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Abstract

We describe a program, BEATRIX, that can
understand textbook physics problems specified by a
rarmhinatian of Fnelich text and a diaocram The reeult

combination of English text and a diagram. The result
of the understanding process is a unified internal model
that represents the problem, including information
derived from both the English text and the diagram.
The system is implemented as two opportunistic co-

parsers, one for English and one for diagrams. within
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a blackboard architecture. A central problem is
establishing coreference, that is, determining when
parts of the text and diagram refer to the same
object. Constraints supplied by the text ar ra
mutually redure ambi
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other modality.

Introduction
Natural 1anguage is a versatile means of
............. M« i Joncmmilin amsnalae
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spatial relationships using natural language. Diagrams
are frequently used to supplement natural language
when spatial relationships need to be described.
One of us has previously written a program that

could understand textbook physics problems stated
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in English [14, 15]; however, most textbook physics
problems are specified by a combination of English
text and a diagram, neither of which is a complete
deseription by itself In understanding such a problem
description by itself. In understanding such a problem,
the human reader must produce a single, unified
model of the problem that incorporates information
from both mput modahtles, to do so, it is essential
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different forms of deqcnnhnn refer to the same }nprf

n the s1tuat10n that is belng described and, therefore,
in the model of the situation that is being constructed
by the reader.
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ambiguous. A line in a diagram mmht reDresent an
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edge of a large object (such as the surface of the
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earth), part of a single object, a shared boundary
between two objects, or an object in itseif (such as
reduced bv knowinge wha
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things are expected to be in the diagram from reading
the English text. As some objects are identified,
the set of possible identifications of the remaining
objects is reduced. Inferences based on common-sense
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example, an object is expected to be supported by
somethlng, and a rope 1s expected to be attached to
1agram can likewise
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The process of understanding text and diagram
together must be opportunistic: it is important to use
all the clues that are available, but it is not possible
to predict which clues will be present for a particular
problem or what order of interpretation will cause all
the pieces to fall into place. For this reason, the
BEATRIX system [2, 3] has been implemented within
a blackboard architecture, using the BB1 blackboard
S:y'Su:xu |_u_| and GLIQP [13}

Examples of the kinds of problems understood b
BEATRIX are shown in Flgures 1 and 2. The result
of the understanding process is a representation of the
problem suitable for input to a physics problem solver
such as that of Kook [0, 101
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Diagram Input

Diagrams are entered by means of a user interface that
allows drawings to be constructed easily by selecting
drawing components and moving, scaling, and rotating
them as desired. The interface also allows emry of
bits of text within the diagram, as well as entry and
editing of the English problem statement. The dra.wmg
is displayed in a window as it is constructed. As a
side effect, a symbolic description of the items in the
diagram is constructed; it is this description that serves
as input to the understanding program.

If the input to the diagram understander were in
terms of components such as blocks, ropes, and pulleys,
understanding it wouid be trivial. Instead, we have

taken care to make the input consist A{' “nnnfrn‘”
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M2

THETA

((TWO MASSES ARE CONNECTED BY A LIGHT STRING
AS SHOWN IN THE FIGURE)

(THE INCLINE AND PEG ARE SMOOTH)

(FIND THE ACCELERATION OF THE MASSES AND
THE TENSION IN THE STRING FOR
THETA = 30 DEGREES AND M1 = M2 = 5 KG))

Figure 1: Test Problem P3 (Tipler 11)

components such as lines, circles, and rectangles —
a form of input that could reasonably be produced
automatically from a printed diagram by a vision
preprocessor {1]. Diagram items are represented by
property-value pairs; for example,

(class LINE endpti (129 . 142)
endpt2 (354 . 173)
dashed T ahl T ah2 NIL)

represents a dashed line with an arrowhead at its first
endpoint (aht).

Co-parsing English and Diagram

A human who is solving a physics problem will not
read all of the text, and only then look at the diagram,
or vice versa; instead, the human will typically look
 briefly at the picture, read some text, look back
at the picture, and so forth until the problem has
been understood. It is unlikely that any fixed order
of processing would suffice for a broad selection of
problems, especially since a given problem could be
specified entirely by text, entirely by a diagram, or by
a combination of the two. For this reason, BEATRIX is
organized using co-parsing of the two input modalities.
Parsing of the English text and parsing of the diagram
proceed in parallel; the final interpretation of objects
takes into account information from both parsed text
and parsed diagram. This kind of control strategy
allows understanding to be opportunistic, taking
advantage of clues to understanding that arise from
diverse knowledge sources; such a control strategy has
been found to be advantageous in other perceptual
domains such as speech understanding [8] and sonar
signal interpretation [12].
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((TWO MASSES ARE CONNECTED BY A CABLE AS
SHOWN IN THE FIGURE)
(THE STRUT IS HELD IN POSITION BY A CABLE)
(THE INCLINE IS SMOOTH , AND THE CABLE
PASSES OVER A SMOOTH PEG)
(FIND THE TENSION IN THE CABLE FOR
THETA = 30 DEGREES AND M1 = M2 = 20 KG)
(NEGLECT THE WEIGHT OF THE STRUT))

Figure 2: Test Problem A2
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Figure 3: Domain Blackboard Organization

Blackboard Organization

The domain blackboard of the system is organized into
five levels, as shown in Figure 3.

The lowest levels of the blackboard are called TEXT
and PICTURE. TEXT contains the English sentences
of the problem statement; each sentence has a
sequence number indicating its order of occurrence.
PICTURE contains symbolic descriptions of the diagram
elements, such as BOX, LINE, or CIRCLE. In addition,
the PICTURE level contains a set of objects created by
a preprocessor that represent contact points between
diagram elements.

The intermediate blackboard levels, TEXT-MODEL
and PICTURE-MODEL, represent hypotheses created
by the parsing of the text and diagram. Objects
on the PICTURE-MODEL level represent elementary
physical objects, such as MASS or PULLEY, that are
possibly contained in the diagram; these are recognized
independently from the text, before coreference
resolution takes place. TEXT-MODEL objects represent



physical objects and relations tentatively identified
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PROBLEM~MODEL level. Objects at this level represent
physical objects in the final interpretation of the
probiem; these objects have links connecting them to
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PICTURE-MODEL levels.

Knowledge Sources
MDIVATTDITWY Jh R e 742 2) -l
DILALIVA (,OI].Ba;lIlS 'JO Kuowwuge sources kl\o b}, eacn
is a specialist in understanding a particular part of
a problem description. Table 1 shows the knowledge
sources used and classifies them into groups. The
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code for calculating execution priorities of the other
KS’s. The Identify KS’s operate between the PICTURE

and PICTURE-MODEL levels; they perform syntactic
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The single Parse KS calls an ATN parser written
in Lisp to parse the sentences of the English text.
Match KS’s perform coreference matching, finding
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correspond and making objects on the PROBLEM-MODEL
level that encompass them. KS’s whose names begin
with Retrieve- serve to move information to higher
levels of the blackboard when other KS’s fail to do

levels of the blackboard when other KS’s fail to do
so, such as when an object appears in the diagram but
is not mentioned in the text. Semantic KS’s modify
existing objects and make inferences; for example, if

the ancle hetween a horizontal gurfacs and angther
o ang:e JEeLWeen a noriZonta: suriace and anouier

surface is known, Propagate-Angle-ROTN will cause
the rotation of the other surface to correspond to that
angle. Of the Special KS’s, Posi-ihe-Probiem initiates

blackhoard action l'\v nlacing the tevt and diacram
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on their respective blackboard levels; the remaining
KS’s perform default reasoning for those cases where
no more specific KS was able to act.

English sentences are parsed using an augmented
transition network grammar [17] written in a meta~

lanociiase gimilar t6 that dageribhad hy Channialr and
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McDermott [4]. Figure 4 shows the grammar function
for a noun phrase; the grammar is simple and defers
most semantic processing to the understanding module
that congiders text and diacram tocether ’l‘}m ATN

that considers text and diagram together. The ATN
parser is invoked by a single knowledge source, Parse-
the-Sentences. A sentence is syntactically parsed top-
down, resulting in a parse tree and a list of tokens of the
obiects mentioned in the sentence on the TEXT-MODEI

QR LS 113040000 111 LA10 SCLVCIACCe Ol il L&A iTavI oL

blackboard level. This forms the natural language
input to the understanding module, which performs
semantic processing of the natural language input and
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Control:

Match:

Define-Reliability

TAdantifare
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Identsify-Angles
Identify-Arrows
Identify-Line
Tdentifu Mass-Labels
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Identify-Masses
Identify-Pulley
Identify- Pulley-Sysiem
Tl’p'nh Fu- Struts

Identzfy-Surfaces
Propagate-Touches

Parse:

Parse-the-Sentences
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D EINnanvic.

Add-Contact-Locs
Add-Contact-Objects
Assign-Value-to- Variable
Correct-Floor-to-Table
Find-COEF
Get-Mass-Value
Neglect-TM-Weight
PT(’l‘p‘(ig'('i,bc-n wylc-u,o TN
Propagate-Rope-ROTN
Propagate-Touch-ROTN
Translate-BE-ADJ
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Match-Incline
Match-Mass-to-Mass
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Match-Normal-Arrow
Match-Normal-Force
Match-Pivot
Mateh-Pullea

i boliv=i WeelyY

Match-Rope
Match-Struts
Maich-Surface
Match-Tension
Match-Tension-Arrow
Match- Variable
Propagaie-PM-Contact
Propagate- PSt-Contact
Propagate RM-Contact
Propagate-RP-Contact
Propagate-RS-Coniact
Propagate-RSt-Contact
Propagate-SM-Contact
Propagate-SP-Contact
Propagate-SS-Contact

Propagate-SSt-Contact

Special.
LYTIAT .

UU_[UMIL-JVI uao-n,u L IVS

Default-Rope-ROTNs
Post-the-Problem
Retrieve-Mass
Retrieve-Pulley
Retrieve-Rope

Table 1: Classes of BEATRIX Knowledge Sources
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Figure 4: Noun Phrase ATN Grammar Function



Diagram Parsing

The diagram is parsed by a set of knowledge sources
that recognize combinations of picture elements that
have special meaning. In effect, these KS’s act as
grammar productions of a picture grammar [7]; [6]
describes the use of a blackboard system for scene
interpretation that uses a grammar-like representation
of components of a scene.

Local analysis of combinations of diagram elements
often allows a combination to be interpreted as a larger
and meaningful grouping. For example, if two lines
touch at an acute angle and contain text between the
lines and close to the vertex, and the text is a number
or is a variable name that is typically used to denote
an angle (such as THETA), then the two lines will be
collected on the PICTURE-MODEL level as an ANGLE,
and the number or variable will be associated with the
ANGLE as its magnitude. An arc connecting the two
lines is associated with the ANGLE if present, but is not
required. The following examples show two angles, one
containing text that is not part of the angle.

THETA

As parts of the diagram are interpreted, they
trigger additional KS’s that are associated with the
interpretations. For example, after a small circle with
a line to its center is interpreted as a PULLEY, the
KS Identify-Pulley-System is triggered to look for the
lines tangent to the pulley that represent the rope
passing around the pulley. This results in the two
lines that represent the rope being collected as a single
ROPE object, with their endpoints away from the pulley
being identified as the ends of the rope. This, in turn,
triggers additional inferences, since the ends of a rope
are expected to be attached to objects or surfaces.
When a KS can make a clear interpretation of a
part of the diagram, it obviates other KS’s involving
alternative interpretations of the object that might
have been triggered.

In addition to triggering interpretations of other
parts of the diagram, the diagram parsing KS’s
trigger expectations for later stages of processing. For
example, identification of a CONTACT between a mass
and a surface sets up an expectation that a normal
force and coefficient of friction for the CONTACT may be
specified by the English text.

The process of diagram “parsing” continues until
no further interpretations can be made at that level;
this results in a substantial degree of interpretation
of the diagram. Figure 5 schematically illustrates the
interpretation of an example after diagram parsing;
most of the TOUCH relations and some CONTACT
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CONTACT1

CONTACT4

CONTACTO

‘r:f}§s2

SURFACE2
ANGLE1

SURFACE1

Figure 5: Interpretation after Diagram Parsing

relations are omitted for readability.

The Understanding Module

The understanding module controls the parsing of
the text and diagram and performs the majority of
the semantic processing. Its inputs are the “parsed”
diagram on the PICTURE-MODEL level of the blackboard
and the parsed sentences, represented as semantic
networks or case frames, on the TEXT-MODEL level. It
produces as output a unified model of the problem,
incorporating information from both modalities.

Establishing Coreference

In order to produce a unified model, a major task is to
establish coreference between the two input modalities.
Each object that appears in either text or diagram
must be present on the PROBLEM-MODEL blackboard
level; if features of an object appear in both text and
diagram, the features must be collected on the same
object in the model, to which the text and diagram co-
refer. For example, the text could say “the coefficient
of friction is 0.25”, referring to a contact between
a block and an inclined plane that is shown in the
diagram but not mentioned in the text. In order to
correctly understand the problem, the friction value
from the text must be associated in the problem model
with the contact relation between block and plane that
was derived from the diagram.

The knowledge sources (KS’s) that perform
coreference resolution are triggered when their
corresponding types of objects are posted on the
PICTURE-MODEL or TEXT-MODEL blackboard levels. For
example, in the problem shown in Figure 1, parsing the
phrase “the string” will cause an object representing
the string to be added to the TEXT-MODEL level, and
this will trigger the Match-Rope KS to attempt to
find a corresponding object in the PICTURE-MODEL. In



some cases, establishing coreference is fairly trivial,
such as resolving a reference to “the mass” when
only one item that could be a mass is present in
the diagram. In other cases, however, the presence
of parsed diagram elements on PICTURE-MODEL is
necessary to resolve the referent of a phrase that would
otherwise be incoherent. The text may contain a
definite reference to an object (“the incline”) or to a
feature of a relationship (“the coefficient of friction™)
that is not otherwise mentioned in the text and could
not be understood properly without the presence of the
corresponding elements from the diagram. In effect,
forward inferences are made to attempt to match
things that might occur in the other modality; for
example, in Figure 1 the contact between the mass
and the inclined plane in the diagram causes the KS’s
Match-Normal-Force and Find-COEF to be triggered
to look for corresponding references that might appear
in the text.

Inference of Properties

The KS’s of the understanding module also perform
inferences that flesh out the representation of the
problem; in some cases these can be considered to
be based on common-sense physics. For example,
BEATRIX will infer that the rotation of an object is
the same as the rotation of the object on which it rests
and that an object that is hanging from a rope hangs
directly below it. Contact between an object and a
surface is assumed to be a frictional touch contact,
while contact between a rope and an object it supports
is assumed to be an attachment. Such inferences are
important for understanding, since natural language
text often omits things that an intelligent reader is
assumed to be able to infer.

Control of Processing

Control of processing in understanding text and
diagrams must be flexible, since no fixed order of
processing is likely to succeed for a wide variety
of problems. Some problems contain all of the
necessary information in the text; for example, ISAAC
[14] handled problems that had diagrams in the
textbooks from which they were taken, but had
English descriptions sufficiently complete that diagram
understanding was not necessary. Other problems rely
heavily on the diagram; for example, in one example
handled by BEATRIX the entire text is: ((WHAT IS
THE TENSION IN THE CORD IN THE FIGURE)).

Control needs to be opportunistic, so that clear
identifications can be made first; as some identifi-
cations are made, others that had been ambiguous
often can be resolved uniquely. Expectations must be
posted so that they can be matched with corresponding
references that will appear later. Defaults need to
be performed when no other knowledge source can
operate.

A blackboard architecture provides a scheduling
mechanism that allows many knowledge sources to be
triggered, or scheduled for execution; the same KS can
be triggered multiple times on different data. In the
BB1 blackboard system [5], a dynamically calculated
priority is associated with each triggered KS; the KS
with the highest priority is executed first. If a KS
makes a clear identification, it can obviate (remove
from the schedule) any remaining KS’s for the same
task. These methods are used to achieve opportunistic
control. Bulko [2] describes the processing of an
example problem in step-by-step detail; the following
summarize the control strategies used:

1. Knowledge sources are triggered, based on the
possibility of a match, when objects are placed on
the blackboard. For example, a CIRCLE element
placed on the PICTURE level will trigger a KS to
determine whether it represents a pulley. The
initial objects are placed on the blackboard by
the special KS’s Post-the-Problem and Parse-the-
Sentences. Other KS’s implement expectations, as
when identification of contact between an object and
a surface in the diagram triggers KS’s to look for a
coefficient of friction and a normal force in the text.

2. Priority ratings are used to cause KS’s with the best
input data to execute first. For example, Identify-
Masses gives itself a high rating if there is only one
mass against which to match. The priority rating
is done dynamically, so that the priority of a KS
is raised as its prospects improve; thus, Identify-
Masses can receive a better rating when one of the
masses it might have matched becomes matched
with a different object.

3. Default KS’s are triggered automatically, but at a
very low priority level, to provide default values for
unmentioned features or to move objects mentioned
in only one input modality to the PROBLEM-MODEL
level. If another KS makes an identification for
which a default KS exists, the default KS is obviated.

4. Flow of control from low-level KS’s to higher-level
ones occurs naturally because the low-level KS’s are
triggered by the problem statement and diagram,
while the high-level KS’s are triggered by the output
of the low-level KS’s.

Conclusions and Future Work

Understanding information from different perceptual
modalities about a single situation is an important area
of A.L research. The task of understanding English
text and diagrams together is nontrivial but simple
enough for useful progress to be made. In addition,
a clear test of the validity of the results is available,
since the output must be sufficient to allow solving of
the physics problem; the output of BEATRIX has been
used as input to the physics problem solver of Kook [9].
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Potential Applications

Humans find graphical interfaces convenient. Most
present graphical interfaces are special-purpose: the
graphical primitives that are used, and the ways
in which they can be connected and combined,
are specialized to the application. The ability to
understand diagrams input by the user as free-form
drawings would allow the same interface to be used
for multiple applications; special-purpose knowledge
sources would be needed for particular application
areas. With input of line drawings using an optical
scanner and computer vision pre-processing, existing
drawings (such as blueprints) could be understood
without having to be entered by hand.

Drawings alone are not sufficient for complete
specification; in many cases, blueprints contain blocks
of text as well as drawings. The ability to understand
text and drawings together would be needed for
successful applications.

Future Work

It is possible to imagine cases in which the diagram
would allow resolution of ambiguity in parsing the
English sentences and in which the semantics of the
English itself would be insufficient. In the well-known
example sentence, “I saw the man on the hill with
the telescope,” several different parses are possible
and correspond to different meanings; a diagram could
indicate which meaning was correct. Likewise, the
English text might allow resolution of an ambiguity
in “parsing” the diagram. No cases of either type
were found in the examples used in testing BEATRIX.
There were many potential ambiguities in matching
objects in the diagram and text, but none that
would have changed the “phrase structure” of either.
Nevertheless, this is a possibility, so we identify it
as an area for further work. Implementation of
the natural language parser within the blackboard
framework would make it possible for natural language
and diagram parsing to proceed in parallel at the lowest
level and to influence each other.

The present system builds only a single interpreta-
tion of a problem. A more advanced system should
allow representation of alternative interpretations,
perhaps like that of [16] with certainty factors to
indicate the goodness of an interpretation.

Understanding of larger diagrams, such as mechani-
cal drawings or circuit diagrams, is an interesting area
for additional research.
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