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Abstract 
We describe a program, BEATRIX, that can 
understand textbook physics problems specified by a 
combination of English text and a diagram. The result 
of the understanding process is a unified internal model 
that represents the problem, including information 
derived from both the English text and the diagram. 
The system is implemented as two opportunistic co- 
parsers, one for English and one for diagrams, within 
a blackboard architecture. A central problem is 
establishing coreference, that is, determining when 
parts of the text and diagram refer to the same 
object. Constraints supplied by the text and diagram 
mutually reduce ambiguity in interpretation of the 
other modality. 

Introduction 
Natural language is a versatile means of 
communication, but it is difficult to describe complex 
spatial relationships using natural language. Diagrams 
are frequently used to supplement natural language 
when spatial relationships need to be described. 
One of us has previously written a program that 
could understand textbook physics problems stated 
in English [14, 151; however, most textbook physics 
problems are specified by a combination of English 
text and a diagram, neither of which is a complete 
description by itself. In understanding such a problem, 
the human reader must produce a single, unified 
model of the problem that incorporates information 
from both input modalities; to do so, it is essential 
to establish coreference, that is, to determine when 
different forms of description refer to the same object 
in the situation that is being described and, therefore, 
in the model of the situation that is being constructed 
by the reader. 

Both natural language and diagrams can be highly 
ambiguous. A line in a diagram might represent an 
edge of a large object (such as the surface of the 
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earth), part of a single object, a shared boundary 
between two objects, or an object in itself (such as 
a cable). Ambiguity can be reduced by knowing what 
things are expected to be in the diagram from reading 
the English text. As some objects are identified, 
the set of possible identifications of the remaining 
objects is reduced. Inferences based on common-sense 
physical principles can further reduce ambiguity; for 
example, an object is expected to be supported by 
something, and a rope is expected to be attached to 
something. Understanding the diagram can likewise 
reduce ambiguity in interpretation of the English 
description. 

The process of understanding text and diagram 
together must be opportunistic: it is important to use 
all the clues that are available, but it is not possible 
to predict which clues will be present for a particular 
problem or what order of interpretation will cause all 
the pieces to fall into place. For this reason, the 
BEATRIX system [2, 31 has been implemented within 
a blackboard architecture, using the BBl blackboard 
system [5] and GLISP [13]. 

Examples of the kinds of problems understood by 
BEATRIX are shown in Figures 1 and 2. The result 
of the understanding process is a representation of the 
problem suitable for input to a physics problem solver 
such as that of Kook [9, lo]. 

Diagram Input 

Diagrams are entered by means of a user interface that 
allows drawings to be constructed easily by selecting 
drawing components and moving, scaling, and rotating 
them as desired. The interface also allows entry of 
bits of text within the diagram, as well as entry and 
editing of the English problem statement. The drawing 
is displayed in a window as it is constructed. As a 
side effect, a symbolic description of the items in the 
diagram is constructed; it is this description that serves 
as input to the understanding program. 

If the input to the diagram understander were in 
terms of components such as blocks, ropes, and pulleys, 
understanding it would be trivial. Instead, we have 
taken care to make the input consist of “neutral” 

NOVAKANDBULKO 465 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



M2 

/ THETA I 

((TWO MASSES ARE CONNECTED BY A LIGHT STRING 
AS SHOWN IN THE FIGURE) 

(THE INCLINE AND PEG ARE SMOOTH) 
(FIND THE ACCELERATION OF THE MASSES AND 

THE TENSION IN THE STRING FOR 
THETA = 30 DEGREES AND Ml = M2 = 5 KG)) 

Figure 1: Test Problem P3 (Tipler 11) 

components such as lines, circles, and rectangles - 
a form of input that could reasonably be produced 
automatically from a printed diagram by a vision 
preprocessor [l]. Diagram items are represented by 
property-value pairs; for example, 

(class LINE endptl (129 . 142) 
endpt2 (354 . 173) 
dashed T ahi T ah2 NIL) 

represents a dashed line with an arrowhead at its first 
endpoint (ahl). 

Co-parsing English and Diagram 
A human who is solving a physics problem will not 
read all of the text, and only then look at the diagram, 
or vice versa; instead, the human will typically look 

*briefly at the picture, read some text, look back 
at the picture, and so forth until the problem has 
been understood. It is unlikely that any fixed order 
of processing would suffice for a broad selection of 
problems, especially since a given problem could be 
specified entirely by text, entirely by a diagram, or by 
a combination of the two. For this reason, BEATRIX is 
organized using co-parsing of the two input modalities. 
Parsing of the English text and parsing of the diagram 
proceed in parallel; the final interpretation of objects 
takes into account information from both parsed text 
and parsed diagram. This kind of control strategy 
allows understanding to be opportunistic, taking 
advantage of clues to understanding that arise from 
diverse knowledge sources; such a control strategy has 
been found to be advantageous in other perceptual 
domains such as speech understanding [S] and sonar 
signal interpretation [12]. 

((TWO MASSES ARE CONNECTED BY A CABLE AS 
SHOWN IN THE FIGURE) 

(THE STRUT IS HELD IN POSITION BY A CABLE) 
(THE INCLINE IS SMOOTH ) AND THE CABLE 

PASSES OVER A SMOOTH PEG) 
(FIND THE TENSION IN THE CABLE FOR 

THETA = 30 DEGREES AND MI = M2 = 20 KG) 
(NEGLECT THE WEIGHT OF THE STRUT)) 

Figure 2: Test Problem A2 
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Figure 3: Domain Blackboard Organization 

Blackboard Organization 

The domain blackboard of the system is organized into 
five levels, as shown in Figure 3. 

The lowest levels of the blackboard are called TEXT 
and PICTURE. TEXT contains the English sentences 
of the problem statement; each sentence has a 
sequence number indicating its order of occurrence. 
PICTURE contains symbolic descriptions of the diagram 
elements, such as BOX, LINE, or CIRCLE. In addition, 
the PICTURE level contains a set of objects created by 
a preprocessor that represent contact points between 
diagram elements. 

The intermediate blackboard levels, TEXT-MODEL 
and PICTURE-MODEL, represent hypotheses created 
by the parsing of the text and diagram. Objects 
on the PICTURE-MODEL level represent elementary 
physical objects, such as MASS or PULLEY, that are 
possibly contained in the diagram; these are recognized 
independently from the text, before coreference 
resolution takes place. TEXT-MODEL objects represent 
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physical objects and relations tentatively identified 
from the TEXT by the English parser. 

The most abstract level of the blackboard is the 
PROBLEM-MODEL level. Objects at this level represent 
physical objects in the final interpretation of the 
problem; these objects have links connecting them to 
their corresponding objects on the TEXT-MODEL and 
PICTURE-MODEL levels. 

Knowledge Sources 

BEATRIX contains 53 knowledge sources (KS’s); each 
is a specialist in understanding a particular part of 
a problem description. Table 1 shows the knowledge 
sources used and classifies them into groups. The 
Control KS, Define-Reliability, is used to set up 
code for calculating execution priorities of the other 
KS’s. The Identify KS’s operate between the PICTURE 
and PICTURE-MODEL levels; they perform syntactic 
recognition of related groups of diagram elements. 
The single Parse KS calls an ATN parser written 
in Lisp to parse the sentences of the English text. 
Match KS’s perform coreference matching, finding 
objects on the PICTURE-MODEL and TEXT-MODEL that 
correspond and making objects on the PROBLEM-MODEL 
level that encompass them. KS’s whose names begin 
with Retrieve- serve to move information to higher 
levels of the blackboard when other KS’s fail to do 
so, such as when an object appears in the diagram but 
is not mentioned in the text. Semantic KS’s modify 
existing objects and make inferences; for example, if 
the angle between a horizontal surface and another 
surface is known, Propagate-Angle-ROTN will cause 
the rotation of the other surface to correspond to that 
angle. Of the Special KS’s, Post-the-Problem initiates 
blackboard action by placing the text and diagram 
on their respective blackboard levels; the remaining 
KS’s perform default reasoning for those cases where 
no more specific KS was able to act. 

English Parsing 

English sentences are parsed using an augmented 
transition network grammar [17] written in a meta- 
language similar to that described by Charniak and 
McDermott [4]. F'g 1 ure 4 shows the grammar function 
for a noun phrase; the grammar is simple and defers 
most semantic processing to the understanding module 
that considers text and diagram together. The ATN 
parser is invoked by a single knowledge source, Parse- 
the-Sentences. A sentence is syntactically parsed top- 
down, resulting in a parse tree and a list of tokens of the 
objects mentioned in the sentence on the TEXT-MODEL 
blackboard level. This forms the natural language 
input to the understanding module, which performs 
semantic processing of the natural language input and 
diagram together. 

-Mass- Labels 

Propagate- Touches 

Match- Tension 
Match- Tension-Arrow 
Match- Variable 
Propagate-PM-Contact 
Propagate-PSt-Contact 
Propagate-RM-Contact 
Propagate-RP-Contact 
Propagate-RS-Contact 
Propagate-RSt-Contact 

Propagate-SS-Contact 
Propagate-SSt-Contact 

Propagate-Angle-ROTN 
Propagate-Rope-ROTN 
Propagate-Touch-ROTN 
Translate-BE-A DJ 
Translate-LET-BE 

Table 1: Classes of BEATRIX Knowledge Sources 

(DEFINEQ (Np (LAMBDA 0 
(CHAIN NP 

(EITHER 
(CAT QWORD) 
(SEQ (OPTIONAL (CAT DET)) 

(OPTIONAL (CAT NUMBER)) 
(OPTIONAL* (CAT ADJ)) 
(OPTIONAL (MEAS)) 
(CAT NOUN) 
(SETQ NNI (THAT NOUN)) 
(OPTIONAL (AND (SETQ LABEL-ARC 

(CAT NOUN)) 
(EQ (GETPROP 

(THAT NOUN) 
'TYPE)) 

'VARIABLE) 
LABEL-ARC)) 

(OPTIONAL (VCLAUSE)) 
(OPTIONAL (PREPP NNI))))))) 

Figure 4: Noun Phrase ATN Grammar Function 
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Diagram Parsing 

The diagram is parsed by a set of knowledge sources 
that recognize combinations of picture elements that 
have special meaning. In effect, these KS’s act as 
grammar productions of a picture grammar [7]; [6] 
describes the use of a blackboard system for scene 
interpretation that uses a grammar-like representation 
of components of a scene. 

Local analysis of combinations of diagram elements 
often allows a combination to be interpreted as a larger 
and meaningful grouping. For example, if two lines 
touch at an acute angle and contain text between the 
lines and close to the vertex, and the text is a number 
or is a variable name that is typically used to denote 
an angle (such as THETA), then the two lines will be 
collected on the PICTURE-MODEL level as an ANGLE, 
and the number or variable will be associated with the 
ANGLE as its magnitude. An arc connecting the two 
lines is associated with the ANGLE if present, but is not 
required. The following examples show two angles, one 
containing text that is not part of the angle. 

As parts of the diagram are interpreted, they 
trigger additional KS’s that are associated with the 
interpretations. For example, after a small circle with 
a line to its center is interpreted as a PULLEY, the 
KS Identify-Pulley-System is triggered to look for the 
lines tangent to the pulley that represent the rope 
passing around the pulley. This results in the two 
lines that represent the rope being collected as a single 
ROPE object, with their endpoints away from the pulley 
being identified as the ends of the rope. This, in turn, 
triggers additional inferences, since the ends of a rope 
are expected to be attached to objects or surfaces. 
When a KS can make a clear interpretation of a 
part of the diagram, it obviates other KS’s involving 
alternative interpretations of the object that might 
have been triggered. 

In addition to triggering interpretations of other 
parts of the diagram, the diagram parsing KS’s 
trigger expectations for later stages of processing. For 
example, identification of a CONTACT between a mass 
and a surface sets up an expectation that a normal 
force and coefficient of friction for the CONTACT may be 
specified by the English text. 

The process of diagram “parsing” continues until 
no further interpretations can be made at that level; 
this results in a substantial degree of interpretation 
of the diagram. Figure 5 schematically illustrates the 
interpretation of an example after diagram parsing; 
most of the TOUCH relations and some CONTACT 

ANGLE1 SURFACE1 

Figure 5: Interpretation after Diagram Parsing 

relations are omitted for readability. 

The Understanding Module 

The understanding module controls the parsing of 
the text and diagram and performs the majority of 
the semantic processing. Its inputs are the “parsed” 
diagram on the PICTURE-MODEL level of the blackboard 
and the parsed sentences, represented as semantic 
networks or case frames, on the TEXT-MODEL level. It 
produces as output a unified model of the problem, 
incorporating information from both modalities. 

Establishing Coreference 

In order to produce a unified model, a major task is to 
establish coreference between the two input modalities. 
Each object that appears in either text or diagram 
must be present on the PROBLEM-MODEL blackboard 
level; if features of an object appear in both text and 
diagram, the features must be collected on the same 
object in the model, to which the text and diagram cu- 
refer. For example, the text could say “the coefficient 
of friction is 0.25”, referring to a contact between 
a block and an inclined plane that is shown in the 
diagram but not mentioned in the text. In order to 
correctly understand the problem, the friction value 
from the text must be associated in the problem model 
with the contact relation between block and plane that 
was derived from the diagram. 

The knowledge sources (KS’s) that perform 
coreference resolution are triggered when their 
corresponding types of objects are posted on the 
PICTURE-MODEL or TEXT-MODEL blackboard levels. For 
example, in the problem shown in Figure 1, parsing the 
phrase “the string” will cause an object representing 
the string to be added to the TEXT-MODEL level, and 
this will trigger the Match-Rope KS to attempt to 
find a corresponding object in the PICTURE-MODEL. In 
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some cases, establishing coreference is fairly trivial, 
such as resolving a reference to “the mass” when 
only one item that could be a mass is present in 
the diagram. In other cases, however, the presence 
of parsed diagram elements on PICTURE-MODEL is 
necessary to resolve the referent of a phrase that would 
otherwise be incoherent. The text may contain a 
definite reference to an object (“the incline”) or to a 
feature of a relationship (“the coefficient of friction”) 
that is not otherwise mentioned in the text and could 
not be understood properly without the presence of the 
corresponding elements from the diagram. In effect, 
forward inferences are made to attempt to match 
things that might occur in the other modality; for 
example, in Figure 1 the contact between the mass 
and the inclined plane in the diagram causes the KS’s 
Match-Normal-Force and Find-COEF to be triggered 
to look for corresponding references that might appear 
in the text. 

Inference of Properties 

The KS’s of the understanding module also perform 
inferences that flesh out the representation of the 
problem; in some cases these can be considered to 
be based on common-sense physics. For example, 
BEATRIX will infer that the rotation of an object is 
the same as the rotation of the object on which it rests 
and that an object that is hanging from a rope hangs 
directly below it. Contact between an object and a 
surface is assumed to be a frictional touch contact, 
while contact between a rope and an object it supports 
is assumed to be an attachment. Such inferences are 
important for understanding, since natural language 
text often omits things that an intelligent reader is 
assumed to be able to infer. 

Control of Processing 

Control of processing in understanding text and 
diagrams must be flexible, since no fixed order of 
processing is likely to succeed for a wide variety 
of problems. Some problems contain all of the 
necessary information in the text; for example, ISAAC 
[14] handled p ro bl ems that had diagrams in the 
textbooks from which they were taken, but had 
English descriptions sufficiently complete that diagram 
understanding was not necessary. Other problems rely 
heavily on the diagram; for example, in one example 
handled by BEATRIX the entire text is: ( (WHAT IS 
THE TENSION IN THE CORD IN THE FIGURE)). 

Control needs to be opportunistic, so that clear 
identifications can be made first; as some identifi- 
cations are made, others that had been ambiguous 
often can be resolved uniquely. Expectations must be 
posted so that they can be matched with corresponding 
references that will appear later. Defaults need to 
be performed when no other knowledge source can 
operate. 

A blackboard architecture provides a scheduling 
mechanism that allows many knowledge sources to be 
triggered, or scheduled for execution; the same KS can 
be triggered multiple times on different data. In the 
BBl blackboard system [5], a dynamically calculated 
priority is associated with each triggered KS; the KS 
with the highest priority is executed first. If a KS 
makes a clear identification, it can obviate (remove 
from the schedule) any remaining KS’s for the same 
task. These methods are used to achieve opportunistic 
control. Bulko [2] d escribes the processing of an 
example problem in step-by-step detail; the following 
summarize the control strategies used: 

Knowledge sources are triggered, based on the 
possibility of a match, when objects are placed on 
the blackboard. For example, a CIRCLE element 
placed on the PICTURE level will trigger a KS to 
determine whether it represents a pulley. The 
initial objects are placed on the blackboard by 
the special KS’s Post-the-Problem and Parse-the- 
Sentences. Other KS’s implement expectations, as 
when identification of contact between an object and 
a surface in the diagram triggers KS’s to look for a 
coefficient of friction and a normal force in the text. 

Priority ratings are used to cause KS’s with the best 
input data to execute first. For example, Identify- 
Masses gives itself a high rating if there is only one 
mass against which to match. The priority rating 
is done dynamically, so that the priority of a KS 
is raised as its prospects improve; thus, Identify- 
Masses can receive a better rating when one of the 
masses it might have matched becomes matched 
with a different object. 

Default KS’s are triggered automatically, but at a 
very low priority level, to provide default values for 
unmentioned features or to move objects mentioned 
in only one input modality to the PROBLEM-MODEL 
level. If another KS makes an identification for 
which a default KS exists, the default KS is obviated. 

Flow of control from low-level KS’s to higher-level 
ones occurs naturally because the low-level KS’s are 
triggered by the problem statement and diagram, 
while the high-level KS’s are triggered by the output 
of the low-level KS’s. 

Conclusions and Future Work 

Understanding information from different perceptual 
modalities about a single situation is an important area 
of A.I. research. The task of understanding English 
text and diagrams together is nontrivial but simple 
enough for useful progress to be made. In addition, 
a clear test of the validity of the results is available, 
since the output must be sufficient to allow solving of 
the physics problem; the output of BEATRIX has been 
used as input to the physics problem solver of Kook [9]. 
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Potential Applications 

Humans find graphical interfaces convenient. Most 
present graphical interfaces are special-purpose: the 
graphical primitives that are used, and the ways 
in which they can be connected and combined, 
are specialized to the application. The ability to 
understand diagrams input by the user as free-form 
drawings would allow the same interface to be used 
for multiple applications; special-purpose knowledge 
sources would be needed for particular application 
areas. With input of line drawings using an optical 
scanner and computer vision pre-processing, existing 
drawings (such as blueprints) could be understood 
without having to be entered by hand. 

Drawings alone are not sufficient for complete 
specification; in many cases, blueprints contain blocks 
of text as well as drawings. The ability to understand 
text and drawings together would be needed for 
successful applications. 

Future Work 

It is possible to imagine cases in which the diagram 
would allow resolution of ambiguity in parsing the 
English sentences and in which the semantics of the 
English itself would be insufficient. In the well-known 
example sentence, “I saw the man on the hill with 
the telescope,” several different parses are possible 
and correspond to different meanings; a diagram could 
indicate which meaning was correct. Likewise, the 
English text might allow resolution of an ambiguity 
in “parsing” the diagram. No cases of either type 
were found in the examples used in testing BEATRIX. 
There were many potential ambiguities in matching 
objects in the diagram and text, but none that 
would have changed the “phrase structure” of either. 
Nevertheless, this is a possibility, so we identify it 
as an area for further work. Implementation of 
the natural language parser within the blackboard 
framework would make it possible for natural language 
and diagram parsing to proceed in parallel at the lowest 
level and to influence each other. 

The present system builds only a single interpreta- 
tion of a problem. A more advanced system should 
allow representation of alternative interpretations, 
perhaps like that of [16] with certainty factors to 
indicate the goodness of an interpretation. 

Understanding of larger diagrams, such as mechani- 
cal drawings or circuit diagrams, is an interesting area 
for additional research. 
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