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ABSTRACT 

The repetitive behavior of a device or system 
can be described in two ways: a detailed de 
scription of one iteration of the behavior, or 
a summary description of the behavior over 
many repetitions. This paper describes an im- 
plemented program called AIS that transforms 
the first type of description into the second 
type. AIS deals only with behavior where each 
repetition changes parameters by the same 
amounts. At present, the summary consists 
of the symbolic average rates of change in pa- 
rameter values and information on how those 
rates would be different if various constants 
and functions had been different. Unlike some 
other approaches, AI§ does not require that 
a repeating behavior be described in terms of 
a set of differential equations. Two examples 
of running AIS are given: one concerns the 
human heart, the other a steam engine. 

INTRODUCTION: I have implemented a program 
called AIS (short for Analyzer of Iterated Sequences) 
that when given a continuous state-description of a sys- 
tem and a sequence of actions or transformations on 
that state, symbolically finds some of the time-averaged 
effects of continually iterating that sequence. The spe- 
cific effects found at present include 1) the symbolic 
average rate of change in parameters that have a net 
increase or decrease iu value with each iteration, and 2) 
how those rates of change would be different with dXer- 
ent values of various constants and functions (sensitiv- 
ity analysis). The sequences handled by AIS are ones 
which have the following “constancy”: the sequence al- 
ways has the same actions in the same order and each 
occurrence of a particular action changes the param- 
eters by the same amounts. An example of such an 
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iterated action sequence is the one taken by a heart in 
going through a beat cycle at steady-state. Effects to 
be found include the average rate at which blood en- 
ters the heart and how increasing the pressure of that 
entering blood sffects that rate. 

A motivation for finding such effects is that while 
modeling some system, there may be some sub-system 
p which iterates a sequence of actions at such a fast 
rate that the rest of the system only responds to p’s be- 
havior averaged over many iterations. Then a steady- 
state model for the entire system would only need a 
description of p’s averaged behavior; p can be modeled 
as constantly iterating the same sequence of parameter 
value changes. Examples of such sub-system and sys- 
tem combinations include 1) the heart and the human 
circulatory system, and 2) an engine and a car. 

Some other approaches of finding the behaviors of 
a continually iterating sequence have combined qual- 
itative simulation with cycle detection [l]. For com- 
plicated systems (such as the heart), these simulations 
predict many possible sequences of actions besides the 
actual sequence. If the actual sequence can be isolated, 
one can use aggregation [lo] to find which parameters 
change as the sequence repeats and use comparative 
analysis [ll] to find the effects of perturbing model con- 
stants. 

Another approach [S] uses piecewise-linear approx- 
imations of differential equations. This approach re- 
quires that one describe a system with a single set of al- 
ways applicable Mere&al equations. Creating such a 
description may often be hard, such as when describing 
a human heart or a steam engine. In contrast, the input 
for both the qualitative simulation approaches and AIS 
can have many sets of simple equations ong with the 
conditions to determine when a particular set is appli- 
cable. 

The next section describes the form of input for AIS. 
Following this are sections on how AIS processes that 
input and on what AIS can output. Afterwards are sec- 
tions that give examples of AIS running on a description 
of a heart and a steam engine, respectively. The paper 
ends with a summary. 
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AIS INPUT: A n input description consists of three 
parts: the parameters which describe the system state, 
static conditions on those parameters, and the sequence 
of actions (transformations) that gets iterated. The da 
scription only has to try to describe what happens in 
a sequence of actions, not necessarily how or why that 
sequence occurs or repeats. 

Parameters are divided by the model-builder into 
four types. The first three types are classified by how 
a parameter behaves as the action sequence is iterated: 

1. 

2. 

3. 

Constant parameters do not change in value at all 
during the iterations. 

Periodic parameters change in value, but the se- 
quence of values repeats exactly with each new ac- 
tion sequence iteration. 

Accumulating parameters monotonically increase 
or decrease in value with each sequence iteration. 

In general, parameters are represented by symbols. The 
constant parameter type also includes numbers and ar- 
bitrary functions of expressions of constant parameters 
such as p[z + 3, s[S]], where z is a constant. The fourth 
type of parameter is the rate at which the action se- 
quence iterates. At present, the rate must be expressed 
as a constant parameter that is a symbol or number. 

The second part of the input are static conditions 
between constant parameters. These conditions are in- 
equalities between numbers and expressions made up 
of constant parameters. The expressions can have alge- 
braic and the more common transcendental functions. 
Also permissible are (partial) derivatives of constant pa- 
rameters which are arbitrary functi0ns.l The inequali- 
ties can be either definitions that are always true or con- 
ditions that are required for the given action sequence 
to iterate. An example of a definition is to say that 
some volume is 2 0. An example of a necessary condi- 
tion is to say that for a normal sequence of actions in 
the heart, (input pressure) < (output pressure).2 

The last part of the input gives the sequence of ac- 
tions (transformations) that is iterated. The sequence is 
partitioned into phases so that each part of a sequence is 
put into exactly one phase and each part where different 
actions are occurring is put in a separate phase. What 
is desired is that all the important and possibly extreme 
parameter values appear at the end of some phase. The 

lSuch a condition only makes a statement of the derivative 
with respect to the symbol mentioned. For example, mentioning 
that 0 < cPf(x)/d x2 says nothing about d2 f(y)/dy2. The deriva- 
tive of a constant parameter here makes sense and may need to 
be described because: 1) the function itseM is not constant, only 
the arguments are; and 2) one may need to describe how an argu- 
merit’s v&e being different would affect the fuuction’s “output”. 

20therwise, all the heart valves will open, letting blood flow 
freely through the heart. 

specific requirements are that the phases must be cho- 
sen so that 1) every part of a sequence (including all 
the parts with parameter value changes) is put in ex- 
actly one phase, and 2) during each phase, every pa- 
rameter’s value is either monotonically non-decreasing 
or non-increasing. 

Beyond these two requirements, a model-builder is 
free to divide a sequence into as few or many phases as 
desired. Also, a model-builder might violate the above 
requirements if the violation’s consequences are judged 
to be negligible. 

For each phase, the input description needs to sup- 
ply an expression for every parameter that changes in 
value during that phase. For a periodic parameter x, 
the corresponding expression gives w’s value at the end 
of the phase.8 For an accumulating parameter cy, the 
expression gives the change in o’s value each time that 
phase occurs. An expression may have algebraic and the 
more common transcendental functions. The expres- 
sion’s arguments can consist of constant parameters, 
periodic parameters’ values at the beginning or end of 
that phase, and/or accumulating parameters’ change in 
values” each time that phase occurs. 

The limitations on describing parameter changes are 
to assure that each occurrence of a phase alters the 
parameters by the same constant amount. Without 
some restrictions on how phases alter parameters, it 
will be hard to impossible for AIS to determine the ef- 
fects of steadily iterating the sequence of actions. There 
are at least two interesting alternatives to having con- 
stant alterations. The first is a generalisation of con- 
stant alterations and has as what stays constant be the 
change in the amount changed (or an even higher or- 
der of change). The second is having the alterations 
form a converging series [9, Ch. 181. Neither of these 
alternatives has been needed so f&r to model a “steadily 
running” device. 

It is sometimes difllcult to provide expressions for the 
periodic parameter values at the end of a phase. For 
example, one might not be able to explicitly give the 
pressure at any point in a water pipe circuit. Unfortu- 
nately, if one provides only changes to the periodic pa- 
rameter values, finding their actual values during the se- 
quence would be impossible or hard, involving symboli- 
caJly solving simultaneous (nonlinear) equations. With 
only changes in their value solved for, periodic param- 
eters would be just like accumulating parameters that 
have a sero net change on each sequence iteration. 

3Due to the requirements on choosing phases, a periodic pa- 
rameter’s value at a phase’s be-g and the preceding phase’s 
end is the same. And because the sequence iterates, the last phase 
in the sequence is also considered to “precede” the tit phase. 

“Only the change in value can be referred to because it stays 
the same from one iteration of the sequence to the next. The 
actual va3ue changes with each iteration of the sequence. 
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Each phase also has a list of the conditions that either 
are true by definition or need to be true for the phase to 
occur as stated. The conditions are inequalities between 
expressions and numbers. Note that the definitions of 
phase expressions and conditions are slightly Merent 
from the definitions given earlier for static conditions 
between constant parameters. 

AIS makes the “closed world” assumption that all 
changes are mentioned. So if some phase’s description 
does not mention a new value for a parameter o, at is 
assumed not to change in value during that phase. 

Here is an example of an input description for a 
phase. Let XB stand for parameter X’s value at the 
beginning of a phase, XE for the value at the end, and 
XC for X’s change in value when the phase occurs. Fur- 
thermore, let a be an accumulating parameter, Q and t 
be periodic parameters, and c be a constant parameter. 
The sample phase description is: 

t5 5 !tE), qE = (c + ac), ac = (qB. p) 

Whenever this phase occurs: r’s value is constant, q is 
> 5 at the phase’s end, u changes by the product of 
q’s value at the phase’s beginning and V’S value during 
the phase, and q ends with c’s value plus a’s change in 
value. 

AIS PRELIMINARY PROCESSING: Before 
producing output, AIS needs to solve the equations 
given in the phase description and to check for obvious 
inconsistencies between the equations and given condi- 
tions. 

To solve the equations, AIS computes for each phase: 
the change in value for each accumulating parameter, 
and the beginning and end values for each periodic pa- 
rameter. These values and changes are expressed in 
terms of constant parameters. The beginning value of 
each periodic parameter is taken from that parameter’s 
value at the end of the previous phase.s The solver cur- 
rently handles only simple substitutions of the solved 
for the unsolved. Complicated equations like quadrat- 
ics are left unsolved. 

As 
tions 

an example of equation solving, suppose the equa- 

are given, where Y is a constant and P is a periodic 
parameter that does not change during the phase. Let 
AIS find VB = 2 and P = Pi by looking at the values 
of V’ and PE in the previous phase (2 and Pi are 

5The reason is given in a previous footnote. Also mentioned 
there is the consideration of the last phase in the sequence as 
“preceding” the first. 

constants). Then AIS derives VE = Y, P = Pi, AC = 
Y-Z,WC =Pi*(Y-2). 

To check for obvious inconsistencies, AIS enters the 
solved equations, the assumption that the rate of se- 
quence repetition is positive, and the conditions given 
in the input (with periodic and accumulation param& 
ter values substituted by the appropriate expression of 
constants) into the Bounder system [S]. This system 
checks for consistency by deriving an upper and lower 
numeric bound for every constant parameter. An in- 
consistency is declared if some parameter’s lower bound 
is greater than its upper bound. Bounder derives the 
bounds with the bounds propagation and substitution 
methods. The former method reasons over numeric 
bounds. The latter method will also perform substitu- 
tions of symbolic expressions for symbols. For example, 
if c > d + 5, then the latter can find a lower bound on 
(c-a) of c - (c - 5) = 5. In addition to these methods, 
the Bounder system uses an algebraic simplifier. These 
methods are also used to perform the bounding and in- 
equality testing needed in the steps described below to 
produce the output. 

AIS OUTPUT: After performing the above equs 
tion solving and inconsistency checking, AIS can infer 
the following about continually repeating the input se- 
quence: 1) the average rate of change in an accumulat- 
ing parameter including numeric bounds on that rate 
and the relative contribution of each phase to that rate, 
and 2) how that rate would differ if a constant symbol 
or function had a different value (sensitivity analysis). 

To derive the average rate of change in an accumulat- 
ing parameter u, AIS locates the change in that param- 
eter’s value (a~) during each phase of a sequence, adds 
all those changes together, and then multiplies the sum 
by the rate of cycle repetition. Next AIS finds numeric 
bounds on this rate. Then AIS tries to determine which 
phases helped to increase or decrease this rate by ob- 
serving which phases have ac ues that are bounded 
above and/or below by zero. As an example of deriving 
a rate of change, let A be an accumulating parameter 
and R be the rate of sequence repetition. Furthermore, 
let two phases in this sequence alter A’s value. One 
phase has AC = C and the other has AC = K, where 
C and K are constant parameters. Then the average 
rate of change in A is dA/dt = R l (C + K). 

After deriving an average rate for a, AIS can observe 
how that rate would be different if any one constant 
symbol or function were different. For each symbol, 
AIS takes the first two (symbolic) derivatives of the rate 
with respect to that symbol, obtains numeric bounds on 
those derivatives, and tries to determine which phases 
helped to increase or decrease each derivative. Each 
constant symbol is considered to be independent of all 
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other symbols. AIS performs the phase determination 
task by looking at the derivatives (with respect to the 
symbol) of each phase’s contribution to the rate (the 
phase’s QC value multiplied by the sequence repetition 
rate) and observing which are bounded above and/or 
below by zero. Those phases with a derivative of UC 
that is > 0 made a positive contribution to the derim 
tive, etc. 

At present, AIS also tries to plot a “qualitative” 
graph of the rate versus each constant symbol. The 
first derivative described above provides slope infor- 
mation and the second provides convexity information. 
AIS makes the assumption that the rate versus con- 
stant function is smooth (differentiable). If the second 
derivative can be both more OP less than zero, AIS gives 
up. Otherwise, depending on how the second derivative 
iz bounded by zero and on how the first derivative’s 
bounds relate to zero, AIS determines which of the fol- 
lowing shapes the curve may possibly have: 

\ 3 -,/,L,u,J,f ,nand/,>. 

For example, if the 1st derivative is < 0 and the 2nd is 
= 0 (such as when the rate is -3~ and the symbol is 
z), then the curve shape is \. However, if the 2nd is 
instead > 0 (such as when the rate is exp[-z]) then the 
shape is L . If the 1st derivative has no bounds, but 
the 2nd is < 0, then the possible shapes are r , n 
or T. 

In the future, the &S system [6] will probably be used 
to perform the plotting. The advantage of&S is that it 
can detect complications like discontinuities and sketch 
curves with such complications. 
can be used, it needs to be extended to handle functions 
for which derivative and smoothness information exists, 
but where the exact analytic form is unknown. Such 
functions are often used in system descriptions. 

Besides deriving the effects of symbols having dZ 
ferent values on a rate, AIS also derives the effects of 
functions having different values. One cannot take a 
derivative with respect to a function. But if one wants 
to observe how rates would be different if function f 
were larger in value, one can substitute f(z) + e(z) for 
every occurrence of p(z) in the rate (making the side 
assumption that V2 : [e(z) > 0]), symbolically subtract 
the original rate from this altered rate, and bound the 
difference. If the difference is > 0, then if f were larger, 
the rate would be also, and so on. 

HEART EXAMPLE: This section describes the 
current version of AIS running on a model of the beating 
of the part the human heart called the left ventric1e.e 

b) Systole a) Diastole 
v 

I 

f 
Vcz[P] v 

-P l- / 
Vd[P, HR] 

P 
c) Beat Path 

Vs[Po, HR] ;::-- ic kL. 
Pi PO 

P 

Figure 1: Curves for a Left Ventricle 

The ventricle is a chamber with two one-way valves: 
one valve lets in blood from the lungs at a pressure 
of Pi, and the other valve lets out blood going to the 
rest of the body at a pressure of PO. The chamber 
consists of muscle which can either relax or contract. 
When relmed (diastole), the ventricle volume (V) ver- 
sus pressure (P) curve (Vd[P]) is roughly as shown in 
Figure la. When contracted (systole), the V versus P 
curve (Va[P, HR]) is roughly as shown in Figure lb. 
The symbol HR appears because with Vs, V decreases 
as the rate at which the ventricle contracts and relaxes 
increases. This rate is nown as the heart rate (HR). 
Figure lc shows with a dashed line the V versus P path 
that ventricle takes as it contracts and relaxes once (a 
beat sequence): 1) The ventricle contracts, but no blood 
moves. So, V stays the same while P increases to PO. 

ove from CL to b in the diagram. 2) The ventricle con- 
tinues contracting, but now, blood is ejected out the 
output valve. P stays the same while V decreases to 
Va[Po, HR]. Move from b to c. 3) The ventricle now 
starts to relax and the blood movement stops. V be- 
comes constant as P decreases to Pi. Go from c to d. 
4) The ventricle continues relaxation, but now blood 
enters from the input valve. P stays the same while V 
increases to VIEPi& Go from d back to o. 

The input to AIS has the following: The symbol 
HR gives the rate at which the ventricle beat se- 
quence repeats. The constants are Pi, PO, Vd[Pi] and 
V~[PQ, Ha].’ The periodic parameters are P and V. 
The accumulating parameters are the amount of work 
done by the blood in moving through the ventricle (W), 
and the amount of blood that has entered the ventricle 
(Bi) and left the ventricle (Bo). The static conditions 
on the constants are: 

sThe description is based on various texts and articles [S, $1 

and makes many assumptions. One assumption is that blood is 
an incompressible fluid withont inertia. 

‘Pi and PO arc assumed to be constant during the ventricle 
beats. These assumptions then force Vd[PsJ and Va[Po, HR] to 
be also constant during the beats. 
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Pi < PO, VcZ[Pi] > h[Po, HR], 0 5 Vd[Pi], 
0 5 Vs[Po, HR], 0 < d(Vd[Pi])/cZ(Pi), 

0 > ~Z~(Vd[Pi])/ci(Pi)~, 0 > b(Vs[Po, HR])/a(HR), 
0 < B(Vs[Po, HR])/B(Po), 

0 < 82(V4Po, HR])/B(Po)? 

WIost of the conditions help describe the shape ofVd[Pij 
and Vs[Po, HR]. There are four phases in the sequence. 
Each phase has a name, condition(s), and equation(s) 
for value changes. In order, the phases are: 

I. 

2. 

3. 

4. 

hovolumetric contrition: 0 5 v, PE = PO. 

Ejection: 0 < VB, 0 2 VE, VE = Va[Po, HR], 
wc= -P ’ a&C, BoC = VB - VE. 

bovdumetPic bhxation: 0 5 v, PE = Pi. 

Filling: 0 5 v-, 0 5 I$, v= = vrd[Pi], WC = 
P~B~c,B~c=VE-VB. 

After solving these phases’ equations, AIS discovers 
the following average rates of change for the accumu- 
lating parameters and bounds on those rates: 

d(W)/& = ((Pi l (Vd[Pi] - Vs[Po, HR])) 
+(-PO l (Vd[P~ - Vr[Po, HR]))) l HR 

d( Bi)/dt = HR l (Vd[Pi] - vS[PO, HR]) > 0 (1) 

Also, d(Bo)ldt = d(Bi)/dt. One can show that 
dW/dt < 0, but the bounding mechanism cannot pit 
this up. In looking at the contributions of the phases 
to these rates, AIS discovers that the ejection phase is 
the only phase to affect d(Bo)/dt, making it as positive 
as it is. Similarly, the filling phase is the only phase 
to affect d(Bi)ldt. AIS can deduce that the ejection 
and filling phases are the ones that &ect d(W)/&, but 
cannot deduce how they affect d(W)/&. 

After finding the rates, AIS derives and bounds the 
first two derivatives of those rates with respect to each 
constant symbol, and tries to give the shape of the curve 
of each rate versus each constant. For d(Bi)/cZt, its 1st 
derivative with respect to HR is > 0, but no bounds 
are found for the 2nd derivative. No curve shape is de- 
duced. With respect to the constant Pi, the 1st derivse 
tive is > 0 but the 2nd is < 0. Assuming smoothness, 
AIS deduces a f shape for d(Bi)/dt versus Pi. With 
res ect to PO, both derivatives are < 0, so the curve has 
a -P shape. These results also apply to d(Bo)/dt. As 
a check on the ventricle model, these rate shape results 
are compared to experimental results. The results for 
Pi and PO agree [7]. FOP HR, the AIS and experimental 
results are incomparable because the latter came from 
intact systems where changing HR can change Pi and 
PO. 

FOP the rate dW/cZt, the only bound AIS can derive is 
that this rate’s second derivative with respect to either 

Pi or PO is > 0. So fez cZW/dt versus either Pi and PO, 
the possible curve shapes are L, U or 4. 

For the Vd and VB functions, AIS deduces that if 
VaZ were larger, both the d(Bi)/dt and d(Bo)/dt rates 
would be also. But if VI were larger, these rates would 
be smaller. These results agree with the description in 
PI- 

When modeling a circulatory system that has been 
averaged over many heart beats and is in a steady-state, 
such as done in [3, $1, most of the system’s mechanics 
can be modeled by using direct current electrical circuit 
analogies (such as [pressure drop] = [resistance]*[fiow]). 
Too complicated to be modeled this way is the part of 
the mechanics that relates the Pi, PO, HR, Vs, and 
Vd for each ventricle to the rate at which blood flows 
through that ventricle (d(Bi)/dt = d(Bo)/dt). Current 
modeling efforts either directly use empirically derived 
relationships (like [7]) OP derive the needed equations 
by hand Gem an AIS-input-like description (done in 
[$I). AIS can perform the latter derivations automati- 
cally: equation (1) found by AIS for d(Bi)/dt provides 
the desired relationship for the left ventricle. The right 
ventricle is similar. Actually9 to use this relationship 
numerically, one must be more specific about the Vr 
and Vd curves, such as specifying that Vd[2] = log 2. 

Other than needing more specific curve shapes, the 
AIS d(Bi)/dt q t e ua ion is similar to the equations de- 
rived by others. The differences are caused by modeling 
with slightly different sets of assumptions and beliefs on 
what relationships exist and are important. 

STEAM ENGINE EXAMPEE: This next exam- 
ple of running AIS concerns a simple steam engine (sim- 
plifled version of the ones in [2]). This engine has one 
cylinder and a piston that slides b and forth along 
the inside of that cylinder. The piston also covers the 
main opening in the cylinder. The sequence of actions 
is that the piston slides further out in the cylinder and 
then back in. As piston slides out, the volume contained 
by the cylinder and piston combination (V) increases, 
moving from a low value of VI to a high of Vh. Steam 
(at a pressure of Pi and a temperature of Ti) is let 
into the cylinder from V = VI to V = Vez. From 
V = Ve2 to V = Vh, no steam is let in or out (steam 
in the cylinder expands adiabatically [4]). At V = Vh, 
a flywheel (connected to the piston via a crankshaft) 
pushes the piston back into the cylinder. As the piston 
slides back in, V decreases from a value of Vh back to 
VI. From V = Vh to V = Vcp, steam is let out of 
the cylinder via an exhaust port (at a pressure of PO). 
From V =VcptoV= VI, no steam is let in OP out 
(steam in the cylinder is compressed adiabatically). At 
V = VI, the sequence repeats. The model makes many 
assumptions, including one that steam behaves almost 

YEH 417 



like an ideal gas. 
The parameters are: The symbol RPM (for revolu- 

tions per minute) gives the rate of sequence repetition. 
The constants are Pi, Ti, PO, VI, Vez, Vcp, Vh, R and 
k. R is the constant in the ideal gas law PV = nRT, 
and HR is the molar specific heat of steam at constant 
volume [4]. The periodic parameters are V and the 
pressure inside the cylinder (P). The accumulating pa- 
rameters are the amount of work done in driving the 
piston (W), the energy of aI.I the steam entering the 
cylinder (Ei) and leaving the cylinder (Eo), and the 
amount of steam that has entered the cylinder (Ai). 

Static conditions on the constants are: 

O<Po<Pi,O<VZ<Vez<Vh,VZ<Vcp<Vh, 
0 < Ti, 0 < R, 3/2 5 k 

The sequence has six phases, each with a set of phase 
equations. After AIS solves these phase equations, it 
deduces the average rates of change for the accumulat- 
ing parameters. For example, 

d(Ei)/dt = (k l VI l (Pi - PO l (Vcp/VZ)(l+l/k)) 

+Pi l (Vez - VI) l (I+ k)) l RPM 

AIS can determine which phases affect these rates, but 
cannot always determine how these phases affect the 
rates. A reason for this is that the bounding algorithms 
do not always find the tightest bounds on a given ex- 
pression. This reason also causes AIS’ inability to put 
numeric bounds on any of the rates. 

In addition, this general shortcoming affects AIS’ 
ability to bound the derivatives of the rates with re- 
spect to various constants. AIS cannot bound the 1st 
derivatives of any rate with respect to RPM, nor bound 
any of the 1st derivatives of the W rate. FOP the Ai, 
Ei and Eo rates, AIS can do better. FOP example, the 
1st derivative of d(Ei)/dt with respect to Pi is > 0 and 
the 2nd is = 
/ 

0, so the d(Ei)/dt versus Pi curve has a 
shape. 

SUMMARY: A program calied AIS has been im- 
plemented and tested. It takes in a description of a 
sequence of actions and tries to find information associ- 
ated with the symbolic average rate of change in various 
parameters. 

Compared to some other work on automatically an- 
alyzing dynamic systems, AIS is limited in that it only 
analyzes systems which steadily repeat a 6.xed sequence 
of parameter value changes. In exchange for this hmi- 
tation, AIS does not get lost trying to find the iterated 
sequence, nor is AIS limited to descriptions in the form 
of a single set of differential equations. So work on 
AIS helps further the ability to automatically analyze 
dynamic systems, a goal of much work in artificial in- 
telligence. 
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