next section explains how inter- 
model comparative analysis enables model-switching 
in tasks such as theory formation and innovative de- 
sign. 

Although inter-model comparative analysis is very 
difficult in general, we show that it can be efficiently 
solved when the mapping between models is of a re- 
stricted type (called an APPROXIMATION REFORMU- 
LATION). Intuitively, a simple model approximates a 
more complex model when the complex model has an 
exogenous parameter (called a FITTING PARAMETER) 
such that the quantitative behaviors predicted by the 
two models get arbitrarily close as the fitting parame- 
ter tends towards a limit. If models are related by ap- 
proximation reformulations then the inter-model com- 
parative analysis problem reduces to an intro-model 
comparative analysis problem and can be efficiently 
solved by the existing techniques of DQ analysis [For- 
bus, 1984, Weld, 1988a, Chiu and Kuipers, 19891 and 
exaggeration [Weld, 19901. For example, consider the 
simple system of figure 1. 

One can imagine many models of this system, each 
incorporating different simplifying assumptions, but 
for now consider two models that differ only in their 
treatment of the rope. Suppose model A considers the 
rope to be inelastic, while 8 models the stretching rope 
as a stiff spring (via Hooke’s law f = -Its). One can 
show that A approximates L3, because B’s parameter L 
is a fitting parameter. As the spring constant Jc tends 
towards infinity, the rope approaches the stretchless 
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into a corresponding state in the ontology or” the sys- 
tem system: \k(q’. The 7ri projection functions extract 
the i-th parameter value from the two st,ates and the 
difference is called the PDIFF. 

Definition 5 Let ~4 and 13 be models with PARAM 
= (PI, . . ., Pn). Let XI! be a reformulataon such that 
~439 B. Let $ be an internal state of t3 represent- 
ing a set of initial conditions. Let p’ be the internal 
state of A corresponding to the state Xl!(Bq(O)). De- 
fine the BEHAVIOR DIFFERENCE BETWEEN A and x3 
USING 4 OVER THE TIME INTERVAL [t,,tj]GIVEN f as 
BDIFF(A& &q‘,t,,tj) = 

In other words, for each parameter in the simple 
model, we compare corresponding values in the com- 
plex model for all times and take the least, upper bollnd 
of the abso1ut.e differences. The lxh.vi~~ difference if3 
the maximum value of the suprenrm. Ito iti important to 
recognize that while the PDIFF must be n~easurcd in 
the scmpler model, the initial conditions Ijulst, be spec- 
ified in the more complex model to elmsure that both 
models can be simulated. 
Approximation Reformulations 
Intuitively, one model approximates another when the 
behavior difference between them can be brought ar- 
bitrarily close to zero. 

Definition 6 Let ~4 and 23 be models, and suppose 
there exists a reformulation @ such that A-& f3. Say 
that ~4 APPROXIMATES f? UNDER \E if there exists a 
parameter QJ E INDEP(LJ) and an endpoint 1 of the 
closure ofRANGE such that for all internal states 
f of t3, and forall times t, 

lim BDIFF(A-& a,zO,t) = 0 
rd!a-+~ 

In this case, the parameter Qf is cai!ed the FITTING 
PARAMETER of !@ and / is called its APPROXIMATION 
LIMIT. 

Since a fitting parameter is independent by defini- 
tion, it is constant over time; this is why the definition 
refers to only its initial value ‘rrj( 3. The idea behind 
the definition is that 4 approximates B if sending f?‘s 
fitting parameter to a limit squeezes the behavior dif- 
ference to zero. As a simple example, see figure 2. 

At time zero the block is released at the top of 
the O-degree inclined plane; under the force of grav- 
ity, it moves downward (and to the left, but both 
models ignore the horizontal component of movement). 
Let A be a model of this system with parameters 
9, G, Y, V, A denoting angle, gravity, height, and the 
vertical components of velocity and acceleration re- 
spectively. Let f3 be a model with all these parameters 
plus an additional parameter, ~1, denotL;g the coeffi- 
cient of frictiorl. Let \E‘ be the proje,,tir I: r^r!nction: 

Figure 2: Block slides down an inclined plane. 

WY 9, !I, v, a, P) = (@,!I, Y, v, a). Since \k is a reformu- 
lation, d + B. _- _ 

Suppose INDEP(A)={G,e} and BOUND(d) = {G, 8, 
Y, V}; d’s ODE’s are: (V = $ Y) A (A = Gcos(0) = 
& V) *while i7 has an extra independent parameter p 
and ODES: (17 = $Y) A (A = Gcos(CJ)-pGsin(0) = 

it is clear Ihat the behavior diffcrcuce is zero. Thus, wc 
can say that A approxillla.tCs f3 with fitting paranietttr 
Jl ant1 al proxilnation liillit 0. But while this system 
provides L clear example of z-311 approximation, it. is a 
bit misleading. The case where the fitting parameter 
can actually take on the limiting value (i.e., where it is 
legal for B to have zero friction) is really a degenerate ._ 
case of the approxima .tion definition. In general, 
is not the case, which is why the definition allows 

this 
1 to 

be in the closure of the p&ameter’s range; this was 
illustrated with the elastic &in;4 example of figure 1. 

Exploiting Appl oxirnations 
We seek a qualitative cl1a.ra.c terization of the difference 
ill hh3v ,ior t,hat two models predict,. By assuming one 
model as ‘current and considering a shift in models, 
we can phrase this question as comparative analysis: 
“What is tilt eil’ect on predicted behavior of shifting 
I+orn the current model to a different one?” Since this 
~;omparihou is based on a switch in models, rather than 
a perturLFAio!l to the boil~idary parameters of a sin- 
gle model, we call it, inter-model comparative analysis, 
rather than the intra-model case that has been stud- 
ied in the past, [Weld, 1988a]. Space considerations 
preclude precise definitions of the following terms; see 
[Weld, 19891: 

A behal ior TRANSITIONS whenever a parameter 
moves to cr from a LANDMARK VALUE. A model’s 
TIME-VJNCTION, 7, maps frown transitions (the i-th 
being wriI,ten yd) 1~0 the time when they occur. 

An input to intra-model compa.rative analysis is a 
;ierturbation 6 to the initial values of boundary pa- 
rameters. Since 6 cau be thought of as a vector of 
q.r:alitati~~e valutq, TV = [-!-I means that the per- 
turbatioll speciscs an increase in the fitting param- 
eter. 
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1 5 i 5 k. A STATE of A is an n-tuple such that the 
vahespl,. . . ,pk are an internal state, pk+l, . . . , pn are 
in their ranges, and pl, . . . , pn satisfy the model’s quan- 
titative constraints. A set of INITIAL CONDITIONS for 
A is an internal state of .4. The BEHAVIOR of A given 
initial conditions p’, is the unique function 

40 :x 3 RANGE(Pl) X . . . X RANGE(&) 

defined by ,.4FO(t) = (PI(t), . . . , P,(t)) where the Pa are 
closed-form solutions to the model’s ordinary difleren- 
tial equations given the boundary values 6. 

Thus a model A is an abstract description of a sys- 
tem, a state is a snapshot of the values of all the 
model’s parameters at a given time, and an internal 
state is a compact representation of a state. Combin- 
ing a model 4 and a set of initial conditions p’specifies 
a behavior A$ that maps from times to states. Given a 
behavior or a state, one can use a projection function 
to isolate the parameter or parameter value of inter- 
est. For example, to extract the closed-form solution 
i-th parameter from the St,- behavior, one would write 
ni(&). If mnemonic names are used then the param- 
eter name may be substituted in place of the index. 
For example, to determine the velocity (parameter V) 
specified by a state p’i, one would write ~~(pa’). 

The definition above describes the relationship be- 
tween a model, initial conditions and the resulting be- 
havior but it deliberately does not say anything about 
how to compute the behavior; our objective is a general 
theory of model shifting that is independent of partic- 
ular simulation, symbolic solution, or numeric approx- 
imation methods. 

Reformulations 
Since two models may describe a physical system us- 
ing different parameters, some work is necessary to en- 
able behavioral comparison. In this section, we intro- 
duce REFORMULATION FUNCTIONS to define a corre- 
spondence between the ontologies of different models. 
Next we discuss how to measure the difference in the 
predicted behavior of two models that are connected 
by a reformulation. Finally, we consider a restricted 
class of reformulations, called APPROXIMATIONS, that 
have useful properties regarding this behavior differ- 
ence. In the next section we show that inter-model 
comparative analysis can be efficiently solved if one of 
the models approximates the other. 

The basic idea behind reformulations is that a com- 
plex model B can be compared to a simpler one A if an 
internal state of B allows us to construct a complete 
description of an internal state of A. Although this no- 
tion is very general (almost any continuous function, 
meaningful or not, is a reformulation), it provides a 
useful foundation. Later, we refine the idea to a useful 
class of reformulations called approximations. 

Definition 3 Let JI and t3 be models with n and m 
parameters such that BOUND(A) = {PI . . . Pk) and 

BOUND(B) = {Ql . . . gl). If there exists a continu- 
ous function @’ from RANGE(Q1) x . . . x RANGE(&,) 
onto RANGE(pl) x . . . x RANGE(pk) then say that @ 
COMPARES x3 to JI (written JI$ t?) where @ is an 
extension of @’ that maps from states (rather than in- 
ternal states) of B to states of A in the obvious way. * 
is called a REFORMULATION FUNCTION from B to A. 
For any state < of t3, if p’= @($) then p’ is said to be 
the CORRESPONDING STATE of6 

For example, let B be a model of the two dimensional 
motion of a billiard ball using polar coordinates and let 
A be a model of the same system using rectangular co- 
ordinates. In this case A -& i3 because a reformulation 
function exists. Let Q be defined from (0) x {R} to 
(X} x {Y} with Q(6), R) = (RcosO, RsinB) 

For the rest of this paper, however, we assume that 
all reformulation functions are defined in terms of sim- 
ple arithmetic operations (addition, subtraction, mul- 
tiplication, and division). In fact, for many examples 
it suffices to specify trivial reformulations that equate 
parameters pairwise in the two models. 

Proposition I Let .A and B be models with k and 1 
boundary parameters respectively. JI -(a B iff k 5 1. 

Proof: This is an easy corollary of the Borsuk-Ulam 
theorem [Massey, 1967, ~1701. 0 
Proposition 2 The compared-to relation $ is re- 
flexive and transitive but not symmetric. 

Proof: See [Weld, 19891. 0 
Intuitively this means that one can compare a 

“large” model to a “smaller” one but not vice versa. 
The lack of symmetry results from a reformulation 
function being onto, but not necessarily invertible. 
Note that our definition allows many possible reformu- 
lations between two nonempty models, most of which 
are uninteresting or irrelevant. Meaningful comparison 
between two models requires a good choice of Q, hence 
much of this paper is concerned with characterizing 
useful classes of reformulations. 
Behavior Difference 
To perform model switching we are interested in a 
qualitative measure of behavior difference. However, a 
quantitative measure also proves useful. In both cases 
we define difference in terms of the parameters of the 
simpler of the two models (i.e., in terms of A if A -+ B) 
because of the inherent asymmetry of reformulations. 

Definition 4 Let JI and t3 be models with PARAM@) 
= (PI, . . . ,Pn). Let j? be a state of JI and j’ be a 
state of B. Suppose that Q is a reformulation such 
that A-$ B. Define the DIFFERENCE IN Pi BETWEEN 
FAND -USING @ as 

In other words the difference in the value of a pa- 
rameter in the two states is calculated by using the 
reformulation Q to convert the complex-system state $ 
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Figure 1: A pulley, two weights and an inclined plane. 

ideal and the difference in the time-varying behavior 
predicted by the two models vanishes. 

Since ~4 approximates D, one can solve an inter- 
model comparative analysis problem such as “Will 
model a predict a higher terminal velocity than A?” 
by solving an intra-model comparative analysis prob- 
lem about the fitting parameter in model 8, i.e. “Will 
terminal velocity increase if k decreases?” This re- 
duction from an inter-model to an intra-model com- 
parative analysis problem means that the well-studied 
techniques of DQ analysis and exaggeration may be 
used to solve model switching problems. 

Motivation 
Inter-model comparative analysis allows one to use be- 
havioral discrepancies to guide shifts in modeling de- 
tail. We expect this to have application to the prob- 
lems of (among others) theory formation and the eval- 
uation of design modifications - each of these prob- 
lems can be thought of as improving a given model or 
determining that no better model exists. 
e The goal of theory revison is to improve a theory 

that fails to account for all observations. This fits 
into our paradigm by considering a theory of the 
world as a model and the failure as a discrepancy 
between observed and predicted values. Inter-model 
comparative analysis allows the learner to compare 
alternate theories to see if they account for the dis- 
crepancy. 

o If a proposed design fails to meet a behavioral spec- 
ification (e.g. the power consumption is too great), 
then a new design must be found that alleviates the 
discrepancy. If one considers the two designs as mod- 
els, then inter-model comparative analysis evaluates 
the effect of the proposed change. 
The rest of the paper is couched within the objec- 

tives of the first application. Given a set of discrepan- 
cies between the predictions of a model and observa- 
tions of the actual system, determine if a model exists 
that will predict a behavior which is in closer a.gree- 
ment to the observations. We assume reasoning pro- 
ceeds in three phases: choice of a model, analysis of the 
model, and validation that the model is appropriate. 
If validation instead shows that the model was an in- 
appropriate choice then a new model must be selected. 
We assume that the analysis performed on each model 
is quantitative, behavioral prediction (i.e., numerical 

simulation), but our model-switching technique is qual- 
itative; it works for approximation reformulations. 

Rlodels and Behaviors 
We consider a model to be a description of a physical 
system in terms of one or more PARAMETERS, contin- 
uous, continuously-diff~rentiRble functions from an in- 
terval of !R into an interval of !R that have only a finite 
number of points where the derivative crosses zero in 
any bounded interval [Kuipers, 19861. To specify the 
interdependence between parameters in a physical sys- 
tern, models car taiu qualitative and quantitative con- 
straints. By qilant,itative constraints we mean simply 
a system of ordin,kry differential equations (ODES). A 
model’s qualitative constraints are a finite set of in- 
stantiatioqs of the six constraints used by QSIM - 
ADD, MINUS, MULT, M+, M-, and $ - see [Kuipers, 
19861 for the details. Naturally, it is important that 
the quantitative and qualitative descriptions are con- 
sistent. WC: say that A set of qualitative constraints 
AGREES wii.11 a set of ordinary differential equations 
(ODES) iff every solution to the ODES satisfies the 
constraints. 

Definitkm 1 Let (1’1, . . . , Pn) be an ordered list of pa- 
rameters. Let C be a set of qualitative constraints de- 
fined over {Pi). Let D be a set of ordinary diflerential 
equations over {Pi}. Say that A = ((PI,. . . , P,), C, D) 
is a MODEL if C agrees with D an.d D specifies a unique 
(closed form) solution. Let PARAM be a function tak- 
ing a model to the list of parameters for the model. 
Let BOUND be a function taking a model to the sublist 
(%...tfi) o,+’ boundary parameters. Let INDEP be a 
function taking a model to the sublist (PI,. . . , Pk) of 
independent parameters, where 1 5 k < 1 < n. 

Parameters whose values must be known for all time 
to determine the model’s behavior are called indepen- 
dent; we assume that they are constant. In addition to 
these independent parameters, many models have de- 
pendent parameters whose value must be known at at 
least one time point to specify a unique behavior; the 
union of these and the independents are called bound- 
ary parameters by annlogy to the boundary conditions 
of an ODE. We use calligraphic letters to denote mod- 
els, lower case letters to denote real numbers, and cap- 
itals to denote parameters. All parameters are num- 
bered so we will frequently talk about the i-th param- 
eter of a model as Pi, but when discussing a particular 
model we may use mnemonic names like V for velocity. 

A behavior describes a model’s changing state over 
time, Btith qualitative and quantitative descriptions 
are necessary. We use the QSIM representation 
[Kuipers, 1986! as a qualitative description; the quan- 
titative behavioral representation is defined below. 

Definition 2 Let A be a Mel with parameters 
PI,... ,p, of which the first k are boundary param- 
eters. An TNTERNAL STATE of 4 is a k-tuple p’ = 
(PI 9 - - * , ph) such that pi E RANGE forall i such that 
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The output of intra-model comparative analysis is 
an array of relative change values for all parameters 
for all transitions. RCS(t?q, 6, yi) denotes a vector of 
relative change values for all parameters in model B, 
given initial condition <and perturbation S, formed 
by slicing through this array at transition yi. 
A reformulation q, can be trivially extended to map 
qualitative values as well as real numbers. Thus if 
“$q B, then 7rj(@(RCS(Bg, S, ~a))) denotes the rel- 
atrve change value of the j-th paramter of ,A, which 
corresponds to the predicted change of B at yi given 
perturbation 6. 
The intepmodel statement RC(p, ..4 -+\p O,c ~a) = 
[+] means that a model switch along the reformu- 
lation 9 (i.e. from model A to B) given initial con- 
ditions q( $,l and <respectively, will cause P to have 
a higher predicted value at transition yi. This can 
be abbreviated pei. 

Proposition 3 (CA Reduction Theorem). Let JI and 
t3 be models such that PARAM = (PI, . . . , P,), 
PARAM = (Ql, . . . , Q,), and B has k boundary pa- 
rameters. Let @ be a reformulation such that A-& 13. 
Suppose that JI approximates B under Xl! with fitting 
parameter QJ and approximation limit I where d is 
the greatest dower bound of RANGE. Suppose the 
two time functions are equal: 47 = ~7. Let S de- 
note a perturbation that increases the fitting parameter, 
rf(S) = [+I, and holds all other boundary parameters 
constant, Vi, 1 5 i 5 k A i # f ---+ ri(S) = [O]. Let $’ 
denote an internal state of B such that nf($) = I, and 
let 23 be the internal state of A corresponding to I$ For 
any parameter Pj E PARAM@) and for any transition 
Yi) 

For example, if ~j(Xl!(RCS(B~,S,~~))) = [+] then 
switching from A to B will increase the predicted value 
of Pj at ~iya’: ‘>jfii. Thus while inter-model compara- 
tive analysis appears quite difficult in general, the pre- 
vious theorem shows that it can be performed easily 
in certain cases. If the reformulation linking the two 
models is an approximation, then inter-model compar- 
ative analysis reduces to an intra-model comparative 
analysis problem in the more complex model, with an 
initial RC of the fitting parameter away from the ap- 
proximation limit. 

Implementation 
To test the ideas of model shifting with approxima- 
tion reformulations, we have implemented a Com- 
mon Lisp program, SAM, that embodies our theory 
of inter-model comparative analysis. As input SAM is 
given a GRAPH OF MODELS (GoM) [Penberthy, 1987, 
Addanki et al., 19891. Each edge in the GoM is an 
approximation reformulation labeled with the fitting 
parameter and approximation limit. For simplicity, 
SAM’s GoM representation only allows reformulations 
that can be expressed as projection functions. 

SAM solves an analysis task by reasoning in three 
phases. First a model is chosen; by default, the 
simplest model is used. The user enters data val- 
ues for some number of parameters at an observed 
event. Next, the model’s quantitative ODE descrip- 
tion is integrated using a fourth-order Runge-Kutta 
algorithm with adaptive stepsize control [Press et al., 
19861. Once quantitative simulation is complete, SAM 
compares the predictions with observations and com- 
putes discrepancies. If any discrepancies exceed the 
user-specified threshold, SAM seeks to switch models. 
It does this by generating a list of GoM models that 
differ from the current model by the elimination of one 
assumption. For each candidate model, SAM performs 
inter-model comparative analysis as follows. 
1. 

2. 

3. 

4. 

The candidate model is simulated using the QSIM 
qualitative simulator [Kuipers, 19861. If more than 
one qualitative behavior results, the user is consulted 
to disambiguate. 
An initial perturbation, S, is created by choosing 
a change for the fitting parameter that is in the 
direction away from the approximation limit, and 
constraining all other boundary parameters not to 
change. 
DQ analysis is applied to determine the relative 
changes resulting from the perturbation. 
The GoM’s reformulation function converts the 
intra-model RC values to inter-model RC values. 
If the RC values predicted by inter-model compara- 

tive analysis match the observed discrepancy, the can- 
didate model is accepted and the Runge-Kutta inte- 
grator is called on this model. Otherwise, the next 
candidate is considered. Since DQ analysis is incom- 
plete [Weld, 1988a], it is not guaranteed to deduce all 
RC values for every parameter. As a result, it is criti- 
cal that SAM’s matcher considers both agreement (RC 
predicted matches discrepancy) and agnosticism (no 
RC predicted) as an acceptable match. The current 
implementation warns when a switch is taken as a re- 
sult of DQ agnosticism; an alternative approach for 
future investigation would be to select the candidate 
model with the best match (least agnosticism) rather 
than the first acceptable match. 

If none of the candidate models matches the dis- 
crepancy, SAM complains that the observations were 
noisy. This is the likely cause, but other problems are 
also possible; for example, the GoM could be incom- 
plete. Since DQ analysis is sound [Weld, 1988a] and 
since the matcher accepts agnosticism, the intra-model 
comparative analysis routine will never miss a valid 
model switch. However, SAM uses a generalization of 
proposition 3 that weakens the constraints on fitting 
parameter value and time function equality. Since this 
generalization has not been proven sound, the prob- 
lem could be that intra-model comparative analysis 
was performed too far from the approximation limit 
resulting in an incorrect value for the inter-model RC 
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value [Weld, 1989], Although theoretically possible, we 
have been unable to construct an example which would 
cause this error. Thus we feel that the conclusion of 
noisy data is a reasonable one. 

Since this control algorithm causes each model 
switch to move upwards in the 59 lattice, SAM’s anal- 
ysis is guaranteed to terminate either by producing an 
acceptable prediction or by failing at the most complex 
model. This does not mean, however, that the optimal 
model (in the sense of an accuracy vs computational 
cost tradeoff) will be found. 

SAM has been tested on about five problems, all 
GoM using a simple (2 model) 

example in figure 2. 
corresponding to the 

Conclusion 
We view the theory presented in this paper as a promis- 
ing first step towards automating the types of model 
switching that occur during problem solving. Since our 
technique only works when models are related by an 
approximation reformulation, an important question is 
whether these relations are common. While we have no 
general answer to this question, we did enumerate as 
many assumptions for the simple mechanics domain as 
we could (17). Of these seventeen, all but the assump- 
tion of unbreakable rope could be expressed as approx- 
imation reformulations. This suggests the generality of 
our approach. However, we have yet to demonstrate 
that our theory can be extended to handle systems 
with multiple operating regions. 

We also hope to increase the speed of model switch- 
ing. The approach we are taking is to combine our 
ideas with Falkenhainer and Forbus’s scheme for com- 
positional modeling [Falkenhainer and Forbus, 19881. 
The goal here is to switch models based on intra- 
model comparative analysis as performed in the com- 
plex model of a single component rather than of the 
system as a whole. -In a sense, this means switching 
the modeling focus to enable a change of modeling de- 
tail. 

Anot her idea is to perform explanation-based gen- 
eralization on the results of inter-model comparative 
analysis to build up a library of parameter-change rules 
(as used by PROMPT [Addanki et al, 19891). 

Our general agenda is to develop a comprehensive 
approach to automated model management-that facil- 
itates integrated reasoning with models of differing fo- 
cus [Falkenhainer and Forbus, 19881, ontology [Collins 
and Forbus, 1987, Amador and Weld, 19901, and tem- 
poral granularity [Kuipers, 1987, Weld, 1986]- as well 
as varying accuracy. This paper supplies the mathe- 
matical foundation for part of this theory. 
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