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Abstrirct’ 

The Blackboard Instructional Planner is a blackboard-based dynamic 
planner for intelligent tutoring systems. It generates a sequence of 
lesson plans customized to a student’s background, and adaptively 

replan, to handle student requests and unexpected changes to the student 

model or time remaining. The planner is designed to be generic to tutors 
that teach troubleshooting for complex physical devices. It controls the 
Lower Hoist Tutor, a prototype tutor for the Mark-45 naval gun mount. 
This tutor teaches troubleshooting of the lower hoist, a complex 
hydraulic-electronic-mechanical assembly of the Mark-45 The tutor 
implementation demonstrates the planner’s operation and means of 

integration. 
This research contributes to an understanding of dynamic 

instructional planners, planner-controlled tutors, and ITS control 

architectures. The planner implementation shows precisely how a 

blackboard architecture can be used to realize a dynamic instructional 
planner. Although experimental, the tutor implementation demonstrates 
how such a planner can be embedded in an intelligent tutoring system 
and what the respective roles of the different components of a pianner- 
controlled tutor are. Finally, the analysis of the planner’s use of the 
blackboard architecture clarifies requirements for control architectures in 
intelligent tutoring systems and trade-offs made in choosing alternatives. 

Introduction 
The Blackboard Instructional Planner (BB-IP) is a 

blackboard-based dynamic planner for intelligent tutoring 
systems. Although experimental, the planner 
demonstrates key plan generation and replanning 
capabilities required to handle common tutorial situations. 
It generates a sequence of lesson plans customized to a 
student model inferred from a pre-instruction 
questionnaire. The content, sequencing, and length of 
lessons are determined by the infefied student model, by 
the time allotted for lessons, by the target skill to be 
taught, and by the subject domain. These lesson plans are 
revised during instruction in response to student questions 
and requests, changes in time remaining for lessons, and 
modifications to the student model. 

‘This project was sponsored jointly by the Manpower, Personnel and 
Training R&D Committee of the Office of the Chief of Naval Research 
(under contract NOOO14-86-C-0487); the Air Force Human Resources 
Laboratory: the Naval Training Systems Center; and the Naval 
Personnel Research and Development Center. 

The goal of this research is to increase the flexibility 
and effectiveness of computer-based tutoring systems by 
applying dynamic planning techniques to control the 
tutor’s actions. Traditional CAl systems do not plan at all 
although they can deliver very well-crafted lesson plans. 
Typically, however, they have no domain expertise, 
customize only via branching or problem selection, and 
cannot use opportunistic teaching methods. They must 
limit student questions and requests since they cannot 
reason about the domain or the student’s lesson plan 
during instruction. On the other hand, most intelligent 
tutoring systems incorporate domain expertise and student 
modeling so that they can apply opportunistic teaching 
approaches in the course of student problem-solving or a 
dialog about the subject matter. These tutors tend to be 
used as adjuncts to classroom instruction since they 
assume primary instruction is delivered elsewhere. 
Generally, lesson planning is not done although recent 
systems have focused on sophisticated local discourse 
planning. The purpose of the Blackboard Instructional 
Planner is to integrate these two complementary means of 
instruction - plan-based and opportunistic - for tutors and 
domains where this is most appropriate. 

Our approach to this control problem is called 
dynamic instructional planning. In this approach, an 
initial instructional plan is generated by the planner. This 
plan is customized to an inferred student model. It takes 
into account the resources available to the tutor (e.g., 
time). The tutor interprets this plan to control its delivery 
of instruction. The planner is dynamic since it can later 
revise this plan during instruction as the tutorial situation 
changes. The tutorial situation changes as the student 
model changes, the amount of time available changes, and 
as student-initiated interactions interrupt the tutor’s plan. 

The planner operates as the control element of an 
intelligent tutoring system, as shown in Figure 1 (arrows 
indicate data flow). The planner generates an initial 
instructional plan customized to the inferred student 
model. The actions in the instructional plan are 
procedures that control the text, highlighting, and 
animation displayed on the student interface. The 
interface also accepts student input, including student- 
initiated questions and requests that can interrupt these 
instructional procedures. The library of possible 
instructional procedures the planner can draw upon is part 
of the courseware. The courseware includes curriculum 
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materials such as test questions and troubleshooting cases. 
The domain expert evaluates student performance on 
these cases, demonstrates correct troubleshooting, and 
provides answers to student questions about the domain. 
These evaluations update the student model. Changes to 
the student model cause replanning if student progress is 
much better or worse than expected. 

Figure 1: The planner and other ITS components 

The planner is designed to be generic to tutors that 
teach troubleshooting for complex physical devices. It 
has been implemented as the controller for the Lower 
Hoist Tutor, a prototype tutor for the Mark-45 naval gun 
mount, to demonstrate the planner’s operation and means 
of integration. The tutor teaches troubleshooting of the 
lower hoist assembly, a complex hydraulic-electronic- 
mechanical assembly of the Mark-45, by first imparting a 
mental model of the device and its operation. A 
STEAMER-based (Hollan, Hutchins, & Weitzman 1984) 
display of the lower hoist schematic has been adapted for 
use in exposition, assessment, and troubleshooting 
practice. 

Overview of Operation 
Figure 2 provides an overview of the operation of the 

Blackboard Instructional Planner. The generic skills 
knowledge base is a graph with nodes representing 
device-independent troubleshooting skills for complex 
hydraulic-electronic-mechanical devices. Arcs represent 
prerequisite relationships among these skills. The planner 
interprets this graph as a very high level strategy for 
teaching troubleshooting. 1 Structure and operation of the 
device must be taught along with possible faults and a 
troubleshooting strategy. The domain knowledge base is 
a semantic network that provides the particulars of the 
structure and operation of the lower hoist assembly of the 
Mark-45. It includes a parts breakdown and the sequence 
of events (part state changes) that occur in normal 
operation. The circled X in Figure 2 means that a 
Cartesian product of the two knowledge bases is formed to 
produce the graph of domain-speczpc skills. For example, 
one skill in the generic skills knowledge base specifies 
that the student should understand the role of each part in 
the device. So for the lower hoist’s 42 parts, 42 domain- 
specific skills result. Each corresponds to understanding 
the role of one particular part. 

‘This strategy is not based on any cognitive theory, rather it was 
inferred from the subject . matter expert’s approach to classroom 
instruction. 

The graph of domain-specific skills acts as a machine- 
generated curriculum graph for the skill of 
troubleshooting the particular device. A three-level 
instructional plan is produced by selecting out skills from 
this graph to teach the student, selecting abstract methods 
to teach the skills, and then selecting specific LISP 
routines consistent with these methods. The plan 
generation process also involves sequencing the lessons 
and lesson plan steps, selecting appropriate parameters for 
the instructional procedures, critiquing the plan as it is 
developed, and revising it to improve discourse flow. The 
result is an instructional plan, which is further broken 
down into a sequence of lesson plans, corresponding to 
individual tutorial sessions. 

Student Model 

I Goals 

Dozn KGwkTp -I I 
DomainSpecific Skill8 

I 

Le8aon 1 Lesson 2 

Figure 2: Overview of BB-IP Planning 

The plan is executed by interpreting the instructional 
procedures. Some of the procedures assess student ability 
through tests or by monitoring task performance. This 
assessment updates the student model, which can in turn 
cause replanning to occur. Replanning occurs when 
student performance is unexpectedly good or bad. It can 
also be initiated when much less time or more time is 
available than expected, or when student questions or 
requests interrupt the tutor’s plan. During replanning the 
plan is edited to add plan steps, remove them, or to alter 
the procedure parameters. Then execution resumes. 

Examples of Plan Customization 
Consider two different student backgrounds and the 

different plans that are generated Suppose the first 
student is deficient in the background area of electronics 
and learns more slowly than the average student. The 
second student has the expected knowledge of hydraulics, 
electronics, and mechanics and learns rapidly. The tutor 
labels the first as Electronics-Deficient, Low-Aptitude and 
the second as Has-Prerequisites, High-Aptitude based on 
the results of a short pre-instruction questionnaire 
covering prerequisite material and general student 
background. The inferred cognitive stereotypes (Rich 
1979) are used to initialize an overlay student model (Car-r 
& Goldstein 1977) that is an overlay of the domain- 
specific skills. 
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The tutor generates quite different plans for these two 
students although the high-level teaching strategy, derived 
from the common generic skills knowledge base, is the 
same. Both plans cover structure and operation of the 
lower hoist and discuss a general troubleshooting strategy. 
Then correct troubleshooting is demonstrated and student 
performance monitored in troubleshooting cases selected 
by the tutor. But the first plan is much longer than the 
second since it provides more layered instruction on lower 
hoist structure and operation, more discussion of how to 
troubleshoot, and specific remedial instruction covering 
the operation of electrically-controlled parts. 

The instructional plan for the Electronics-Deficient, 
Low-Aptitude student consists of five lessons and 51 steps 
(instructional procedures). In the first lesson an 
introduction to lower hoist structure and operation is 
given, followed by a detailed description of the lower 
hoist parts, their location, and their role in lower hoist 
operation. The second lesson explains how solenoids 
operate and then provides a detailed explanation of all the 
part state changes that occur in a normal cycle of 
operation of the lower hoist. This detailed explanation 
interleaves text explaining part state changes with 
animation showing the changes discussed. In the third 
lesson the student must demonstrate his understanding of 
normal operation by successively pointing to the next part 
that should change state and indicating what the new state 
should be. Essentially, the student leads the simulation. 
In the fourth lesson, the tutor discusses the possible faults 
that can occur in the lower hoist. It also discusses how to 
reason from symptoms to possible faults. Then it presents 
a troubleshooting strategy that takes into account part 
change cost, malfunction probability, and split-half 
testing. Finally, troubleshooting is demonstrated for a 
particular case. The last lesson is devoted to letting the 
student practice troubleshooting for various cases with the 
tutor’s assistance. 

The instructional plan for the Has-Prerequisites, 
High-Aptitude student is quite different. Instead of five 
lessons and 51 steps there are only three lessons and 26 
steps. This plan omits much of the layered instruction 
given to the first student. For example, the procedures 
that introduce the structure and operation of the lower 
hoist in a layered fashion are omitted. Similarly, 
procedures that introduce troubleshooting in a layered 
fashion are omitted along with topics that the tutor judges 
to be of lower priority, such as part locations and 
descriptions. Procedure parameters also differ for the 
procedure that monitors student troubleshooting. In the 
second instructional plan the parameters are set to provide 
hints later, tolerate more incorrect actions, and provide 
less assistance with selecting test codes than in the first 
instructional plan. 

Examples of Dynamic Replanning 
Consider an example where a question is asked that 

interrupts the tutor’s presentation. Assume the tutor is 
executing an instructional procedure cahed 

Explain-Subcycles that explains the detailed sequence of 
changes that occur during the operation of lower hoist. 
Midway through the procedure, when a change happens 
to the UVK4 piston, the student interrupts and asks what 
the role of that particular part is. The interruption and 
specification of the question is handled by a menu 
interface. Question templates are used to restrict 
questions to those that can be answered by executing one 
of the tutor’s instructional procedures. 

The tutor can either defer or directly answer the 
question. In this case the tutor chooses to answer the 
question now since the material being asked about will 
not be covered later. To answer the question the current 
procedure is suspended and a step to answer the question 
is inserted. The step Explain-Subcycles is suspended and 
two steps are spliced in after it: 

Explain-Subcycles [subcycles hoist] 
Patch-l :Part-Roles(to-ans-Ques#l) [WKB] 
Patch-I :Explain-Subcycles(cont) [subcycles hoist cant] 

The parameters of each procedure are indicated in 
boldface after the procedure name. They are shown here 
in a more readable format than the internal representation. 
The first step after the interrupted Explain-Subcycles 
procedure answers the question. The second continues 
Explain-Subcycles where it was interrupted. But this is 
not all that happens since the student model is affected 
simply by the student asking the question. 

When the student asks a question about material that 
was covered earlier, the tutor’s belief that the student 
knows that material is diminished. In this case the tutor 
covered the roles of the lower hoist parts earlier. The 
tutor detects that its prior goal, that the student knows the 
roles of these parts, is no longer satisfied and still should 
be. To reachieve this goal it splices in a review of the 
roles of the lower hoist parts before resuming 
Explain-Sub&es. Now the affected portion of the plan, 
after both plan patches have been added, appears as: 

Explain-Subcycles [subcycles hoist] 
Patch-I:Part-Roies(to-ans-Ques#l) [WK4] 
Patch-2:Part-RoZes(to-review) [all hoist parts] 
Patch-2:MuZtipZe-Choice-Quiz [role each hoist part] 
Patch-I:Explain-SubcycZes(cont) [subcycles hoist cant] 

The multiple choice quiz has been added to check that the 
tutor’s review is successful. 

Now plan critics are applied to improve the tutorial 
discourse. There is an abrupt context shift from the 
review of the roles of the lower hoist parts back to the 
detailed discussion of the lower hoist cycle. This shift in 
discourse is smoothed out by adding a step: 
Patch-2:Transition [part roles, subcycles hoist]. 
Another plan critic attempts to remove redundant 
discussions. It ensures that only the first Part-Roles 
procedure discusses UVK4 by removing UVK4 from the 
list of parts discussed by the second Part-RoEes 
procedure. After all the edits, the affected portion of the 
lesson plan appears as shown below: 
Explain-Subcycles [subcycles hoist] 
Patch-l :Part-Roles(to-am-Ques#I) [ WK4] 
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Patch-2:Part-Roles(to-review) [all parts except WK4] 
Patch-2:MuZtipZe-Choice-Quiz [role each hoist part] 
Patch-2:Transition [part roles, subcycles hoist] 
Patch-l :Explain-Subcycles (cant) [subcycles hoist cant] 

Requests are handled similarly. New steps are 
inserted to handle requests. Furthermore, future lesson 
plan steps may be omitted. For example, suppose the 
tutor grants a student request to use the device simulation. 
The tutor monitors the student’s actions. If it believes the 
student has learned material it plans to cover then it will 
omit pending procedures to cover this material. 

Dynamic replanning can also be initiated by 
unexpected changes to the student model. For example, 
as the tutor monitors student troubleshooting performance 
it updates the student model. Each troubleshooting action 
the student selects is compared to an expert’s to compute 
its utility. Repeated inappropriate actions and hint 
requests cause the tutor to revise its belief that the student 
can troubleshoot the device downwards. When the belief 
value falls below a certain threshold, the procedure for 
monitoring student troubleshooting is suspended and 
replanning begins. 

A diagnosis phase is entered where the tutor decides 
why its instruction has been ineffective. It could be that it 
assumed too much of the student, or that an earlier 
method of instruction was inappropriate. Once it has 
decided the cause of the problem it edits the instructional 
plan to address the problem and continues. Only a few 
diagnosis methods have been implemented. One is to 
collect the prerequisites for the skill not learnt and then to 
assess the student’s knowledge of the prerequisites, one 
by one, until a prerequisite is found that the student does 
not understand. Then a review for that prerequisite is 
spliced into the plan prior to the suspended procedure for 
monitoring student troubleshooting. Execution resumes 
with the review before troubleshooting practice continues. 

Other kinds of planning functionality have also been 
implemented, as discussed in detail in (Murray 1990b). If 
there is insufficient time to finish all the activities of a 
lesson then some activities may be deferred until the next 
lesson. All the remaining lesson boundaries may also be 
affected. If there is extra time a useful activity is added to 
take advantage of the time remaining. Incremental 
planning has also been demonstrated. Only abstract 
activities are specified for lesson plan steps with the 
choice of procedure deferred until the step is reached. 

In the implementation of the examples above specific 
decisions had to be made about how to customize plans, 
how to handle student questions, and how to diagnose and 
correct ineffective plans. The claims made in this paper 
are not about these specific decisions, since at present 
there is little guidance from the educational psychology 
literature specific enough to be applied in these situations. 
Other approaches can be implemented that would 
customize plans differently and make different decisions 
about when and exactly how to replan. The claim made is 
that the planner framework - the plan representation, the 
use of blackboard architecture, and the kinds of plan 

editing that can be performed - would support these 
alternative pedagogical approaches as well. 

Plan Representation 
This section presents the hierarchical instructional 

plan representation. There are three levels: 
1. Instructional objectives - goals of the tutor. 

These arc domain specific skills which the 
tutor intends for the student to acquire (e.g., 
can-predict-normal-behavior-hoist). 

2. Activities - abstract methods for achieving 
these goals. The most common activities 
are to cover a topic (e.g., 
cover-topic-part-role-uvk4) or to perform 
assessment for a skill (e.g., 
assess-understands-structure-hoist). 

3. Procedures - instructional routines that 
implement specific activities. 

Multiple procedures are available for the same activity. 
For example, different kinds of tests can be used for 
student assessment. 

t%Jl-EXptE?trt 

robUVK4 

Figure 3: A simple instructional plan 

Figure 3 shows a small instructional plan for teaching 
the structure of the lower hoist, assuming that it only had 
two parts. The top level is the instructional objectives 
level. On it, the top-level instructional objective has been 
broken down into two subordinate (i.e., prerequisite) 
objectives. First, that the student can explain the roles of 
the parts of the lower hoist. Second, that the student 
understands how the different part types operate. These 
objectives are broken down still further. First, the student 
must understand the role of each of the two parts. Then 
since LHKl is a solenoid assembly the student needs to 
understand how solenoids operate. Similarly, since 
UVK4 is a hydraulic valve the student needs to 
understand how hydraulic valves operate. 

The reason that the instructional objectives level is 
important is that it supports rep1anning. BB-IP needs to 
know why it was doing a procedure to determine what to 
do if that procedure fails. This representation of plan 
rationale supports replanning when previously satisfied 
instructional objectives are no longer maintained, or when 
pending instructional objectives are discovered to be 
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already satisfied. 
The next level, the activities level, supports 

incremental planning by allowing methods for carrying 
out the objectives to be represented, without committing 
to specific actions to carry out these methods. There is 
one activity for each terminal skill node plus additional 
activities to improve discourse flow and monitor plan 
progress. The activities cover-topic-role- 1 and 
cover-topic-role-uvk4 simply present text describing the 
role of the two lower hoist parts. The activity 
motivate-topic-structure-hoist has been added to 
improve discourse flow. It explains to the student that it 
is important to understand lower hoist structure in order to 
perform effective troubleshooting. The activities 
cover-topic-solenoid-operation and 
cover-topic-valve-operation present material explaining 
the operation of solenoids and valves. The final activity 
assess-understands-structure-hoist tests the student to 
determine if the plan has had its intended effect. 

The final level, representing a sequence of directly 
executable plan actions, is the procedures level, For each 
activity a single procedure has been chosen to carry it out. 
For example, to cover UVK4’s role the tutor can use 
either Part-Role or Demo-in-Cycle. Part-Role presents a 
textual description of UVK4’s role. It also highlights and 
labels it in the device simulation. Demo-in-Cycle 
demonstrates the part’s operation in the lower hoist cycle 
by animating the STEAMER device simulation. 
Similarly, the topic of hydraulic valve operation can be 
taught either by Student-Exploration or by Demo-Part. 
The first procedure asks the student to use the device 
simulation to explore the operation of a particular valve. 
The second demonstrates different valve states and how 
they affect connecting parts. 

Each procedure is broken down into steps called 
procedure steps. A procedure can be interrupted between 
procedure steps and then resumed later. Typically, a 
procedure step displays another paragraph of text, or 
makes an incremental change to the device simulation 
shown on the student interface. For assessment 
procedures, each procedure step asks a question. 
Procedures are written this way so the student can ask 
questions or make requests between procedure steps. 
Another reason is to monitor procedure execution and 
student progress since the tutor can assess progress or 
lack of progress between procedure steps. If progress is 
insufficient then the tutor can interrupt the procedure to 
adjust its parameters or abandon it altogether. 

Plan Generation, Execution, ancl Repair 
Figure 4 shows the resources used in plan generation. 

The activities library is a set of generic activities (e.g., 
cover-topic, assess-topic, demo-skill) that can be used to 
achieve objectives. The procedures library is a set of 
instructional routines that can be used to achieve activities 
(e.g., Explain-Subcycles). These libraries are part of the 
courseware for the domain, although most of the activities 
and procedures can apply to other similar domains. The 

student model is a resource since it is used to filter out 
those objectives, activities, and procedures that are 
inappropriate for the student. Another resource is the 
library of discourse critics that are used to critique and 
revise the plan during plan generation, and immediately 
after plan editing. Once the plan has been generated, time 
estimates and a simple hill-climbing procedure are used to 
place lesson partitions (see (Murray 1990b) for details). 

Lesson Partitioning 
Algorithm 

Figure 4: Plan generation 

Plan generation and execution occur in phases called 
control phases. These are states where only certain kinds 
of planning actions are performed. BB-IP’s control 
phases are shown in Figure 5. Phases on horizontal lines 
are next to the planning level they affect. Planning 
actions that occur in these phases either add to or modify 
a partially refined instructional plan. The special 
Meta-Level phase decides what plan phase to jump to 
next. 

Consider plan generation first, assuming complete 
top-down plan elaboration. The basic sequence of phases 
is: 

1. Refine Objectives- The top-level 
instructional objective is refined by copying 
prerequisite objectives from the domain 
specific skills. 

2. Assess Objectives - The student is given a 
pm-instruction questionnaire to initialize the 
student model. 

3. Propose Activities - Activities to achieve the 
objectives are proposed. 

4. Prioritize Activities - Numerical priorities 
are assigned to each activity to indicate its 
importance. 

5. Filter Activities - Only those activities 
above a threshold are retained. 

6. Sequence Activities - These activities are 
now sequenced. 

7. Critique Activities - Improvements in the 
discourse flow are made. 

8. Propose Actions - Candidate procedures for 
each activity are proposed. 

9. Select Actions - Heuristics are used to select 
the best procedure for each activity. 
Parameters are set for the procedures. 

10. Sequence Actions - Procedures are 
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Execute 
eta-level 

eta-level 

Meta-level 0 

Monitor 

Meta-level 

figure 5: Control phases in plan generation and execution 

sequenced in the same order as their parent 
activities. 

11. Critique Actions - The plan is again 
critiqued and improved. 

12. Partition Lessons - Partitions are laid down, 
breaking the instructional plan up into 
lesson plans. 

The Meta-Level phases at the end of each horizontal line 
in Figure 5 were not mentioned since they just produce 
the sequencing above. However, when incremental 
planning occurs phases 8,9,10, and 11 are skipped. 

After the Partition Lessons phase execution begins. 
The Meta-Level phase moves the planner into the 
execution loop shown at the right of Figure 5, starting 
with the Execute phase. The planner stays in the Execute 
phase as long as the instructional plan is executing 
smoothly. Interruptions occur when the student model or 
time do not change as expected or if there are student- 
initiated questions or requests. The planner enters the 
Monitor phase and the reason for the plan’s interruption is 
recorded. 

A question or a request is deferred if it will be handled 
later in the instructional plan anyway. Otherwise it is 
granted immediately. In the former case the tutor 
explains why the request is being deferred and continues 
with the Execute phase. In the latter case a step 
performing the procedure that answers the question or 
grants the request is spliced into the lesson plan in the 
Edit phase. The Critiqzle phase adds a transition step then 
execution resumes. The next step to be executed is the 
step satisfying the student’s request. 

An unexpected change to time remaining or the 
student model means that the plan has some flaw. The 
Diagnose phase attempts to infer what is wrong. This 
phase ends when a decision has been made about what the 
problem is. Then the Edit phase either adds or deletes 
lesson plan steps, or alters procedure parameters, 
according to the kind of problem diagnosed. The steps 
added may only be at the activity level, requiring a 
digression back to the plan generation process to select 
procedures. Then this new plan patch is critiqued and 
execution resumes. 

Planning and execution are interleaved through the 
use of control phases and in particular the Meta-level 
control phase. The Meta-level phase alIows suspending 
the execution cycle to return to any point in the plan 
generation process. It also determines when execution 

should resume. This kind of interleaving of control 
phases occurs in incremental planning, in diagnosing plan 
execution problems, in generating initial assessment 
plans, and in elaborating, splicing in, and then executing 
plan repair patches. 

lackboard Architecture and its 
BB-IP is built on the BBl Blackboard Architecture 

(Hayes-Roth 1984), which allows multiple blackboards, 
rather than just one. These are the main blackboards used 
by BB-II’: 

9 Instructional PIan - represents the three-level 
instructional plan. 

+D Student Model - represents the student model. 
* Device - represents the structure and 

operation of the device. 
0 Planner Control - represents meta-level 

decisions such as whether to continue 
planning or start execution. Problems noted 
in the plan’s execution and decisions about 
their cause are also recorded. 

The Device blackboard is not updated during execution; 
the others are. 

The knowledge sources of BB-IP are planning actions. 
They primarily modify the Instructional Plan blackboard. 
The kinds of actions performed are: 

* Plan generation - new objects are added to 
the instructional plan and linked to the 
objects they refine. These objects represent 
objectives, activities, or procedures. 

0 PZan execution - a step in a procedure is 
executed. 

* Pian monitoring - some problem in plan 
execution is noted. For example, the time 
available or student model is not as it should 
be. 

0 Plan diagnosis - a decision is made regarding 
a plan failure. 

0 Plan revision - part of the plan is modified. 
New activities or procedures may be added or 
others deleted. 

The execution cycle of BB-IP is shown in Figure 6. 
Changes to the blackboards are caused either by the 
execution of planning actions, or by student interaction. 
These changes are called events. They trigger knowledge 
sources creating activation records which are placed on 
the agenda. These knowledge source activation records 
or KSARs record the knowledge sources and their variable 
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bindings when triggered. The sckeduler selects the next 
KSAR to run. Then the next KSAR is interpreted. Its 
execution may cause changes to the student interface, the 
instructional plan, or both. This cycle continues until the 
instructional plan has been completed. 

Schedukr 

Figure 6: BB-IP Execution Cycle 

The blackboard architecture facilitates the 
implementation of dynamic instructional planners by 
supporting an explicit plan representation, meta-level 
reasoning, interruptibility, and rapid prototyping. The 
explicit instructional plan representation supports 
dynamic planning by representing plan rationale, future 
unexecuted actions, global resource allocation, and 
constraints on partially refined plans. The use of plan 
critics is also supported. These issues are explained in 
more detail in (Murray 1990b). Other reasons cited 
(Hayes-Roth 1987a) for using blackboard architectures 
such as integrating uncertain data, island driving, and 
providing opportunistic control appear more relevant to 
interpretation applications (e.g., HEARSAY-II (Erman et 
al. 1980)) than this planning application. 

Related Work 
This section considers related work in control for 

intelligent tutoring systems. We consider: 
1. Reactive systems having no plans at all. 
2. Tutors that follow a single fied plan. 
3. Tutors that can only select dynamically 

from stored plans. 
4. Tutors that generate and interpret an 

explicit instructional plan. 
Reactive systems recognize and act upon 

opportunities to provide instruction but do not plan any 
sequence of actions. WEST (Burton & Brown 1979) and 
SOPHIE-I (Brown, Burton, & Bell 1975) are examples. 
Reactive systems such as these are limited to coaching or 
opportunistic tutoring strategies. The student’s actions 
determine the course of the instructional session, not a 
stored or generated plan. Simulated microworlds that 
only allow discovery learning can also be considered 
reactive systems, but it is arguable whether such systems 
are intelligent tutoring systems, although they do apply 
artificial intelligence techniques to education. 

Traditional CAI tutors rely on a single fixed plan. 
The instruction produced may be very good but these 
systems cannot be readily extended to new domains or 
instructional strategies since they procedurally encode 
domain knowledge and teaching methods. To make 

program development practical (i.e., less time 
consuming), their flexibility is quite limited. The tutor 
controls the instructional session, rather than the student. 
Student questions and requests are restricted or 
disahowed. For example, the student typically cannot 
pose a problem for the tutor to solve. 

A considerable increase in flexibility results when 
tutors can dynamically select discourse plans from a plan 
library. MENO-TUTOR (Woolf & McDonald 1984) 
provides these capabilities with pre-stored skeletal plans, 
encoded as default state transitions in an ATN-like 
discourse management network. The network is 
augmented with meta-rules that allow transitions &om the 
execution of one skeletal plan to the execution of another. 
Another tutor, WHY (Stevens & Collins 1977), also 
provides Socratic question and answer dialogs, but it uses 
rules to generate its dialogs. GUIDON (Clancey 1987) 
provides more sophisticated capabilities than either WHY 
or MENO-TUTOR. Its t-rules (tutorial rules) are used 
both as pre-stored discourse plans and as meta-rules to 
control the selection and operation of other t-rules. 
GUIDON’s capabilities are still limited by the lack of an 
explicit instructional plan even though it provides very 
sophisticated dialog management. GUIDON’s dialog can 
be verbose since it does not plan its dialog to determine 
which topics should be stressed and which should be 
deemphasized. Although the user can interrupt GUIDON 
at any time some requests may be disallowed since they 
would invalidate assumptions underlying the t-rule 
currently executing. These and other limitations are 
discussed in more detail in (Murray 1990a). 

Tutors that generate and revise explicit instructional 
plans during instruction are intended to overcome these 
limitations, and support both lesson and discourse 
planning. This paper has described one approach; others 
are described briefly below. A planner-based approach to 
instruction based on applying classical (i.e., STRIPS- 
based (Fikes & Nilsson 197 1)) planning techniques is 
presented in (Peachey & McCalla 1986). The focus is on 
planning lesson content. Unlike the Blackboard 
Instructional Planner, this planner does not address issues 
in resource management, incremental planning, handling 
mixed-initiative instruction, and integrating lesson 
planning and discourse management. Another tutor, IDE- 
Interpreter (Russell 1988), also adopts a planner-based 
approach to instruction to interpret an instructional design 
developed in IDE (Russell, Moran, & Jordan 1988), the 
Instructional Design Environment. It does not rely on 
classical planning techniques but uses a top-down plan 
elaboration approach similar to that presented here. 
However, it does not address issues in procedure 
interruption and the diagnosis of failed plans. The 
handling of mixed initiative instruction is also more 
limited. Finally, the work presented here builds on 
research by MacMillan and Sleeman (MacMillan & 
Sleeman 1987). Their work focused on implementing 
general planner and ITS architectures. The subsequent 
work by the author has focused on the implementation of 
a dynamic instructional planner for a realistic application, 
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rather than developing generic ITS architectures. 
The planner presented here is actually the second 

version of the Blackboard Instructional Planner. The first 
version was much simpler and focused more on discourse 
management and less on lesson planning. Instructional 
actions were simulated and resource management not 
addressed. It was implemented using a high-level 
language describing instructional actions. The 
implementation was modeled after the PROTEAN 
(Hayes-Roth et al. 1987b) blackboard application and its 
ACCORD (Hayes-Roth et al. 1987c) language 
Wework using Hayes-Roth’s BB* environment as 
described in (Murray 1989a). 

esearch Contributions 
The first major contribution of this research is its 

analysis of architectural and planning issues in ITS. 
(Murray 199Ob) presents a more detailed analysis of the 
role of the blackboard architecture than can be provided 
here. Alternative approaches to planning for ITS, and 
trade-offs made between them, are considered in (Murray 
1989b). Two particular architectures for intelligent 
tutoring systems, discourse management networks and 
blackboard architectures, are analyzed in (Murray 199Oa). 
That paper concludes that blackboard architectures 
provide greater support for the implementation of 
dynamic instructional planners, although discourse 
management networks are sufficient for sophisticated 
dialog management where only local planning is required. 

A second research contribution is the implementation 
of the Lower Hoist Tutor. This prototype tutor shows 
how a dynamic instructional planner such as BB-IP can 
be integrated with other ITS components to form a 
complete system. A realistic naval training application, 
teaching troubleshooting of the lower hoist assembly of 
the Mark-45 naval gun mount, has been selected to test 
the planner. Although not yet appropriate for classroom 
use, all instructional actions have been implemented and 
the tutor can deliver about two hours worth of instruction 
on the lower hoist. 

The major research contribution of this work is the 
implementation of the Blackboard Instructional Planner. 
This planner shows precisely how a dynamic instructional 
planner can be implemented in the blackboard 
architecture. The Blackboard Instructional Planner 
generates an instructional plan customized to student 
background and time constraints, then adaptively replans 
to support mixed-initiative instruction, and to handle 
changes to the student model and time remaining. 
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