
A Collaborative Interface for Editing
Large Knowledge Bases

Loren G. Terveen and David A. Wroblewski

MCC Human Interface Laboratory
3500 West Balcones Center Drive

Austin, TX 78759
terveen@mcc.com and wroblewski@mcc.com

Abstract
A new generation of knowledge/databases is emerging.
These systems contain thousands of objects, densely
interconnected and heterogeneously organized, entered from
many sources, both human and automated. Such systems
present tremendous challenges to their users, who must
locate relevant information quickly and add new information
effectively. Our research aims to understand and support
the knowledge editing task. The HITS Knowledge Editor
(HKE) is an interface that supports browsing and modi-
fying the CYC knowledge base (Guha & Lenat 1990).
HKE has been designed to be a collaborative interface,
following a set of principles for sharing tasks between
system and user. We describe these principles and illustrate
how HKE provides resources built according to those
principles that collaborate with its users on a variety of
knowledge editing tasks.

Introduction: problems with large
knowledge bases

A new generation of knowledge/databases is emerging.
These systems contain thousands or tens of thousands of
classes and instances, densely interconnected and heteroge-
neously organized, entered from many sources, both
human and automated. Such systems present tremendous
challenges to their users, who must locate relevant
information quickly and add new information effectively.
Left to one’s own resources, it is easy to get lost in data
space (Carroll et al. 1990 and O’Shea et al. 1986) or make
inappropriate or ineffective changes.

CYC (Guha & Lenat 1990) is an example of such
systems. CYC consists of a representation language
(CYCL) and a knowledge base expressed in that language.
The knowledge base currently consists of approximately
35000 units (known in other systems as “frames”
“schemata”, etc.). Each unit consists of a set of slots
containing a set of values. CYC units average 13 slots
filled with 2 or 3 values, meaning that each unit bundles
around 35 assertions.

Our research aims to understand and support the
knowledge editing task. We consider knowledge editing
to be a family of related tasks, rather than a single

homogeneous task. Knowledge editing is different from
ordinary data entry because the user must understand the
structure and content of the knowledge base well enough
to be able to locate information in a timely manner and
add or modify information in harmony with the existing
representation conventions; in this way it is much like
programming. In this paper we consider two knowledge
editing tasks, browsing and entry. Browsing, at its
simplest, consists of determining the truth status of some
assertion P; in reality, it involves acquiring a model of
the relational structure of the knowledge base and
landmarks from which important data elements can be
found quickly. Entry, at its simplest, consists of setting
the truth status of some assertion P; in reality, it consists
of managing a coordinated series of changes to the
knowledge base or the creation of a cluster of interrelated
units each consisting of many slots and values. Browsing
and entry are interleaved throughout a typical knowledge
editing session.

Principles of collaboration
The HITS Knowledge Editor (HKE) is an interface that
supports browsing and modifying the CYC knowledge
base. This paper focuses on several of HKE’s capabilities
that illustrate our attempts to make it a collaborative
system. This section defines collaborative systems and
puts forth several design principles to which HKE
conforms.

In collaborative systems tasks must be shared between
systems and users based on their respective capabilities. In
some sense, all interfaces at least attempt to be
collaborative. What is needed is a set of principles that
guide us in deciding how to divide tasks between system
and user. These principles should emerge from general
principles of communication and must acknowledge the
highly asymmetrical abilities of people and computers.
For this paper, the key principles are:
= do not force users to make decisions in a rigid order,
l provide resources that help users in making decisions,
0 let users build their solutions to problems as
modifications of prior solutions to similar problems,

a make relevant action possibilities apparent when the set
of possible actions becomes large.

TERVEENAND~ROBLEWSKI 491

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Collaboration on browsing tasks
Users can be overwhelmed with information when
browsing complex data spaces. One of the motivating
assumptions of our work has been that in such complex
data spaces there is no one right way to view all the data,
nor even a fixed set of ways. The best browsing display
is highly dependent on the topic of the information being
displayed, the task being performed with the data, and the
experience of the user. We support this approach in HKE
by allowing users to create, reuse, and share methods of
viewing data.

There are several mechanisms that allow this in HKE;
this paper discusses only one - perspectives on units.
Perspectives are objects that dictate several parameters of
tabular slot/value displays, such as attributes to display or
suppress and the order in which to display them.
Perspectives are constructed collaboratively by the system
and the user.

Motivation for customizable perspectives
Several features of large-scale object systems affect
browsing. First, each object may have many attributes.
In CYC there are over 4000 defined slots, and, on average,
295 of them are relevant to a given unit. This means that
users must manage a very large vocabulary for object
features. Second, the vocabulary is complicated by the
fact that slots often do not represent a simple set of
unrelated attributes. Instead, relationships between the
slots significantly constrain their semantics. For in-
stance, the slot parts is known to be a generalization of
the slot sub~rganizations: any value filling
suborganizations automatically fills parts. Third,
effective browsing hinges on seeing the appropriate subset
of slots for the task at hand. Fortunately, entire groups of
slots are devoted to specialized tasks such as consistency
checking or bookkeeping; thus one may roughly partition
the total set of applicable slots for a given unit into more
manageable subsets for specialized tasks. This is what
perspectives do.

This is clearly non-trivial work. A collaborative
system can help by suggesting a reasonable initial
perspective and allowing the user to improve it. The
initial perspective might be generated from a variety of
sources, such as a standard template, the user’s past
perspective on the same data, another user’s perspective,
or a model of the task the user is performing. This
approach segments the work of browsing into three parts:
specifying the format of the initial display, modifying the
format of an existing display, and retrieving the format of
past displays of the same object. HKE takes on the tasks
of generating an initial display, storing modified displays,
and retrieving those displays for reuse, while the user
modifies the suggested perspective when it is ineffective.

Perspectives follow the principles of collaborative
systems. First, HKE doesn’t force the specification of
perspectives before the act of browsing itself, but rather

492 INTELLIGENTINTEFGACES

provides tools to evolve the perspective as the browsing
proceeds. Second, HKE lets users build new solutions
from previously generated solutions by always putting the
user in the position of repairing rather than synthesizing
perspectives.

Example: perspectives on Organizations
One section of the CYC knowledge base is devoted to
representing organizations. The relevant class hierarchy is
displayed in Figure 1.

.::.~:~~~::h~~~:~~~:::::::~~~~~~~~.~~ :..:..:‘.‘.....:..::.:..:..:..:..~.....~..-.:..:..‘..h.t..::.::.:..::.~..~..~..~..~‘.~~.~..’.
..,. :..: ,.......‘.. ;.:;.:...: :..:..:..:..:.::..:... ..; ..:.. ‘<_... ..;..... :..:..:..:..:..:..:.::.

81 i+ AA 3 y&f&~

Graph from #%Organization along X%swxs (depth 31
EducationalInstitutio n+lni iers-i ty

GovernmentOrganization -Hi 1 i taryorga
‘%LegislativeP

Organization PoliticalOrganiration PoliticalPar
ReligiousOrganization
ConnercialEnterprise Busi nessOrga
Department Pe
InternationalOrganization
Neighborhood City-

GeopoliticalEntity
I -

. .._.._.._..... ;..;..;..;
Figure 1: The Organization Class Hierarchy

The default perspective of any unit is created by
composing the individual perspectives of all the classes of
which the object is a member, in order of increasing
generality. Thus, the default display of an instance of
CityOfAust inTX would display the attributes given it
because it was an instance of city, then those from
GeoPoliticalEntity, thenfrom Organization, and
so on. To save space, empty slots are not displayed.

,.,:: ::: :::,.‘:‘:~~.. :::::..::: ::.. :,...:,.+p; ::.I::::: ::: ::,+::.. ::.::.““’ ... *.. “e: ::: ::: ::: ::: ::: ::: *.. . *..*. . . ,. ::: ::.. ::: ::: ::
1) AA c &f fg pg

Unit CityOfAustinTX d -
statecapita1--------- ~-~-~~--~-~-------

StateCapitalOf: (#ZTexas-State)
cit.------- ---I- ------- ---------

countySeat0f: (#ZTrawisCountyTexas)
stateInWhichThisCityIsFound:(#I?Texas-State)

11 Coopol i t i cal Ent i ty-----------zBe~~~~~,,,,,is
majorReligions:

Ij
ninorityLanguageHere: ~#ZSpanishLanguage)
peopleLiuingHere: (MWroblewski #RHill

b
population: (353303)
predoninantlanguage: (#ZEnglishLanguage)

._.. :..:..:-.:..:..:..;..~ .:..:..;..;..:..:..:..:..:..:..:..;..;.

Figure2: Theunit CityOfAustinTX

This display may be unsatisfactory either because it is
still too complex, eliminates important attributes that
don’t happen to be filled in the unit, or includes the right
attributes in an unintuitive order. Each component of the
composite perspective can be edited to change these
features of the display.

Suppose after looking at CityOfAustinW the user
decides that a number of slots always should be displayed,
including predcxninantbrquag-e, majorRttligions and
population. This is accomplished by clicking on the

perspective labelled “GeoPoliticalEntity”. Since the user
has no custom perspective for GeoPoliticalEntity yet,
one is created and initialized with the slots shown in the
current display. A special perspective editor pops up to
rearrange the new perspective. When the user is done, the
new perspective is indexed against the user and the class
GeoPoliticalEntity andthentheunit CityOfAustinTX
is redisplayed. Figure 3 shows the perspective editor and
the resulting display of the CityOfAustinTX. AlI
subsequent displays of instances of GeoPoliticalEntity
will use this custom perspective.

_ _ _ . _ . . _ . . _ _ . . . ~ . . . _ , , _ . _ _ . . _ _ . I _ _ . . _ r . _ _ _ . . . _ . \ .
_ .

dit Perspective GeopoliticalEntity

eopleLiuingHere
thnicGroupsHere

#ZcrudeOilReserves
#ZcrudeSteelProduc
#ZcurrencyUnit

StateCapjta,----------------------’--------
stateCapital0f: (#ZTexas-State)

City---------------------------------------
countySeat0f: (#ZTrauisCountyTewas)
stateInWhichThisCityIsFound:(#ZTexas-State)

GeopoliticalEntity----------------------------
i ;
ii population: (350000)
I$ peopleLivingHere: (#ZWroblewski #ZHill
II ethnicGroupsHere: GfZEtknicCroupTypo
1 1 ii majorReligions: (#ZBaptist #ZMethodis
i : predominantLanguage: (#REnglishLanguage)
:i i* ninorityLanguageHere: (#RSpanishLanguage)

-..p----“...

.

Figure 3: The perspective editor

Collaboration on entry tasks
Motivation
Basic knowledge entry tasks include (1) choosing which
slots should appear on a unit, (2) specifying fillers for
these slots, and (3) managing the creation of groups of
interrelated units. Tasks (1) and (2) are made especially
difficult by the sheer size of CYC: it is a formidable task
to select 10 or 15 out of the nearly 300 slots that could
appear on a unit, then choose several fillers from the
hundreds or even thousands of legal values. Task (3)
arises from the recursive nature of knowledge entry: when
representing the organization MCC, for example, one
may well want to create units that represent people
employed there, their areas of expertise, etc. Keeping
track of related representational tasks is a significant part
of the overall entry task. The resources that HKE
provides to collaborate on these tasks were designed in
accordance with our principles of collaboration:
eflexible decision making - checklists package decisions

that are relevant when creating a particular type of unit,
agendas allow users to do unit creation tasks in
whatever order they wish, and several repaiJ: facilities
bring out information relevant to making a decision,

0 relevant action advertisement - a display of the slots
that a unit could have supports the user in choosing
slots that should appear, and

* build on previous solutions - a unit is created by
copying and editing an existing unit, and other similar
units are presented as models from which the user can
extract pieces to add to the new unit.

Example
We suppose that the user’s task is to represent knowledge
about the organization MCC. He has browsed through
the section of the knowledge base representing
organizations, identified ResearchOrganization as the
right class for MCC, and has decided to copy-and-edit the
unit UniversityOffexasP;tAustin to create MCC.
Editing is initiated by clicking on the check mark
displayed in the label line of the unit display (see figure
2). This causes HKE to construct and display a checklist
for editing the unit.

name of the Uniuersity (UUniversityOfTexasRtRustinu~

hasstudents (#.RMurray #ZSiegel #RTerveen)

instanceof I#ZUniversity)

Figure4: Thetaskofediting UniversityCXkxasAtAustin

The initial resource
A checklist is a computerized version of the everyday to-
do list. A checklist helps to organize an activity by
reminding one what needs to be done and helping keep
track of what already has been done. The checklist for
editing a unit contains an issue (item) for each slot to
appear on the unit. The initial set of issues is derived
from the slots of the copied unit, here
UniversityOfTexasAtAustin, using perspectives to
filter and order the slots.

Checklists support flexible decision-making: the issues
can be done in any order and can be revisited and modified
any number of times.

Customizing the resource
The system-constructed checklist is a reasonable resource
for editing a unit. It contains issues for specifying the
value of a fairly small number of slots, filtered and ordered
by the perspectives that apply to the unit. The user can
access a menu that provides resources for customizing the
checklist. These include: (1) additional slots - a
display of slots the unit could have (in order from most to
least specific and with uninteresting slots filtered out).
The user can add an issue to the checklist for specifying
the value of any of these slots by mousing it. (2) model
units - a display of units that share characteristics of the
unit being edited. The user can browse these units for
slots and fillers that should appear on the unit being edited

TERVEEN AND WROBLEWSKI 493

and can add a slot-value pair to the checklist with a mouse
gesture, thus customizing the checklist and answering the
newly added issue at once.

In our example, the user will want to customize the
checklist in several ways.
0 Change the type of unit being created from university
toResearchOrganization. He does sobyeditingthe
answer to the “instanceof” issue, replacing
University by ResearchOrganization. This causes
the “hasStudents” issue to be removed from the
checklist, since a ResearchOrganization may not
have the slot hasstudents. It also causes the set of
additional slots to be recomputed.

0 Add issues for specifying the suborganizations and
organizationHasActivities slots to the checklist.
This has two effects. First, it signals that the user
wants to take care of these two items as part of the task
of representing MCC. Second, the user can state that
he wants these changes to be recorded on the
perspective used to construct the checklist, i.e., to add
these slots to the Organization perspective. In this
way, changes to a particular task resource will affect
future browsing and entry of any instance of
Organization

* Customize the issues of the checklist. The text of the
question may be changed, whether the issue is
necessary or optional in completing the task can be
indicated, and a textual explanation of the question can
be entered.
After making these changes, the checklist looks like:

Edit MCC [not in KB)

tb The name of the Researchorganization (“MCC”)

ILZI types of workers (CognitiveScientist MLinguist]

d sub-organizations (iYCC/?ILab #ZMCCHunanInterfaceLab)

a types of activities 0

a i nstanoeOf (#2ResearchOrganization~

l-
. ..-.. . .

Figure 5: Customized checklist for editing MCC

Customizing the checklist illustrates the point that
solutions should be built from prior solutions. Not only
is the new artifact (the unit MCC) built on a previous
artifact, but the main resource for creating the artifact (the
checklist) evolves from the default constructed by the
system. In addition, customizations to the checklist may
cause the underlying perspective to be changed. The
modified perspective is available for reuse and further
evolution. This evolution results in knowledge entry
resources that are abstractions of the pure example-based
method. For example, if the perspective for
Organization contains an issue for setting the value of
the suborganizations slot, then, even if the user selects
an instance of Organization to copy-and-edit that does

not specify a value for this slot, the checklist will contain
an issue for it.

Managing the task context
As the user continues to enter knowledge about MCC, he
will need to create additional units. For example, none of
the sub-organizations of MCC or people who work at
MCC are represented yet. When answering an issue, the
user can press the HELP key to get a menu of all the
units that could answer the issue. If the object the user is
seeking does not yet exist, he simply can type in a new
name for the unit he wants to create. This causes the
system to (1) construct a checklist for creating an instance
of the appropriate class, and (2) record this checklist on
the task agenda.

The visible representation of a checklist serves as an
implicit agenda of tasks associated with a checklist.
For example, the “types of workers” issue of the “Edit
MCC” task might refer to a unit that does not exist yet,
CognitiveScientist. Such unmade units are displayed
in italics, letting the user “read off” related tasks with a
glance. These tasks can be worked on in any order and can
be interleaved, illustrating the principle of allowing users
to make decisions in whatever order they wish. The
system manages certain types of dependencies between
tasks. If the user performs the “Update” action on the
“Edit MCC” task, the unit MCZ is created, but the user is
notified that since Cognitivescientist does not exist
yet, the fact that it is one of the worker types of MCC
cannot be asserted. When CognitiveScientist has
been created, the system makes this assertion, and notifies
the user that it has done so.

Repair
When a person cannot understand a communicative act
well enough to respond as expected, he must engage in
repair. For example, a user of HKE can have a problem
in responding to an issue of a checklist when he does not
know what object to supply. A menu of repairs is
available for each issue. The repairs index the user into
relevant sections of the knowledge base, direct the user to
related tasks, or provide remedies for problems the system
has detected with the user’s answer. For example, if the
user begins to represent the people who work at MCC
(recorded on the hasWorkers slot), one repair would be to
display the class Person, since fillers of hasworkers
must be instances of Person.

If the user chooses to display the collection Person, he
can explore related knowledge using all the normal
browsing facilities of HKE. One useful action is to find
out the specializations of the concept Person using the
Inspect Lattice command. This will trace out any
relationship from a specified unit to a specified depth. In
this case, the user wants to see the lattice constructed by
traversing the specs relationship from Person.

However, when a user issues this or any other
command, more goes on than meets the eye. First,
command interpretation is done using a blackboard
architecture (Cohen, McCandless & Rich, 1989). Second,

494 INTELLIGENTINTERFACES

after the command has been fully interpreted but before
the application program gets to execute the command,
angels get a chance to inspect and possibly modify the
command. An angel’s knowledge consists of anomalies,
problems that can occur in doing a particular task, and
strategies, methods for repairing these problems. Thus,
the system can repair the user’s command specifications.

The angel competent about knowledge editing is named
Hank. One of Hank’s anomalies is HighBranchingFactor,
which detects the condition that some units appearing in a
lattice display have too many children. This is
problematic because displaying a lattice with many highly
branching nodes (1) can take a long time, and (2) can
overwhelm the user with too much information. The
anomaly is detected by doing a partial traversal of the lat-
tice, locating all the units whose children exceeded the
maximum branching factor. (The traversal can be done
quite cheaply, so detecting the anomaly does not cause
significant overhead.)

Thus, when the user issues the command to inspect the
specializations of Person, Hank detects the
HighBranchingFactor anomaly before the command is
executed, modifies it to mark certain units not-to-be-
expanded, and notifies the user what has been done.

.:..:: ..,, t/.z+.F.~$..,. :::,.:l::ll.,.-.:..:l:::..::)::: ..,.: :,.::,.:..~::~:::::..:::::::::::..::::::’..::t:::::..:::‘~.~::t:::~::‘t’.~:::~::~::

HI i �AA 3 e fl q
Graph from #%Person along W%specs (depth 3)

EthnicGrouoOfAustralians
\
k-l ’ inist
Presid
Ethnic

remi e
resid
ecret
i rstS

prevent the expansion o
WestIndesPerson, Oceani
EthnicGroupOfEuropeans, nicGroupOfAsians,
EthnicGroupOfAfricans, SouthAnericanPerson,
AsianPerson, EuropeanPerson, HumanWorker since
they each have nore than 10 children.
To see the children of these units, click on their
nodes in the graph using the neta nouse middle

ti button.

Figure 6: Angel intervening to modify a problematic action

Several comments are in order. First, the resulting
lattice took seconds instead of minutes to produce and
displays a manageable amount of information. Second,
no options are taken away from the user. He still can
expand any of the unexpanded units, but now will be
aware of the cost of doing so. Third, we once again
advertise potential actions, using reverse video to indicate
units the user might wish to expand. Finally, we should
emphasize that this anomaly could not be avoided by
modifying the Inspect Lattice command to take an
additional argument specifying units not to expand.

Knowing which units not to expand requires knowing the
structure of a particular section of the knowledge base, and
since the user issued the command to find out about that
structure, we cannot expect him to know it already.

Strengths and weaknesses
HKE’s strengths are the set of collaborative resources it . offers. Persnectives afford selective, task-sensitive,

customizable views on complex objects. Checklists
provide a flexible knowledge entry scheme and constitute
imnlicit apendas of relevant tasks. Repair facilities help
users overcome problems arising in their tasks.

A number of limitations of HKE’s current collaborative
facilities are not in-principle shortcomings: we “just
haven’t done them yet.” However, there are several in-
principle limitations as well.

Perspectives almost always are used to reduce the total
information displayed. One possible disadvantage is that
this could hide essential but infrequently used slots. In
addition, we do not yet have any good schemes for
managing large sets of perspectives. Extended use of
HKE means generating many perspectives and evolving
old perspectives in response to changing task demands.

Checklists are less useful in informal activities. The
system can provide assistance in responding to individual
issues of the checklist - as HKE does by indexing the
user into relevant sections of the knowledge base - only if
the issues themselves are relatively formal. Even in less
formal activities, however, checklists perform valuable
organizational and reminding functions.

Checklists are textual resources; however, many
knowledge editing tasks are best expressed in a non-
textual fashion. For example, laying out the ontology of
a new domain usually consists of graphing out
collections, relationships between the collections, and
attributes they can have.

Finally, one might consider our reliance on users to
customize resources a limitation - aren’t we just adding to
their burden? We advance four reasons why we expect
users to do the customization we have described here.

First and most important, the work is done jointly with
the system, in service of and in the context of the user’s
tasks. Changing the display of an object or adding a new
issue to a checklist is done to help the user achieve his
comprehension or editing goals and builds from a set of
resources supplied by the system. Second, since a user
may view or edit particular types of knowledge at
infrequent intervals, the work invested in creating
customized perspectives is paid off when he once again
returns to a section of the knowledge base. Third, since
perspectives are distributed along the generalization
hierarchy, customizations made for one unit apply to
whole classes of related units. Finally, since perspectives
are stored in a shared knowledge base, views built up by
one user are available to other users, too.

TERVEEN AND WROBLEWSKI 495

Related work
HKE is not a knowledge acquisition tool. Such systems
address issues like techniques for eliciting knowledge from
an expert and acquisition of domain or problem-solving
method specific knowledge. For example, Protos
(Bareiss, Porter, & Murray 1989) acquires knowledge used
to do heuristic classification, TDE (Kahn et al. 1987)
acquires troubleshooting hierarchies, and Luke
(Wroblewski & Rich 1988) acquires linguistic knowledge.
HKE provides functionality for browsing, entry, and task
management that could be utilized by any of these tools.

RABBIT (Tou et al. 1982) introduced the use of
perspectives for browsing; however, our implementation
affords more extensive control of the display of
information (but makes perspective management a task
for the user) and applies perspectives to entry tasks, too.
Object Lens (Lai, Malone, & Yu 1988) used checklist-
like objects (“templates”) for data entry; however, we use
perspectives to filter the slots that appear in a checklist
and provide repair facilities to help users fill out
checklists. KREME (Abrett & Burstein 1987) provides
browsing and entry facilities similar to HKE. It uses
agenda-like structures to keep track of editing tasks.
BACKBORD (Yen, Neches, & DeBellis 1988) focuses on
retrieval of objects from knowledge bases and browsing of
class hierarchies. It uses checklists to support several
simple browsing and entry tasks. The distinguishing
mark of our work is to make the system a more active
collaborative partner.

Finally, the Framer system (Len&e 1989) is a good
example of a collaborative interface. Our implementation
of checklists is an adaptation of his.

Future work
Further development will come along three fronts. First,
existing resources will be extended and several new types
will be added. For example, we will use checklists to
subport several types of tasks more complicated than
editing a single unit. Second, we will refine the
principles of collaboration offered here. Finally, we will
do empirical studies of users editing knowledge in HKE in
order to test these principles. We already have anecdotal
evidence that HKE succeeds in its aims, through our own
use and through its use by a small community of users
within MCC and its shareholder companies. Our work to
date has given us a qualitative understanding of the nature
of knowledge editing. We now are in a position to carry
out empirical studies to test our hypotheses about
collaboration for the knowledge editing task.

Acknowledgements
We thank Will Hill, Tim McCandless, Elaine Rich, and
Steven Tighe of MCC and Robert Simmons and Bruce
Porter of UT-Austin for their thoughtful review and
discussion of this paper and the ideas presented in it.

References
Abrett, G., & Burstein, M.H. 1987. The KREME

Knowledge Editing Environment. International JournaZ
of Man-Machine Studies 271103-126.

Bareiss, R., Porter, B.W., & Murray, KS. 1989.
Supporting Start-to-Finish Development of Knowledge
Bases. Machine Learning 4:pp. 259-283.

Carroll, J.M., Singer, J.A., Bellamy, R.K.E., & Alpert,
S.R. 1990. A View Matcher for Learning Smalltalk.
In Proceedings of the 1990 ACM Conference on
Human Factors in Computing Systems, 431-437.
Seattle, WA: ACM Press.

Cohen, R.M., McCandless, T.P., and Rich, E.A. 1989.
A Problem Solving Approach to Human-Computer
Interface Management, MCC Technical Report Number
ACT-HI-306-89, Microelectronics and Computer
Technology Corporation. Austin, TX.

Guha, R.V. & Lenat, D.B. 1990. Building Large
Knowledge Based Systems. Reading, MA: Addison-
Wesley.

Kahn, G.S., Breaux, E.H., DeKlerk, P., & Joseph, R.L.
1987. A Mixed-Initiative Workbench for Knowledge
Acquisition. In terna tional Journal of Man-Machine
Studies 27~167-179.

Lai K.Y., Malone, T.W., & Yu, K.C. 1988. Object
Lens: A “Spreadsheet” for Cooperative Work. ACM
Transactions on Ofice Information Systems. 6:332-
353.

Len&e, A. 1989. Design Environments for High-
Functionality Computer Systems. Ph.D. diss.,
Department of Computer Science, The University of
Colorado at Boulder.

O’Shea, T., Beck, K. Halbert, D., & Schmucker, K.
1986. Panel: The Learnability of Object-Oriented
Programming Systems. Object-Oriented Programming
Systems, Languages, and Applications: OOPSLA 86
Conference Proceedings, 502-503. New York, NY:
ACM Press.

Tou, F.N., Williams, M.D., Fikes, R.E., Henderson,
D.A., & Malone, T.W. 1982. RABBIT: An
Intelligent Database Assistant. In Proceedings of the
National Conference of the American Association for
Artificial Intelligence, 3 14-318. Philadelphia, PA:
American Association for Artificial Intelligence.

Wroblewski, D.A., & Rich, E.A. 1988. Luke: An
Experiment in the Early Integration of Natural
Language Processing. In Proceedings of the Second
Conference on Applied Natural Language Processing,
186-194. Austin, TX: ACL Press.

Yen, J., Neches, R., & DeBellis, M. 1988.
BACKBORD: Beyond Retrieval by Reformulation. In
Architectures for Intelligent Interfaces: Elements and
Prototypes, 219-235. Monterey, CA.

496 INTELLIGENTINTERFACES

