
Pointing: A Way Toward Explanation Dialogue*

Johanna D. Moore William R. Swartout
Department of Computer Science USC/Information Sciences Institute

and 4676 Admiralty Way
Learning Research and Development Center Marina de1 Rey, CA 90292-6695

University of Pittsburgh
Pittsburgh, PA 15260

Abstract
Explanation requires a dialogue. Users must be al-
lowed to ask questions about previously given expla-
nations. However, building an interface that allows
users to ask follow-up questions poses a difficult chal-
lenge for natural language understanding because such
questions often intermix meta-level references to the
discourse with object-level references to the domain.
We propose a hypertext-like interface that allows users
to point to the portion of the system’s explanation they
would like clarified. By allowing users to point, many
of the difficult referential problems in natural language
analysis can be avoided. However, the feasibility of
such an interface rests on the system’s ability to un-
derstand what the user is pointing at; i.e., the system
must understand its own explanations. To solve this
problem, we employ a planning approach to explana-
tion generation which records the design process that
produced an explanation so that it can be used in later
reasoning. In this paper, we show how synergy arises
from combining a “pointing-style” interface with a text
planning generation system, making explanation dia-
logues more feasible.

Introduction
It has been argued extensively that natural language
interaction is critical to the effective use of expert and
advisory systems (for example, see [Finin et al., 19861).
Further, we have argued that explanation requires a di-
alogue [Moore and Swartout, 19891. In particular, sys-
tems must be able to clarify misunderstood explana-
tions, elaborate on previous explanations, and respond
to follow-up questions in the context of the on-going
dialogue. Moreover, systems must be able to provide
further explanations even when the user cannot ask a
well-formulated follow-up question.

In [Moore and Swartout, 19891 we described a sys-
tem that implements a reactive approach to explana-
tion - one that can participate in an on-going dialogue

*The research described in this paper was supported by
the Defense Advanced Research Projects Agency (DARPA)
under a NASA Ames cooperative agreement number NCC
2-520.

and employs feedback from the user to guide subse-
quent explanations. Our system explicitly plans the
explanations it produces using a set of explanation
strategies. The planning process is recorded to capture
the “design” of the explanation. This design record
tells the system what it was trying to explain, how
it explained it, and what alternative ways could have
been used to explain the same thing. When a user in-
dicates that he doesn’t understand an explanation, the
design record is used to provide the conversational con-
text needed in planning a clarifying response. This sys-
tem demonstrates that dialogue can be supported ef-
fectively by explicitly representing and reasoning about
the “design” of the system’s explanations.

However, building an interface that allows users flex-
ibility in asking follow-up questions poses a difficult
challenge. If the system allows users to pose their ques-
tions in natural language, it must be able to handle
questions or statements that refer to previously given
explanations, e.g.:

Tould you please elaborate on the part about ap-
plying transformations that enhance maintainabil-
ity?”

“Could you please explain that last part again?”

This type of question poses a serious problem for a
natural language understander. The difficulty arises
because such questions make reference to items in the
domain of discourse as well as to the discourse itself,
so that the natural language analysis system must be
capable of understanding both comments made at the
object level (about the domain) and comments made
at the meta-level (about the discourse). Further, as the
first sentence shows, the two levels may be intermixed
in a single question. To our knowledge, these refer-
ential problems are beyond the capabilities of current
natural language understanding systems. Such difficul-
ties mean that it will be hard to achieve dialogue-based
explanation capabilities if we rely solely on natural lan-
guage understanding techniques for accepting feedback
from the user.

Fortunately, there is another approach, which we de-
scribe in this paper. The idea is to provide the user

MOORE AND SWARTOUT 457

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

with a hypertext-style interface, i.e., an interface that
allows the user to point to the portion of the system’s
explanation that he doesn’t understand or wants fur-
ther clarified and then provides a menu of questions
that may be asked about the highlighted text. By al-
lowing the user to point to the text he doesn’t un-
derstand, many of the difficult referential problems in
understanding natural language can be avoided. How-
ever, for such an interface to be feasible, the system
must be able to understand what the user is pointing
at; i.e., the system must understand its own explana-
tions. Because our system explicitly plans its expla-
nations and records the planning process, it retains
the intent behind the explanation, and thus can un-
derstand what the user is pointing at.

It is important to note that while we are drawing
on a hypertext-like interface, the system is not a hy-
pertext system in the traditional sense; i.e., it is not
organized as a collection of canned pieces of text in-
terconnected by typed links. Our system differs from
a hypertext system in several important ways. First,
our system creates text dynamically in response to the
user’s need for explanations. This text can therefore
be tailored to a particular user and situation. A hy-
pertext system would have all the text pre-canned and
the user would have to browse through it to find the
information he requires. The text cannot be tailored
to a particular context.

In a hypertext system, all the things that can be
pointed at have to be worked out in advance. It is
easy to imagine that users may have questions about
items in the texts that were not envisioned, and hence
not provided for, by the hypertext designers. In our
system, what can be pointed at is determined dynam-
ically, and the links are not worked out in advance.
(Indeed, since the texts are not written in advance, it
would be difficult to create the links in advance.)

Moreover, as we will see in a later example, what
follow-up questions are meaningful is also highly
context-dependent. Therefore, the preceded and fixed
interconnections employed in a traditional hypertext
system would offer the user many possible “links” (cor-
responding to follow-up questions) that the user might
find superfluous. Since one of the main problems with
hypertext systems is that users get lost in the net-
work and may even forget what it was they were orig-
inally seeking [Carando, 1989, Halasz, 19881, it seems
especially important to present a confused user with a
small set of pertinent follow-up questions as opposed
to a very large set of questions, many of which are ir-
relevant or even ridiculous. Presenting a user with a
follow-up question that the user thinks has just been
answered may cause the user to think that he’s even
more confused than he actually is. In our system, dia-
logue context (provided by the text plan record) and a
user model are used to prune the list of possible ques-
tions down to those that appear most relevant.

In this paper, we describe the “pointing” interface

we have implemented and combined with our text plan-
ning generation system. This combination acts in syn-
ergy to support explanation dialogues. The point-
ing interface allows us to avoid some difficult prob-
lems in natural language understanding, while the text
planning approach to generation allows us to achieve
greater flexibility and sensitivity to context than can
be provided with the pre-canned links and text strings
of traditional hypertext systems.

Overview of the Reactive Approach

Our explanation facility is part of the Explainable Ex-
pert Systems (EES) framework, an architecture for
building expert systems that facilitates both explana-
tion capabilities and system maintenance [Neches et
al., 19851. Using EES, we constructed the Program
Enhancement Advisor (PEA), an advice-giving system
intended to aid users in improving their Common Lisp
programs by recommending transformations that en-
hance the user’s code.’ The user supplies PEA with
the program to be enhanced. PEA begins the dialogue
with the user by asking what characteristics of the pro-
gram he would like to improve. The user may choose to
enhance any combination of readability, maintainabil-
ity, and efficiency. PEA then recommends transforma-
tions that would enhance the program along the chosen
dimensions. After each recommendation is made, the
user may accept, reject, or ask questions about the
recommendation.

An overview of the explanation generator and its re-
lationship to other components in the system is shown
in Figure 1. When the user provides input to the sys-
tem, the query analyzer formulates a discourse goal
(e.g., make the hearer know a certain concept, per-
suade the hearer to perform an action) representing an
abstract specification of the response to be produced
and posts this goal to the text planner. The plan-
ner then searches its library of explanation strategies
looking for candidates that could achieve the current
goal. In general, there may be many strategies capa-
ble of achieving a given goal and the planner employs
a set of selection heuristics to determine which of the
candidate strategies is most appropriate in the cur-
rent situation. These selection heuristics take into ac-
count information about the hearer’s knowledge state
(as recorded in the user model), the conversation that
has occurred so far (as recorded in the dialogue his-
tory), and information about whether or not a strategy
requires assumptions to be made. Once a strategy is
selected, it may in turn post subgoals for the planner
to refine. Planning continues in a top-down fashion un-
til the entire plan is refined into primitive operators,
which in our system are speech acts ([Searle, 19791)
such as INFORM and RECOMMEND.

‘PEA recommends transformations that improve the
“style” of the user’s code. It does not attempt to under-
stand the content of the user’s program.

458 INTELLIGENTINTERFAu~~

Explanation Generator

response

Figure 1: Architecture of Explanation System

As the system plans explanations to achieve its dis-
course goals, it records the goal/subgoal structure of
the response being produced. In addition, it keeps
track of any assumptions it makes about what the
user knows, as well as alternative strategies that could
have been chosen at any point in the planning process.
Once a text plan is completed, it is recorded in the
dialogue history and passed to the grammar interface
to be transformed into a form suitable to be passed,
a sentence at a time, to the Penman text generation
system [Mann and Matthiessen, 19831 for translation
into English. After producing an utterance, the sys-
tem awaits the user’s feedback. The user may provide
feedback in several ways. He may indicate that the ex-
planation was understood and therefore that the sys-
tem can move to a new topic. He may ask one of a
prescribed set of follow-up questions. In addition, in
cases where the user cannot formulate a question, he
can type “Huh?” and the system will provide an elab-
orating or clarifying response. Alternatively, he can
use the “pointing” interface which is the topic of this
paper, and point to the portion (noun phrase, clause,
or sentence) of the explanation that he finds problem-
atic, and a menu of follow-up questions the system can
answer about that portion of text will appear.

The completed text plans stored in the dialogue his-
tory provide the dialogue context the system needs to
respond appropriately to the user’s feedback. A com-
pleted text plan is an explicit representation of the

planning or “design” process that produces an explana-
tion. As described in [Moore and Paris, 19891, a com-
pleted text plan represents the roles individual clauses
in the resulting text play in achieving discourse goals,
as well as how the clauses relate to one another rhetor-
ically. In addition, information about what entities are
salient at each point in the explanation (attentional in-
formation) can be derived from a text plan. In previous
work, we have demonstrated that this context can be
used to disambiguate follow-up why-questions [Moore
and Swartout, 19891, to select perspective when de-
scribing or comparing objects [Moore, 1989a], to avoid
repeating information that has already been communi-
cated [Moore and Paris, 19891, and to allow the system
to recover from failures when feedback from the user
indicates that he hasn’t understood the system’s ut-
terance [Moore, 1989b]. In this paper we show how a
completed text plan allows the system to provide an in-
telligent hypertext-style interface, one that provides a
context-sensitive menu reflecting the ongoing dialogue.

An Example Dialogue
We have found that having the text plans of the sys-
tem’s responses recorded in the dialogue history makes
it possible to automatically generate a menu of possible
follow-up questions the user may wish to ask about an
utterance. Because the text plans provide information
about the context in which the highlighted text ap-
pears, questions that would appear redundant to the

MOORE AND SWARTOUT 459

SYSTEM What characteristics of the program would you like to enhance? PI
USER Readability and maintainability. PI

.

SYSTEM YOU should replace (SETQ X I) with (SETF X 1).
USER Why?

SYSTEM I’m trying to enhance the maintainability of the program by applying

transformations that enhance maintainability. SETQ-TO-SETF is a trans-
formation that enhances maintainability.

Figure 2: Sample Dialogue

PI
PI
PI

user can be ruled out.
For example, consider the sample dialogue with our

system shown in Figure 2. In this dialogue, the sys-
tem recommends that the user perform an act, namely
replace (SETQ x 1) with (SETF x 1) (line [3]). The
user, not immediately convinced that this replacement
should be made, responds by asking “Why?” (line [4]).
Because the user’s why-question follows a recommen-
dation, the query analyzer interprets it as a request
by the user to be persuaded to do the recommended
act. In our text planning formalism, discourse goals
are represented in terms of the effects that the speaker
(the PEA-system) wishes to have on the hearer (the
user). In this case, the discourse goal posted to the
text planner is: (PERSUADED USER (GOAL USER (DO USER
REPLACE-~) 1) where REPLACE-I is the act of replacing
(SETQ x 1) with (SETF x 1). This goal expression can
be paraphrased by saying that the system now has the
goal to achieve the state where the hearer is persuaded
to adopt the goal of performing the replacement.

Figure 3 shows the final result of the planning
process, i.e., the completed text plan for achiev-
ing the goal (PERSUADED USER (GOAL USER (DO USER
REPLACE-~))) .2 Basically this text plan does the fol-
lowing. To persuade the user to do an act, the system
motivates that act in terms of a mutual domain goal
that the act is a step towards achieving. In this case,
the system persuades the user to replace SETQ with
SETF (REPLACE-l) by motivating this act in terms of the
shared domain goal to enhance the maintainability of
the program. Thus, the discourse subgoal (MOTIVATION
REPLACE-I ENHANCE-MAINTAINABILITY) is posted.

One strategy for achieving this discourse subgoal
is to inform the user of the domain goal that the
system is trying to achieve and then to establish
that the act in question is part of the method
for achieving that domain goal. Applying this

2A complete discussion of the plan language and plan-
ning mechanism is beyond the scope of this paper and has
been reported elsewhere; see [?I.

460 INTELLIGENTINTERFACES

strategy to achieve the discourse goal (MOTIVATION
REPLACE-l ENHANCE-MAINTAINABILITY) in turn gives.
rise to two discourse subgoals, one for inform-
ing the user of the domain goal the system is
trying to achieve ((INFORM SYSTEM USER (GOAL SYSTEM
ENHANCE-MAINTAINABILITY) I), and one to establish that
the act being persuaded is indeed part of the
method for achieving this goal ((MEANS REPLACE-~
ENHANCE-MAINTAINABILITY)). Speech acts, such as
INFORM, are achieved by operators that construct an in-
put specification for the sentence generator. From the
text planner’s perspective they are considered primi-
tive.

However, the discourse subgoal (MEANS REPLACE-~
ENHANCE-MAINTAINABILITY) requires further refinement.
To establish a MEANS relation between the goal just
mentioned and the recommended act, the planner
has chosen a strategy that informs the user of the
method used for achieving the goal (here APPLY-TRANS-
FORMATIONS-THAT-ENHANCE-MAINTAINABILITY) and then
posts a discourse subgoal of making the hearer be-
lieve that the recommended act is a step in this
method,i.e., (BEL USER (STEP REPLACE-~ APPLY-TRANS-
FORMATIONS-THAT-ENHANCE-MAINTAINABILITY)).

PEA’s domain knowledge contains the information
that the domain goal APPLY-TRANSFORMATIONS-THAT-EN-
HANCE-MAINTAINABILITY is achieved by applying each of
the individual maintainability-enhancing transforma-
tions known to the system in turn. The appropriate
rhetorical strategy for expressing this domain reason-
ing is ELABORATION-GENERAL-SPECIFIC, in which a gen-
eral concept is elaborated by citing a specific instance
of it. Making the hearer believe that REPLACE-~ is a step
in achieving the goal APPLY-TRANSFORMATIONS-THAT-EN-
HANCE-MAINTAINABILITY thus boils down to informing
him that SETQ-TO-SETF is one of the maintainability-
enhancing transformations.

The text plan shown in Figure 3 produces the sys-
tem’s response appearing on line [5] in the sample di-
alogue of Figure 2. After this utterance is produced,
the user wishes to ask a follow-up question about an

(PERSUADED USER (GOAL USER (DO USER REPLACE-l))

(MOTIVATION REPLACE-l ENHANCE-l)

GOAL SYSTEM ENHANCE-l))
(MEANS REPLACE-l ENHANCE-l)

of the program”

(INFORM SYSTEM US BEL USER (STEP LACE-1 APPLY-l))

REPLACE-l = replace SETQ with SETF
ENHANCE-l = enhance maintainability of program
APPLY-l = apply transformations that enhance

maintainability
APPLY-2 = apply SETQ-to-SETF transformation
C-l = transformations that enhance maintainability
C-2 = SETQ-to-SETF transformation

(INFORM SYSTEM USER (INSTANCE-OF C-2 C-l))

“SETQ-to-SETF is a transformation that
enhances maintainability”

Figure 3: Completed Text Plan for Persuading User to Replace SETQ with SETF

aspect of the system’s response and has positioned the
mouse so that the sentence

I’m trying to enhance the maintainability of the
program by applying transformations that en-
hance maintainability.

is highlighted. To ask a follow-up question about this
text, the user clicks the mouse and a menu of possi-
ble follow-up questions appears. In this context, the
follow-up questions that will be contained in the menu
are shown in Figure 4. Note that there are many ques-
tions that could be asked about this text that are not
included in this menu. For example,
Ql: Why are you trying to enhance the maintain-

ability of the program?
Q2: How do you enhance the maintainability of the

program?
Q3: Why are you applying transformations that en-

hance maintainability?

However, given the dialogue that has already taken
place, it is very likely that the user already knows the
answers to these questions, and therefore they should

not be included in the menu. In the next section we
show how our system generates candidate menu items
and eliminates those such as &l-Q3 which are almost
certainly inappropriate in this context and therefore
only clutter the menu and may confuse the user.

Generating Follow-up Questions for Menu
In the example under consideration, the user has high-
lighted a complex clause corresponding to the shaded
region of the text plan shown in Figure 3. When the
user selects a complex clause, there are three sources of
follow-up questions: the two simple clauses that make
up the complex, and the relation between the two sim-
ple clauses. For example, in this case where the user
selected the text

(1) I’m trying to enhance the maintainability of
the program by (2) applying transformations that
enhance maintainability.

the system generates follow-up questions from each of
the simple clauses (1) and (2), but must also consider
follow-up questions that arise because of the MEANS re-
lation that exists between (1) and (2), here explicitly

MOORE AND SWARTOUT 461

Q4: How do you apply transformations that enhance maintainability?
QS: Why are you trying to enhance the maintainability of the program by applying transformations that enhance

maintainability?
Q6: What are transformations that enhance maintainability?

Figure 4: Follow-up Question Menu After Eliminating Superfluous Questions

expressed by the term “by”.

Generating Menu Entries for Simple Clauses.
In our system, simple clauses arise from the leaf nodes
of a completed text plan tree, i.e., speech act nodes.
For each simple clause, the system generates two types
of follow-up questions: questions about the entire
clause, and questions about the objects that are par-
ticipants in the clause. The system currently consid-
ers two types of questions that can be asked about
speech acts: why-questions and how-questions. We
have found that the interpretation of why and how-
questions asked about a speech act is dependent on
the type of speech act and that in some cases it is not
possible to form both a why and how-question from a
given speech act.3

In the current example, clause (1) informs the user
of a goal the system is trying to achieve. From this
type of INFORM speech act, the system can form both a
how and a why-question, namely

Ql: Why are you trying to enhance the maintain-
ability of the program?

Q2: How do you enhance the maintainability of the
program?

Clause (2) informs the user of the method the system
is currently applying. Again, both a how and a why-
question can be formed, namely

Q3: Why are you applying transformations that en-
hance maintainability?

Q4: How do you apply transformations that enhance
maintainability?

Each simple clause in the text produced by the sys-
tem is made up of a process (e.g., a relation or an

3For example, the ASK speech act causes a question to
be posed to the user. If the user points at text that was
generated as the result of an ASK speech act, a sensible
why-question can be formed. The user may wish to un-
derstand why the system needs to know the answer to its
question in order to perform its task; i.e., he would like to
ask “Why are you asking me this question?“. However, it
is not possible to form a meaningful how-question for text
produced by an ASK speech act. It does not make sense for
the user to ask “How are you asking me this question?”
For a more thorough discussion of the types of speech acts
used in our system and what questions can be formed, see
[Moore, 1989a].

462 INTELLIGENTINTERFACES

action), and the participants and circumstances asso-
ciated with that process. So, for example, the simple
clause “I (the system) apply transformations that en-
hance the maintainability of the program” consists of
a process, APPLY, whose actor is the concept PEA-SYSTEM
and whose object is a complex concept that is ex-
pressed as “transformations that enhance the main-
tainability of the program”. This expression includes
mention of another process ENHANCE and the concepts
TRANSFORMATIONS, MAINTAINABILITY and PROGRAM. Since
each of these concepts is expressed in the final text, the
user may have questions about any of them. To gen-
erate candidate follow-up questions for the concepts
mentioned in a single speech act, the system examines
the complete specification of the sentence passed to the
text generator by the grammar interface. This specifi-
cation contains an entry for each of the concepts that
will be uttered in the final text. Each concept appear-
ing in that specification becomes a potential questioned
item and the system considers generating a question of
the form “What is a . . . ?” for each.

Generating Menu Entries for Complex Clauses.
Because the user has highlighted a complex clause,
the system must also consider follow-up questions that
arise because of the relation that exists between the
two simple clauses, in this case MEANS. Currently the
system attempts to formulate only why-questions from
complex clauses. In the current example, the system
formulates the question:

Q5: Why are you trying to enhance the maintain-
ability of the program by applying transforma-
tions that enhance maintainability?

In other words, why is the system using this particular
method (applying transformations that enhance main-
tainability) to achieve the goal in question (enhancing
the maintainability of the program) as opposed to try-
ing some other strategy?

Although not illustrated in this example, there is
one additional source of questions to be included in
the follow-up menu. As we stated earlier, the plan-
ner records any assumptions it makes about the user’s
knowledge during the planning process. In addition
to the questions that come from the highlighted text
itself, the system also generates questions if any as-
sumptions were made in planning the text. If there
are any assumptions recorded at the plan nodes that

created the highlighted text or at any of their ancestor
nodes higher up in the text plan tree, the system will
generate questions for the follow-up menu that serve
to check these assumptions. Note that an assumption
could have led to the user’s need to ask a follow-up
question at this point.

Eliminating Candidate Menu Entries. If we
simply used the rules described above for generating
menu entries when the user selected a piece of text, the
menu for our current example would include all of the
questions shown in Figure 5. IIowever, many of these
questions are questions that the user would probably
not wish to ask. As we have argued above, present-
ing the user with a menu uncluttered by superfluous
entries is desirable.

Note that in the context of the current dialogue, the
user is almost certainly not asking any of the ques-
tions Ql - Q3, or QS - &lo. The user would not ask
Ql because earlier in the sample dialogue, the system
asked what characteristics of the program should be
enhanced and the user responded that he would like
the system to enhance readability and maintainability.
Therefore, the user would not ask why the system is
achieving the goal of enhancing maintainability. QS
- QlO are questions about basic concepts that almost
any user of the system would be familiar with. The
reason the user is not likely to ask Q2 or Q3 is be-
cause both of these questions were answered when the
system said

I’m trying to enhance the maintainability of the
program by applying transformations that en-
hance maintainability.
Our system can detect these various conditions and

omit these superfluous options from the menu using
the context provided by the text plans recorded in its
dialogue history and the knowledge it has about the
current user stored in its user model. The system elim-
inates candidate menu entries using three heuristics:
1. Don’t pose questions that have recently been an-

swered .
2. Don’t pose questions to justify shared goals.
3. Don’t pose

answers.
questions to which the user knows the

Let us see how these three heuristics are applied in
this example. When the user highlights the text shown
in Figure 2, mouse-handling code returns a pointer to
the portion of the text plan for the previous response
that caused this piece of text to be generated. This
corresponds to the shaded area in Figure 3.

The system eliminates Q2 and Q3 using the
first heuristic. The semantics of the rhetori-
cal relation MEANS4 are that the MEANS relation as-
sociates the statement of a goal with a state-

ment of the method used to achieve that goal.
Thus, since the act APPLY-TRANSFORMATIONS-THAT-EN-
HANCE-MAINTAINABILITY appears in the second position
of a MEANS relation, the system determines that it has
just told the user why it is using this method, namely
to achieve the goal ENHANCE-MAINTAINABILITY. There-
fore, the system determines that the user is almost cer-
tainly not asking Q3 and hence it can be omitted from
the menu. Similarly, the system can determine that
it has just answered the how-question of Q2. Again,
from the MEANS relation, the system determines that it
has just told the user how it is achieving the goal EN-
HANCE-MAINTAINABILITY, namely by employing the me-
thod APPLY-TRANSFOBMATIONS-THAT-ENHANCE-MAINTAINA-
BILITY. Therefore, Q2 is not added to the menu.

Ql is eliminated using the second heuristic. When
the system asks the user what characteristics are to be
enhanced, the user’s responses are recorded in the user
model (see lines [l] and [2] of Figure 2). Thus, when
the system considers forming a question asking why it
is achieving a goal, it first checks to see if that goal is
a mutual goal of both the user and the system. If so,
the candidate question is eliminated.

Finally, the system can eliminate many of the “What
is a . . . ?” questions using the third heuristic and the
information contained in the user model. Recall that
all of the concepts that will be mentioned in an ut-
terance become potential questioned items. When se-
lecting questions for inclusion in the menu, the system
compares the list of potential items against the user
model and eliminates all of those concepts that the
user model indicates the user already knows. In this
way, the follow-up question menu will not be cluttered
with questions about concepts the user already knows.

In the current example, suppose that the only con-
cept not indicated to be known to the user is the com-
plex concept MAINTAINABILITY-TRANSFORMATIONS. Thus
only the question

Q6: What are transformations that enhance main-
tainability?

will be included in the menu.
After pruning out the follow-up questions that can

be ruled out by the dialogue context and the user
model, the menu of follow-up questions would include
only the three questions shown earlier in Figure 4. This
menu is uncluttered by questions the user is almost cer-
tainly not asking and therefore presents the user with a
concise set of the most meaningful follow-up questions
that the system can handle in this context. A user who
is confused to begin with will be greatly facilitated by
being presented with a small set of the most relevant
questions.

*MEANS is one of 25 rhetorical relations whose semantics
are defined in Rhetorical Structure Theory (RST) [Mann
and Thompson, 19871, a descriptive theory of the organi-

zation of English text that has identified the relations that
normally occur between portions of coherent text.

MOORE ANDSWARTOUT 463

Ql:
Q2:
Q3:
Q4:
Q5:

QS:
Q7:
QS:
Q9:

&lo:

Why are you trying to enhance the maintainability of the program?
How do you enhance the maintainability of the program?
Why are you applying transformations that enhance maintainability?
How do you apply transformations that enhance maintainability?
Why are you trying to enhance the maintainability of the program by applying transformations that enhance
maintainability?
What are transformations that enhance maintainability?
What are transformations?
What is maintainability?
What is a PEA-system?
What is a program?

Figure 5: Follow-up Question Menu without Eliminating Superfluous Questions

Conclusions
Explanation requires a dialogue, where the user can
formulate questions about previously given explana-
tions. However, the follow-up questions a user is likely
to ask are difficult for natural language understanding
systems to process because they mix meta-level ref-
erences to the discourse with object-level references to
the domain. In this paper, we have argued that some of
the difficult natural language understanding issues can
be avoided through the use of a hypertext-like “point-
ing” interface that lets a user indicate what parts of the
system’s explanations should be elaborated by point-
ing at them with a mouse. To respond appropriately
to the user’s pointing, the system needs to know what
it was trying to say in the text the user highlighted.
Our approach to explanation generation uses a text
planner that captures the intent behind an explana-
tion so that the system can reason with it. Because
the text in our system is dynamically generated, it is
much more flexible than the pre-canned texts of tra-
ditional hypertext systems. Further, by recording the
text planning process, important aspects of the dia-
logue context are captured. This dialogue context can
be used to prune irrelevant or unnecessary options out
of the pop-up menu of follow-up questions. Our system
demonstrates the synergistic support for dialogue that
can be achieved by combining a “pointing” interface
with a text planning generation system.

References
Patricia Carando. Shadow: Fusing hypertext with
AI. IEEE Expert, 4(4):65-78, 1989.
Timothy W. Finin, Aravind K. Joshi, and Bon-
nie Lynn Webber. Natural language interactions with
artificial experts. Proceedings ofthe IEEE, 74(7), July
1986.
Frank G. Halasz. Reflections on NoteCards: Seven
issues for the next generation of hypermedia systems.

464 INTELLIGENTINTERFACES

Communications of the Association for Computing
Machine y, 31(7):836-870, 1988.
William C. Mann and Christian Matthiessen. Nigel:
A systemic grammar for text generation. Technical
Report RR-83-105, USC/Information Sciences Insti-
tute, February 1983.
William C. Mann and Sandra A. Thompson. Rhetor-
ical Structure Theory: A theory of text organization.
In Livia Polanyi, editor, The Structure of Discourse.
Ablex Publishing Corporation, Norwood, N.J., 1987.
Johanna D. Moore and Cecile L. Paris. Plan-
ning text for advisory dialogues. In Proceedings of
the Twenty-Seventh Annual Meeting of the Associa-
tion for Computational Linguistics, Vancouver, B.C.,
Canada, June 26-29 1989.
Johanna D. Moore and William R. Swartout. A re-
active approach to explanation. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, Detroit, MI, August 20-25 1989.
Johanna D. Moore. A Reactive Approach to Expla-
nation in Expert and Advice-Giving Systems. PhD
thesis, University of California, Los Angeles, 1989.
Johanna D. Moore. Responding to “huh?“: An-
swering vaguely articulated follow-up questions. In
Proceedings of the Conference on Human Factors in
Computing Systems, Austin, Texas, April 30 - May 4
1989.
Robert Neches, William R. Swartout, and Johanna D.
Moore. Enhanced maintenance and explanation of ex-
pert systems through explicit models of their develop-
ment. IEEE Transactions on Software Engineering,
SE-ll(ll), November 1985.
John R. Searle. Expression and Meaning: Studies
in the Theo y of Speech Acts. Cambridge University
Press, Cambridge, England, 1979.

