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Abstract 
Designing a user interface is an ill-defined problem 

making cooperative problem solving systems a promising 
approach to support user interface designers. Cooperative 
problem solving systems are modular systems that support 
the human designer with multiple, independent system 
components. We present a system architecture and an 
implemented system, FRAMER, that demonstrate the 
cooperative problem solving approach. FRAMER represents 
design knowledge in formal, machine-interpretable 
knowledge sources such as critics and dynamic specifica- 
tion sheets, and in semi-formal knowledge sources such as 
a palette of user interface building blocks and a checklist. 
Each of these components contributes significantly to the 
overall usefulness of the system while requiring only 
limited resources to be designed and implemented. ’ 

Cooperative Problem Solving 
Artificial intelligence research has traditionally focused on 
building systems that autonomously solve complex 
problems (e.g., Rl/XCON (McDermott, 1982) and 
MYCIN (Buchanan, Shortliffe, 1984)). This approach is 
however not easily applicable in ill-defined problem 
domains, such as user interface design. Consistency 
(Grudin, 1989), learnability, and many other concepts of 
user interface design cannot be adequately formalized in a 
precise way. 

Alternatively, one can design cooperative problem solv- 
ing systems (Fischer, 1988) that work in conjunction with 
human problem solvers rather than replacing them. 
Cooperative problem solving systems are located between 
systems that design with human guidance (e.g., UofA*, 
(Singh, Green, 1989)) and passive CAD tools (e.g., 
MENULAY, (Buxton et al., 1983)). 

A desirable characteristic of practical cooperative 
problem solving systems is a modular, incremental ar- 
chitecture with simple but extensible components. In con- 
trast, many intelligent support systems that have been 
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proposed carry a heavy weight of complex system com- 
ponents. For example, a natural language based help sys- 
tem requires a natural language understanding component, 
a problem solver, and a natural language generator. Each 
of these components is large and complex, and all three 
components have to exist for the whole system to function 
properly. A system with an incremental architecture, 
however, can be gradually improved by extending its com- 
ponents and by adding new components. There is a low 
threshold for creating a low-end system and quickly intro- 
ducing it into practical use. 

To build effective cooperative problem solving systems, 
the limitations of both autonomous expert systems and 
human problem solvers must be understood. This 
knowledge will enable us to complement intclligcnt 
machines where they are limited, and to augment the 
human intellect where it needs support. Contributions 
from the machine must enable the human to proceed in 
ways that were not possible without them and vice versa. 

Among the limitations of autonomous intclligcnt 
machines are the difficulty of capturing a sufficiently com- 
plete store of domain knowledge, the opaqueness of expert 
decision making process, the specification problem, and 
issues of conflicting and subjective practice. Of thcsc, the 
specification problem is one of the hardest to ovcrcomc. It 
refers to the fact that, for ill-defined problems (Eastman, 
1969; Simon, 1973), specification and solution arc 
developed hand in hand and not in sequence (Rittel, 1972; 
Swartout, Balzer, 1982). At the start of a design process, a 
specification may be lacking in at least two ways. First, 
the specification may be incomplete, i.e., certain charac- 
teristics of the artifact have been left unspecified although 
they are important. For example, the behavior of com- 
puter systems in exceptional situations is often left un- 
specified. Second, for some characteristics, the desired 
values may yet be unknown, for example, because their 
consequences have not been evaluated. For these 
problems, an interactive approach is ncccssLary because the 
human is unable to specify all the relevant information and 
preferences in advance and because specifying the 
problem is itself a problem solving process. 

Human problem solving is limited by fundamental cog- 
nitive limitations such as short term memory capacity, for- 
getting, and slow long term memory access. At a higher 
level, it has been found that inexperienced problem solvers 
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do not consider and deliberate enough alternatives but 
rather use the first one they find (Jeffries et al., 1981). 
Humans do not search for information of whose existence 
they are unaware (Fischer, 1989), and they are unable to 
keep all relevant factors in mind when making decisions. 

The purpose of our systems is to reduce the knowledge 
needed to design and to help less experienced designers 
achieve better results by providing external knowledge 
sources. Cooperative problem solving systems must be 
able to communicate design knowledge to the user. Typi- 
cal AI knowledge representation formalisms, such as rules 
or frames, are designed to be efficiently executable by 
inference engines but are not necessarily applicable in 
cooperative problem solving systems where the knowledge 
must be interpreted by humans as well. Our approach is 
based on a combination of formal, machine-interpretable 
and semi-formal knowledge sources that can only partially 
used by the system to control its actions. The kinds of 
semi-formal knowledge structures we are employing are 
easier to acquire and modify than formal knowledge struc- 
tures (Peper, MacIntyre, Keenan, 1989). Semi-formal 
knowledge structures are also useful in ill-defined problem 
domains where concepts and relationships cannot always 
be captured in a complete, executable way. Semi-formal 
knowledge structures alone, however, can not give users 
sufficient support-they have to do “all the work.” Thus, 
we complement them with formal knowledge structures 
that allow the system to solve well-defined subproblems 
for the user. 

In the following section, we describe a system architec- 
ture for .cooperative problem solving systems that ad- 
dresses these questions. The architecture employs system 
components that serve as formal and semi-formal 
knowledge sources. 

Framer: A Cooperative User Interface 
Design Environment 

Our research has focussed on devising methods and tools 
to support the above-mentioned design activities. We 
describe our results using the example of the FRAMER 
design environment. FRAMER (Figure 1) is a knowledge- 
based design environment for program frameworks, which 
are high-level building blocks for window-based user in- 
terfaces. Program frameworks consist of a window frame 
of nonoverlapping panes and an event loop for processing 
mouse clicks, keyboard input, and other input events. 
Program frameworks also manage the update of infor- 
mation displayed on the screen. The current Framer sys- 
tem and its architecture is the result of an iterative 
development process that has gone through three major 
stages: tool kits, construction kits, and knowledge-based 
design environments. In this sequence, each later stage is 
an extension of its predecessor. We describe version 2 of 
the FRAMER system, which is based on experience with 
FRAMERS . 

Tool Kits 

The first stage, tool kits, aims at providing domain- 
oriented building blocks, such as windows and menus. 
Examples of tool kits are Xlib, NextStep, and the Macin- 
tosh toolbox. Tool kits enable designers to work in terms 
of concepts of their domain of expertise rather than at the 
level of a general-purpose programming language. 
FRAMER uses the Symbolics user interface toolkit, spccifi- 
tally program frameworks and different kinds of windows 
and menus. Tool kits represent a limited amount of design 
knowledge that was used in the design of the building 
blocks. 

Construction Kits 
Toolkits provide domain-oriented building blocks, but 
they do not support the processes of finding and combin- 
ing the blocks4esigners have to know what blocks exist 
and how they are used. Construction kits address this 
problem by providing a palette and a work area (see 
Figure 1). The palette displays representations of the 
building blocks and thus shows what they are and makes 
them easily accessible. The palette provides an answer to 
the question what the possible components of the design 
are. The work area is the principal medium for design and 
construction in the FRAMER design environment. This is 
where the designer builds a window layout by assembling 
building blocks taken from the palette. Examples of user 
interface construction kits are the Symbolics FrameUp 
system, MENLJLAY (Buxton et al., 1983), the Next user 
interface builder, and WIDES and TRIKIT (Fischer, 
Lemke, 1988). 

Design Environments 

Knowledge-based design environments address shortcom- 
ings that we have found in construction kits. Construction 
kits support design of interfaces at a syntactic level only, 
and our experience with this class of systems has shown 
that it is easy to create a functioning interface, but creating 
a good interface requires a great deal of additional 
knowledge that is not provided by construction kits. 
Design environments provide additional design knowledge 
through critics, checklists, and other means described 
below. 

Critics. Critics are a formal knowledge source in 
FRAMER. Critics (Fischer et al., 1990) are demons that 
evaluate the evolving artifact. When the system detects a 
suboptimal aspect of the artifact, it displays a message 
describing the shortcoming in the critic window entitled 
“Things to take care of” (Figure 1) The critics trigger as 
soon as the designer makes an inferior design decision and 
they update the critic window continuously. 

FRAMER2 distinguishes between mandatory and 
optional suggestions. Mandatory suggestions must bc 
carried out by the designer. They represent system re- 
quirements for the construction of a functioning program 
framework. For example, a frame must be completely 
covered with panes if correct LISP code is to be generated, 
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Check List 

q  (Initial progran framework) 

la{ Progran nane 

q  Invoking this progran 

fl ~Rrrangenent of panes 5 

El< Connand loop function 

El< Connand defining nacro 

=>fg ( Types of input 

•I pGq 

la< Conmand tables 

fq Code Generation 

Framer2 Version 4.0 
1 What you can do: 

low typed commands: Yes No 
Yes neans that users nay invoke connands by typi 
interactor pane. 

low evaluation of lisp expressions: Yes No 
Yes neans that users nay type in arbitrary lisp 
eualuate. 

II!Rll ow single key abbreviations for connands: Yes No 

“g thelr “anes to a listener or 

expressi o”s, which your program will 

I 
; i 
; i 

Yes neans that users nay invoke connands by typing a single key on the keyboard. For 
i i example typing Control-D would invoke a delete connand. This single key abbreviation 
; j 
i ! 

would be defined by specifying :keyboard-accelerator #\c-I) in the definition of the 
i ; delete connand. 

Things to take care of: 
-Add a listener or interactor pane, or disallow 
typed connands and lisp expressions. (Required) 

pGiq 

wont nrea Palette 
ttckz-pane 

Implay-pane 

m 

Ilillm.,pmrI 

tnteractor-pane 

+zG-G-j 

menu-pane 

Figure 1: FRAMER 
In the situation shown in the figure, the designer makes a decision about what types of user input should be supported in the 
interface. The system responds to this decision by displaying a critic message in the critic window entitled “Things to take care 
of.” The critic message identifies a discrepancy between the specification sheet (entitled “What you can do”) and the work 
area. The designer can either modify the window layout in the work area or change the specification sheet. 

and the suggestion to take care of this is mandatory. Op- 
tional suggestions recommend typical design choices, but 
they can be ignored by the designer if desired. The 
Explain button accesses prestored explanations of why the 
system critiques and what the designer can do about it. 
Designers can indicate their intent to disregard the sugges- 
tion through the Reject operation. For some critic mes- 
sages, a Remedy operation is available; that is, FRAMER 
can provide a default solution for a problem it has 
detected. 

Critics provide heuristics to decide design questions and 
point out interactions between different subproblems. The 
critic knowledge base contains rules about naming the 
program, arranging window panes, specific knowledge 
about title panes, dialog panes, and menu panes, and 
knowledge about invoking a program and selecting inter- 
action modes. These rules are based on a study of existing 
systems in our computing environment. We interviewed 
the system designers and elicited the rules they were using. 

Some of the rules represent system constraints, for ex- 
ample, that a window frame must be complctcly divided 
up into panes. Other rules concern the consistency among 
different applications and functional grouping. 

Figure 2 shows a typical critic rule. This rule contains 
knowledge about the relationship of interaction mode and 
configuration of window panes in the interface. If the 
mouse-and-keyboard interaction mode is selected, then the 
rule suggests adding a dialog pane. A Remedy action is 
also defined. Invoking the Remedy operation associated 
with this rule causes the system to add a listener pane at 
the bottom of the window frame. 

The critics in FRAMERS were passive, i.e., had to be 
explicitly invoked by the designer. FRAMERS was tcstcd 
in a video-taped thinking-aloud study, which showed that 
the critics substantially improved the performance of user 
interface designers when compared to a construction kit. 
But the passive critics failed to be effective in some cases. 
Subjects invoked the critics only after they thought they 
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;; A critic rule named need-dialog-pane. 
(define-critic-rule need-dialog-pane 

* * I I Applicability condition. This rule is applicable if the 
;: interaction mode is mouse-and-keyboard. 
:applicability (equal Sinteraction-mode 

mouse-and-keyboard) 

:; The rule is violated if there is no pane of type dialog-pane 
* l I I in the set on inferiors of a program framework. 
:condition 

(not (exists x (type x dialog-pane))) 

* l I I The Remedy operation adds a listener-pane. 
:remedy 
(let ((pane(make-instance 'listener-pane 

:x (+ x 20) :y (+ y 184) 
:superior self))) 

(add-inferior self pane) 
(display-icon pane)) 

:: Text of the suggestion made to the user if critic is 
:; applicable. 
:suggestion 
"Add a listener or interactor pane, or 
set the interaction mode to mouse-only." 

; ; Text for Praise command. 
:praise 
"There is a listener or interactor pane." 

;; Text for Explain command. 
:explanation "Since the interaction mode 
is mouse-and-keyboard, a dialog pane is 
required for typing in commands.") 

Figure 2: An Example of a Critic Rule 

This is a slightly paraphrased FRAMER critic rule that applies to 
program frameworks. The rule suggests adding a listener or inter- 
actor pane if the interaction mode mouse-and-keyboard was 
specified. 

had completed the design. Thus, the critics were not ac- 
tivated early enough to prevent designers from going down 
garden paths. In FRAMER& the system described here, an 
active critiquing strategy has been chosen and has proved 
to be much more effective. 

Specification Sheets. The window layout of an interface 
has a natural graphical representation as shown in the 
work area. This is, however, not true of all characteristics 
of an interface. Behavioral characteristics, for instance, 
must be described in a different way. In the FRAMER 
system, these other characteristics are described in a sym- 
bolic way as fillers in the fields of a specification sheet 
(see the “What you can do” window in Figure 1). 
Through the sheet, the system brings design issues and 
their possible answers to the user’s attention. Associated 
texts explain the significance and consequences of the dif- 
ferent design choices. 

In the example of Figure 1, the designer makes a deci- 

482 INTELLIGENTINTERFACES 

sion about what types of user input should be supported in 
the interface. The system responds to this decision by 
displaying a critic message in the critic window enti tlcd 
“Things to take care of.” The system can also respond by 
modifying the construction situation in the work arca. 
This is accomplished through procedural demons attached 
to the fields of the specification sheet. The specification 
sheet is dynamic in that the set of fields in the sheet is 
dynamically determined based on information that the 
designer has previously specified. 

Catalog. The catalog is a collection of predesigncd ar- 
tifacts illustrating the space of possible designs in the 
domain. Rather than starting from scratch, the designer 
starts the design process by invoking the catalog (Figure 3) 
and selecting a suitable program framework in the catalog. 
The selected framework is inserted into the work arca, and 
the designer modifies and adapts it to fit the rcquiremcnts 
of the problem. Our experiments have shown that USC of 
the catalog can substantially reduce the difficulties in 
using the design environment. The catalog provides 
design knowledge in the form of concrete examples that 
allow reuse and case-based design. 

Select a Dronram framework to start out with. 

:RRMER2 : This is the progran franework of the Framer system 
itself. It supports typed command input, evaluation of lisp 
rxpressi ons, and single key abbreviations for comnands. 

Example 3 of 4. 

Previous Next Select This Framework Abort 

Figure 3: The FRAMER=! Catalog 

Users of FQAMER~ tended to design frameworks from 
scratch without using the catalog. In FRAMER& the use of 
the catalog has been made mandatory, which climinatcd 
many low-level tasks. Making the use of the catalog man- 
datory is not really a restriction because designers can 
choose very generic frameworks that are almost equivalent 
to starting from scratch. However, subjects did use more 
complex examples from the catalog. 

Checklist. Another problem in FRAMERS was that dcsig- 
ners who were not familiar with the program framework 
abstraction were unable to decide what steps had to bc 
done to create a complete functional program framework. 
The checklist in FRAMER2 addresses this problem by 
providing the designers with an explicit problem dccom- 
position that is appropriate for the design of program 



System System communicates to user (unin- System communicates to user (inter- 
Component User communicates to system terpreted knowledge) preted knowledge) 

checklist current focus of attention how to decompose design problem raise subproblems depending on infor- 
mation from designer 

palette What primitive components are used What are the primitive components? - 
in the artifact? 

specification User symbolically specifies answers to System brings design issues to the System raises design issues depending 
sheets design issues. designer’s attention. on information from the designer. 

System presents potential answers. System updates artifact according to 

System explains significance and con- specified information. 

sequences of different design choices. 

critics User may reject the system’s critique. - System points out suboptimal design 
decisions. 
System explains why it objects. 
Critics provide heuristics for making 
decisions. 

catalog 

code 
generator 

User selects an artifact to reuse and 
modify. 

System provides design knowledge in - 
the form of examples, allows “case- 
based” design. 

System generates an executable 
representation of the designated ar- 
tifact. 

Table 1: Components of Cooperative Problem Solving Systems 

frameworks. 
The checklist serves as the main organizing tool for the 

interaction with F'RAMER. With the checklist, the system 
indicates to the user how to decompose the problem of 
designing a program framework, and it helps to ensure that 
designers attend to all necessary issues, even if they do not 
know about them in advance. Each item in the checklist is 
one subproblem of the total design process. By selecting a 
checklist item, designers tell the system their current focus 
of attention in the design process. 

When the designer selects an subproblem in the check- 
list, the system responds by displaying the corresponding 
options in the specification sheet shown in the neighboring 
“What you can do” window and, thus, provides further 
detail about the subproblem. The critics are grouped ac- 
cording to the checklist items. The critic pane always 
displays exactly those critic messages that are related to 
the currently selected checklist item. 

When designers believe that the topic of one checklist 
item has been completed, they indicate this fact to the 
system by checking off the associated check box. This 
causes the system to verify whether all constraints 
represented in the active critics are satisfied. Only then 
does the system insert a check mark into the check box. 
By showing check marks for completed subproblems, the 
checklist is also a tool for the designer to keep track of 
which issues have or have not been resolved. 

The exact set of checklist items displayed depends on 
the designer’s previous design decisions. The system dis- 

plays only those items that are currently relevant (i.e., it is 
context-sensitive); for example, the prompt item is only 
displayed if command-based interaction is specified. 

Code Generator. The ultimate goal of user interface 
design is the generation of an executable program code, 
and the design activity supported by FRAMER can be 
viewed as creating a specification for the code. The code 
generator component of FRAMER is an formal knowledge 
source that takes care of creating syntactically correct, ex- 
ecutable code. 

An Architecture for Cooperative Problem 
Solving Systems 

FRAMER cooperates with the user in a structured dialog 
mediated through the following system components: 
checklist, palette, specification sheets, critics, catalog, and 
code generator. Table 1 shows how these diffcrcnt com- 
ponents contribute to the cooperative problem solving 
process. 

The cooperative system architecture of FRAMER was 
designed to cope with the ill-structured nature of the user 
interface domain. Most cooperative design support sys- 
tems operate in well-defined domains. For example, 
PRIDE (Mittal, Araya, 1986) operates in the well-defined 
domain of paper path design for copiers. In this domain, 
the design problem can be complctcly specified and 
decomposed in advance, and for each design question 
there is a well-known set of possible answers. These 
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premises are not true for the user interface domain. The 
challenge for the FRAMER system was to define an ar- 
chitecture that can support designers effectively even if the 
system’s knowledge is incomplete. 

Conclusions and Ongoing Research 
The goal of this work is to build a cooperative support 
system for user interface design. For cooperative systems, 
not only internal representation and reasoning mechanisms 
but, in particular, the external presentation and com- 
munication of that knowledge to the user is of crucial im- 
portance. The proposed architecture provides a migration 
path from simple tool kits to sophisticated design environ- 
ments. By incrementally adding relatively simple com- 
ponents such as critics and checklists, the utility of a sup- 
port system can be significantly improved. 

Our approach was driven by the needs of designers, i.e., 
their needs for support in decomposing the problem, find- 
ing applicable building blocks, and understanding the ef- 
fects of design decisions. Knowledge-based design en- 
vironments are unique in addressing these needs with a 
rich set of semi-formal and formal knowledge sources. 

The FRAMER system is an object of ongoing research in 
several directions. The existence of the knowledge 
sources in FRAMER does not guarantee that users find and 
take advantage of them, and the control of the user’s atten- 
tion to the great variety of available information becomes 
a problem. We are investigating ways to control attention 
using a cognitive modeling approach using the construc- 
tion integration model of cognition (Kintsch, 1989). 

Another active research area is the design of generaliza- 
tions of the checklist and the specification sheets. These 
two components taken together represent a two level 
hierarchy of design issues. We are extending this to an 
unlimited number of levels by using the concept of issue- 
based information systems (IBIS) in the form of (McCall, 
1987). Issue-based information systems represent ar- 
gumentative design knowledge as hierarchies of issues, 
answers, and arguments for or against choosing those 
answers. To make an IBIS component more responsive, 
we are adding active mechanisms similar to the ones found 
in the checklist and the specification sheets. 
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