
A Cooperative Problem Solving System
for User Interface

Andreas C. Lemke and Gerhard Fischer

Department of Computer Science and Institute of Cognitive Science
Engineering Center ECOT 7-7, University of Colorado, Boulder, CO 803094430

(andreas, gerhard) @ boulder.colorado.edu

Abstract
Designing a user interface is an ill-defined problem

making cooperative problem solving systems a promising
approach to support user interface designers. Cooperative
problem solving systems are modular systems that support
the human designer with multiple, independent system
components. We present a system architecture and an
implemented system, FRAMER, that demonstrate the
cooperative problem solving approach. FRAMER represents
design knowledge in formal, machine-interpretable
knowledge sources such as critics and dynamic specifica-
tion sheets, and in semi-formal knowledge sources such as
a palette of user interface building blocks and a checklist.
Each of these components contributes significantly to the
overall usefulness of the system while requiring only
limited resources to be designed and implemented. ’

Cooperative Problem Solving
Artificial intelligence research has traditionally focused on
building systems that autonomously solve complex
problems (e.g., Rl/XCON (McDermott, 1982) and
MYCIN (Buchanan, Shortliffe, 1984)). This approach is
however not easily applicable in ill-defined problem
domains, such as user interface design. Consistency
(Grudin, 1989), learnability, and many other concepts of
user interface design cannot be adequately formalized in a
precise way.

Alternatively, one can design cooperative problem solv-
ing systems (Fischer, 1988) that work in conjunction with
human problem solvers rather than replacing them.
Cooperative problem solving systems are located between
systems that design with human guidance (e.g., UofA*,
(Singh, Green, 1989)) and passive CAD tools (e.g.,
MENULAY, (Buxton et al., 1983)).

A desirable characteristic of practical cooperative
problem solving systems is a modular, incremental ar-
chitecture with simple but extensible components. In con-
trast, many intelligent support systems that have been

‘This research was partially supported by grants No.
DCR-8420944 and No. IRI-8722792 from the National Science
Foundation, grant No. MDA903-86CO143 from the Army
Research Institute, and grants from the Intelligent Interfaces
Group at NYNEX and from Software Research Associates
(SRA), Tokyo.

proposed carry a heavy weight of complex system com-
ponents. For example, a natural language based help sys-
tem requires a natural language understanding component,
a problem solver, and a natural language generator. Each
of these components is large and complex, and all three
components have to exist for the whole system to function
properly. A system with an incremental architecture,
however, can be gradually improved by extending its com-
ponents and by adding new components. There is a low
threshold for creating a low-end system and quickly intro-
ducing it into practical use.

To build effective cooperative problem solving systems,
the limitations of both autonomous expert systems and
human problem solvers must be understood. This
knowledge will enable us to complement intclligcnt
machines where they are limited, and to augment the
human intellect where it needs support. Contributions
from the machine must enable the human to proceed in
ways that were not possible without them and vice versa.

Among the limitations of autonomous intclligcnt
machines are the difficulty of capturing a sufficiently com-
plete store of domain knowledge, the opaqueness of expert
decision making process, the specification problem, and
issues of conflicting and subjective practice. Of thcsc, the
specification problem is one of the hardest to ovcrcomc. It
refers to the fact that, for ill-defined problems (Eastman,
1969; Simon, 1973), specification and solution arc
developed hand in hand and not in sequence (Rittel, 1972;
Swartout, Balzer, 1982). At the start of a design process, a
specification may be lacking in at least two ways. First,
the specification may be incomplete, i.e., certain charac-
teristics of the artifact have been left unspecified although
they are important. For example, the behavior of com-
puter systems in exceptional situations is often left un-
specified. Second, for some characteristics, the desired
values may yet be unknown, for example, because their
consequences have not been evaluated. For these
problems, an interactive approach is ncccssLary because the
human is unable to specify all the relevant information and
preferences in advance and because specifying the
problem is itself a problem solving process.

Human problem solving is limited by fundamental cog-
nitive limitations such as short term memory capacity, for-
getting, and slow long term memory access. At a higher
level, it has been found that inexperienced problem solvers

LEMKEANDFISCHER 479

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

do not consider and deliberate enough alternatives but
rather use the first one they find (Jeffries et al., 1981).
Humans do not search for information of whose existence
they are unaware (Fischer, 1989), and they are unable to
keep all relevant factors in mind when making decisions.

The purpose of our systems is to reduce the knowledge
needed to design and to help less experienced designers
achieve better results by providing external knowledge
sources. Cooperative problem solving systems must be
able to communicate design knowledge to the user. Typi-
cal AI knowledge representation formalisms, such as rules
or frames, are designed to be efficiently executable by
inference engines but are not necessarily applicable in
cooperative problem solving systems where the knowledge
must be interpreted by humans as well. Our approach is
based on a combination of formal, machine-interpretable
and semi-formal knowledge sources that can only partially
used by the system to control its actions. The kinds of
semi-formal knowledge structures we are employing are
easier to acquire and modify than formal knowledge struc-
tures (Peper, MacIntyre, Keenan, 1989). Semi-formal
knowledge structures are also useful in ill-defined problem
domains where concepts and relationships cannot always
be captured in a complete, executable way. Semi-formal
knowledge structures alone, however, can not give users
sufficient support-they have to do “all the work.” Thus,
we complement them with formal knowledge structures
that allow the system to solve well-defined subproblems
for the user.

In the following section, we describe a system architec-
ture for .cooperative problem solving systems that ad-
dresses these questions. The architecture employs system
components that serve as formal and semi-formal
knowledge sources.

Framer: A Cooperative User Interface
Design Environment

Our research has focussed on devising methods and tools
to support the above-mentioned design activities. We
describe our results using the example of the FRAMER
design environment. FRAMER (Figure 1) is a knowledge-
based design environment for program frameworks, which
are high-level building blocks for window-based user in-
terfaces. Program frameworks consist of a window frame
of nonoverlapping panes and an event loop for processing
mouse clicks, keyboard input, and other input events.
Program frameworks also manage the update of infor-
mation displayed on the screen. The current Framer sys-
tem and its architecture is the result of an iterative
development process that has gone through three major
stages: tool kits, construction kits, and knowledge-based
design environments. In this sequence, each later stage is
an extension of its predecessor. We describe version 2 of
the FRAMER system, which is based on experience with
FRAMERS .

Tool Kits

The first stage, tool kits, aims at providing domain-
oriented building blocks, such as windows and menus.
Examples of tool kits are Xlib, NextStep, and the Macin-
tosh toolbox. Tool kits enable designers to work in terms
of concepts of their domain of expertise rather than at the
level of a general-purpose programming language.
FRAMER uses the Symbolics user interface toolkit, spccifi-
tally program frameworks and different kinds of windows
and menus. Tool kits represent a limited amount of design
knowledge that was used in the design of the building
blocks.

Construction Kits
Toolkits provide domain-oriented building blocks, but
they do not support the processes of finding and combin-
ing the blocks4esigners have to know what blocks exist
and how they are used. Construction kits address this
problem by providing a palette and a work area (see
Figure 1). The palette displays representations of the
building blocks and thus shows what they are and makes
them easily accessible. The palette provides an answer to
the question what the possible components of the design
are. The work area is the principal medium for design and
construction in the FRAMER design environment. This is
where the designer builds a window layout by assembling
building blocks taken from the palette. Examples of user
interface construction kits are the Symbolics FrameUp
system, MENLJLAY (Buxton et al., 1983), the Next user
interface builder, and WIDES and TRIKIT (Fischer,
Lemke, 1988).

Design Environments

Knowledge-based design environments address shortcom-
ings that we have found in construction kits. Construction
kits support design of interfaces at a syntactic level only,
and our experience with this class of systems has shown
that it is easy to create a functioning interface, but creating
a good interface requires a great deal of additional
knowledge that is not provided by construction kits.
Design environments provide additional design knowledge
through critics, checklists, and other means described
below.

Critics. Critics are a formal knowledge source in
FRAMER. Critics (Fischer et al., 1990) are demons that
evaluate the evolving artifact. When the system detects a
suboptimal aspect of the artifact, it displays a message
describing the shortcoming in the critic window entitled
“Things to take care of” (Figure 1) The critics trigger as
soon as the designer makes an inferior design decision and
they update the critic window continuously.

FRAMER2 distinguishes between mandatory and
optional suggestions. Mandatory suggestions must bc
carried out by the designer. They represent system re-
quirements for the construction of a functioning program
framework. For example, a frame must be completely
covered with panes if correct LISP code is to be generated,

480 INTELLIGENTINTERFACES

Check List

q (Initial progran framework)

la{ Progran nane

q Invoking this progran

fl ~Rrrangenent of panes 5

El< Connand loop function

El< Connand defining nacro

=>fg (Types of input

•I pGq

la< Conmand tables

fq Code Generation

Framer2 Version 4.0
1 What you can do:

low typed commands: Yes No
Yes neans that users nay invoke connands by typi
interactor pane.

low evaluation of lisp expressions: Yes No
Yes neans that users nay type in arbitrary lisp
eualuate.

II!Rll ow single key abbreviations for connands: Yes No

“g thelr “anes to a listener or

expressi o”s, which your program will

I
; i
; i

Yes neans that users nay invoke connands by typing a single key on the keyboard. For
i i example typing Control-D would invoke a delete connand. This single key abbreviation
; j
i !

would be defined by specifying :keyboard-accelerator #\c-I) in the definition of the
i ; delete connand.

Things to take care of:
-Add a listener or interactor pane, or disallow
typed connands and lisp expressions. (Required)

pGiq

wont nrea Palette
ttckz-pane

Implay-pane

m

Ilillm.,pmrI

tnteractor-pane

+zG-G-j

menu-pane

Figure 1: FRAMER
In the situation shown in the figure, the designer makes a decision about what types of user input should be supported in the
interface. The system responds to this decision by displaying a critic message in the critic window entitled “Things to take care
of.” The critic message identifies a discrepancy between the specification sheet (entitled “What you can do”) and the work
area. The designer can either modify the window layout in the work area or change the specification sheet.

and the suggestion to take care of this is mandatory. Op-
tional suggestions recommend typical design choices, but
they can be ignored by the designer if desired. The
Explain button accesses prestored explanations of why the
system critiques and what the designer can do about it.
Designers can indicate their intent to disregard the sugges-
tion through the Reject operation. For some critic mes-
sages, a Remedy operation is available; that is, FRAMER
can provide a default solution for a problem it has
detected.

Critics provide heuristics to decide design questions and
point out interactions between different subproblems. The
critic knowledge base contains rules about naming the
program, arranging window panes, specific knowledge
about title panes, dialog panes, and menu panes, and
knowledge about invoking a program and selecting inter-
action modes. These rules are based on a study of existing
systems in our computing environment. We interviewed
the system designers and elicited the rules they were using.

Some of the rules represent system constraints, for ex-
ample, that a window frame must be complctcly divided
up into panes. Other rules concern the consistency among
different applications and functional grouping.

Figure 2 shows a typical critic rule. This rule contains
knowledge about the relationship of interaction mode and
configuration of window panes in the interface. If the
mouse-and-keyboard interaction mode is selected, then the
rule suggests adding a dialog pane. A Remedy action is
also defined. Invoking the Remedy operation associated
with this rule causes the system to add a listener pane at
the bottom of the window frame.

The critics in FRAMERS were passive, i.e., had to be
explicitly invoked by the designer. FRAMERS was tcstcd
in a video-taped thinking-aloud study, which showed that
the critics substantially improved the performance of user
interface designers when compared to a construction kit.
But the passive critics failed to be effective in some cases.
Subjects invoked the critics only after they thought they

LEMKE AND FISCHER 481

;; A critic rule named need-dialog-pane.
(define-critic-rule need-dialog-pane

* * I I Applicability condition. This rule is applicable if the
;: interaction mode is mouse-and-keyboard.
:applicability (equal Sinteraction-mode

mouse-and-keyboard)

:; The rule is violated if there is no pane of type dialog-pane
* l I I in the set on inferiors of a program framework.
:condition

(not (exists x (type x dialog-pane)))

* l I I The Remedy operation adds a listener-pane.
:remedy
(let ((pane(make-instance 'listener-pane

:x (+ x 20) :y (+ y 184)
:superior self)))

(add-inferior self pane)
(display-icon pane))

:: Text of the suggestion made to the user if critic is
:; applicable.
:suggestion
"Add a listener or interactor pane, or
set the interaction mode to mouse-only."

; ; Text for Praise command.
:praise
"There is a listener or interactor pane."

;; Text for Explain command.
:explanation "Since the interaction mode
is mouse-and-keyboard, a dialog pane is
required for typing in commands.")

Figure 2: An Example of a Critic Rule

This is a slightly paraphrased FRAMER critic rule that applies to
program frameworks. The rule suggests adding a listener or inter-
actor pane if the interaction mode mouse-and-keyboard was
specified.

had completed the design. Thus, the critics were not ac-
tivated early enough to prevent designers from going down
garden paths. In FRAMER& the system described here, an
active critiquing strategy has been chosen and has proved
to be much more effective.

Specification Sheets. The window layout of an interface
has a natural graphical representation as shown in the
work area. This is, however, not true of all characteristics
of an interface. Behavioral characteristics, for instance,
must be described in a different way. In the FRAMER
system, these other characteristics are described in a sym-
bolic way as fillers in the fields of a specification sheet
(see the “What you can do” window in Figure 1).
Through the sheet, the system brings design issues and
their possible answers to the user’s attention. Associated
texts explain the significance and consequences of the dif-
ferent design choices.

In the example of Figure 1, the designer makes a deci-

482 INTELLIGENTINTERFACES

sion about what types of user input should be supported in
the interface. The system responds to this decision by
displaying a critic message in the critic window enti tlcd
“Things to take care of.” The system can also respond by
modifying the construction situation in the work arca.
This is accomplished through procedural demons attached
to the fields of the specification sheet. The specification
sheet is dynamic in that the set of fields in the sheet is
dynamically determined based on information that the
designer has previously specified.

Catalog. The catalog is a collection of predesigncd ar-
tifacts illustrating the space of possible designs in the
domain. Rather than starting from scratch, the designer
starts the design process by invoking the catalog (Figure 3)
and selecting a suitable program framework in the catalog.
The selected framework is inserted into the work arca, and
the designer modifies and adapts it to fit the rcquiremcnts
of the problem. Our experiments have shown that USC of
the catalog can substantially reduce the difficulties in
using the design environment. The catalog provides
design knowledge in the form of concrete examples that
allow reuse and case-based design.

Select a Dronram framework to start out with.

:RRMER2 : This is the progran franework of the Framer system
itself. It supports typed command input, evaluation of lisp
rxpressi ons, and single key abbreviations for comnands.

Example 3 of 4.

Previous Next Select This Framework Abort

Figure 3: The FRAMER=! Catalog

Users of FQAMER~ tended to design frameworks from
scratch without using the catalog. In FRAMER& the use of
the catalog has been made mandatory, which climinatcd
many low-level tasks. Making the use of the catalog man-
datory is not really a restriction because designers can
choose very generic frameworks that are almost equivalent
to starting from scratch. However, subjects did use more
complex examples from the catalog.

Checklist. Another problem in FRAMERS was that dcsig-
ners who were not familiar with the program framework
abstraction were unable to decide what steps had to bc
done to create a complete functional program framework.
The checklist in FRAMER2 addresses this problem by
providing the designers with an explicit problem dccom-
position that is appropriate for the design of program

System System communicates to user (unin- System communicates to user (inter-
Component User communicates to system terpreted knowledge) preted knowledge)

checklist current focus of attention how to decompose design problem raise subproblems depending on infor-
mation from designer

palette What primitive components are used What are the primitive components? -
in the artifact?

specification User symbolically specifies answers to System brings design issues to the System raises design issues depending
sheets design issues. designer’s attention. on information from the designer.

System presents potential answers. System updates artifact according to

System explains significance and con- specified information.

sequences of different design choices.

critics User may reject the system’s critique. - System points out suboptimal design
decisions.
System explains why it objects.
Critics provide heuristics for making
decisions.

catalog

code
generator

User selects an artifact to reuse and
modify.

System provides design knowledge in -
the form of examples, allows “case-
based” design.

System generates an executable
representation of the designated ar-
tifact.

Table 1: Components of Cooperative Problem Solving Systems

frameworks.
The checklist serves as the main organizing tool for the

interaction with F'RAMER. With the checklist, the system
indicates to the user how to decompose the problem of
designing a program framework, and it helps to ensure that
designers attend to all necessary issues, even if they do not
know about them in advance. Each item in the checklist is
one subproblem of the total design process. By selecting a
checklist item, designers tell the system their current focus
of attention in the design process.

When the designer selects an subproblem in the check-
list, the system responds by displaying the corresponding
options in the specification sheet shown in the neighboring
“What you can do” window and, thus, provides further
detail about the subproblem. The critics are grouped ac-
cording to the checklist items. The critic pane always
displays exactly those critic messages that are related to
the currently selected checklist item.

When designers believe that the topic of one checklist
item has been completed, they indicate this fact to the
system by checking off the associated check box. This
causes the system to verify whether all constraints
represented in the active critics are satisfied. Only then
does the system insert a check mark into the check box.
By showing check marks for completed subproblems, the
checklist is also a tool for the designer to keep track of
which issues have or have not been resolved.

The exact set of checklist items displayed depends on
the designer’s previous design decisions. The system dis-

plays only those items that are currently relevant (i.e., it is
context-sensitive); for example, the prompt item is only
displayed if command-based interaction is specified.

Code Generator. The ultimate goal of user interface
design is the generation of an executable program code,
and the design activity supported by FRAMER can be
viewed as creating a specification for the code. The code
generator component of FRAMER is an formal knowledge
source that takes care of creating syntactically correct, ex-
ecutable code.

An Architecture for Cooperative Problem
Solving Systems

FRAMER cooperates with the user in a structured dialog
mediated through the following system components:
checklist, palette, specification sheets, critics, catalog, and
code generator. Table 1 shows how these diffcrcnt com-
ponents contribute to the cooperative problem solving
process.

The cooperative system architecture of FRAMER was
designed to cope with the ill-structured nature of the user
interface domain. Most cooperative design support sys-
tems operate in well-defined domains. For example,
PRIDE (Mittal, Araya, 1986) operates in the well-defined
domain of paper path design for copiers. In this domain,
the design problem can be complctcly specified and
decomposed in advance, and for each design question
there is a well-known set of possible answers. These

LEMKE AND FISCHER 483

premises are not true for the user interface domain. The
challenge for the FRAMER system was to define an ar-
chitecture that can support designers effectively even if the
system’s knowledge is incomplete.

Conclusions and Ongoing Research
The goal of this work is to build a cooperative support
system for user interface design. For cooperative systems,
not only internal representation and reasoning mechanisms
but, in particular, the external presentation and com-
munication of that knowledge to the user is of crucial im-
portance. The proposed architecture provides a migration
path from simple tool kits to sophisticated design environ-
ments. By incrementally adding relatively simple com-
ponents such as critics and checklists, the utility of a sup-
port system can be significantly improved.

Our approach was driven by the needs of designers, i.e.,
their needs for support in decomposing the problem, find-
ing applicable building blocks, and understanding the ef-
fects of design decisions. Knowledge-based design en-
vironments are unique in addressing these needs with a
rich set of semi-formal and formal knowledge sources.

The FRAMER system is an object of ongoing research in
several directions. The existence of the knowledge
sources in FRAMER does not guarantee that users find and
take advantage of them, and the control of the user’s atten-
tion to the great variety of available information becomes
a problem. We are investigating ways to control attention
using a cognitive modeling approach using the construc-
tion integration model of cognition (Kintsch, 1989).

Another active research area is the design of generaliza-
tions of the checklist and the specification sheets. These
two components taken together represent a two level
hierarchy of design issues. We are extending this to an
unlimited number of levels by using the concept of issue-
based information systems (IBIS) in the form of (McCall,
1987). Issue-based information systems represent ar-
gumentative design knowledge as hierarchies of issues,
answers, and arguments for or against choosing those
answers. To make an IBIS component more responsive,
we are adding active mechanisms similar to the ones found
in the checklist and the specification sheets.

References
B.G. Buchanan, E.H. Shortliffe (1984). Rule-Bused Expert

Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project. Reading, MA: Addison-Wesley
Publishing Company.

W.A.S. Buxton, M.R. Lamb, D. Sherman, KC. Smith (1983).
Towards a comprehensive user interface management system.

Computer Graphics, 17(3), 35-42.
C.M. Eastman (1969). Cognitive Processes and Ill-Defined

Problems: A Case Study from Design. Proceedings of the
International Joint Conference on Artificial Intelligence,
669-675. Los Altos, CA: Morgan Kaufmann Publishers.

G. Fischer (1988). Cooperative Problem Solving Systems.
Proceedings of the 1 st Simposium international de Inteligencia
Artificial (Monterrey, Mexico), 127- 132.

G. Fischer (1989). Human-Computer Interaction Software:
Lessons Learned, Challenges Ahead. IEEE Software, 6(1).
44-52.

G. Fischer, A.C. Lemke, T. Mastaglio, A. March (1990).
Using Critics to Empower Users. Human Factors in Computing
Systems, CHI’90 Conference Proceedings (Seattle, WA),
337-347. New York: ACM.

G. Fischer, A.C. Lernke (1988). Construction Kits and Design
Environments: Steps Toward Human Problem-Domain
Communication. Human-Computer Interaction, 3(3), 179-222.

J. Grudin (1989). The Case Against User Interface
Consistency. Communications of the ACM, 32(10), 1164-1173.

R. Jeffries, A.A. Turner, P.G. Polson, M. Atwood (198 1). The
Processes Involved in Designing Software: In J.R. Anderson
(Ed.), Cognitive Skills and their Acquisition (pp. 255283).
Hillsdale, NJ: Lawrence Erlbaum Associates.

W. Kintsch (1989). The Representation of Knowledge and the
Use of Knowledge in Discourse Comprehension: In R. Dietrich,
C.F. Graumann (Eds.), Language Processing in Social Context
(pp. 185-209). Amsterdam: North Holland.also published as
Technical Report No. 152, Institute of Cognitive Science,
University of Colorado, Boulder, CO.

R. McCall (1987). PHIBIS: Procedurally Hierarchical
Issue-Based Information Systems. Proceedings of the
Conference on Architecture at the International Congress on
Planning and Design Theory. New York: American Society of
Mechanical Engineers.

J. McDermott (1982). Rl: A Rule-Based Configurer of
Computer Systems. Artificial Intelligence.

S. Mittal, A. Araya (1986). A knowledge-based framework
for design. Proceedings of AAAI-86,856-865. Los Altos, CA:
Morgan Kaufmann.

G. Peper, C. MacIntyre, J. Keenan (1989). Hypertext: A New
Approach for Implementing an Expert System. Proceedings of
Expert Systems ITL Conference.

H.W.J. Rittel(1972). On the Planning Crisis: Systems
Analysis of the First and Second Generations.
Bedriftsokorwmen(8), 390-396.

H.A. Simon (1973). The Structure of Ill-Structured Problems.
Artificial intelligence(4).

G. Singh, M. Green (1989). A high-level user interface
management system. Human Factors in Computing Systems,
CHI’89 Conference Proceedings (Austin, TX), 133-138. New
York: ACM.

W.R. Swartout, R. Balzer (1982). On the Inevitable
Intertwining of Specification and Implementation.
Communications of the ACM, 25(7), 438-439.

484 WIELLIGENTINTJSFACES

