
An Experiment in Direct Knowledge Acquisition

Peter W. Mullarkey
Schlumberger Laboratory for Computer Science

P.O. Box 200015, Austin, TX 78720-0015, U.S.A.
mullarkey@slcs.slb.com

Abstract
LQMS is a knowledge-based system that identifies and
explains anomalies in data acquired from multiple sen-
sors. The knowledge base was built by a sequence of
domain experts. Its prototype performed with a high
level of accuracy and that performance has been incre-
mentally and significantly improved during develop-
ment and field testing. Several points are developed in
this pa.per. (1) The combination of an intuitive model
(sufficient for the task) and powerful, graphical devel-
opment tools allowed the domain experts to build a
large, high performance system. (2) The Observation-
Situation-Blation representation illustrates an inter-
mediate point on the simplicity-expressiveness spec-
trum, which is understandable to the domain experts,
while being expressive enough for the diagnostic task.
(3) The system was designed as a workbench for the
domain experts. This enticed them to become more
directly involved, and, resulted in a better system. (4)
The use of an integrated knowledge base edit-tracking
system was important to the project in several ways:
it reassured computer-naive experts that they could
not damage the overall system, which increased their
productivity; and, it also allowed experts located in
va.rious places around the world to compare, contrast,
and integrate changes in a structured way.

Introduction
L&MS is a knowledge-based system that identifies
and explains anomalies in data acquired from multi-
ple sensors [O’Neill and Mullarkey, 19891. This paper
describes its knowledge representation and graphical
development tools, which allowed direct involvement
of several domain experts in the construction of its
knowledge base.

Task Description
The task is to enhance the performance of well-trained
field engineers in a demanding environment (oil field
exploration). Oil-well logs are made by lowering tools
into the borehole and recording measurements made by
sensors in the tools as they are raised to the surface.
The resulting logs are sequences of values indexed by

depth. Logging tools measure a variety of petrophysi-
cal properties. The field engineer’s task involves data
acquisition and interpretation, and is characterized by
high data rates, with noisy and uncertain data. Earlier
work on some aspects of the interpretation problem
is discussed in [Smith, 19841. In this paper, we con-
centrate on data acquisition. The quality of the data.
may be affected by many sources: problems with the
tools, problems with the downhole environment (e.g.,
unusual borehole geometry and fluids, extreme forma-
tion conditions), and untoward interactions between
the tools and the downhole environment. In normal
circumstances, it takes three to five years for a field
engineer (with an engineering degree) to become truly
competent in this task.

The goal of LQMS is to assure that the field en-
gineers leave the field location with full knowledge
of the quality of the data collected. Given the task
complexity and the level of training required, it was
clear from the outset that the knowledge-based system
would need to encompass a large a.mount of knowledge
in order to achieve high performance. This makes the
acquisition of domain knowledge critical.

Overview of LQMS
LQMS has two main components: a signal-to-symbol
module that identifies anomalous behavior in the sig-
nal data and an analysis module that applies ex-
plicit domain models to arrive at causal explanations
for the anomalies. These two modules are imple-
mented in an object-oriented paradigm, and commu-
nicate via asynchronous message-passing. The sys-
tem was implemented in the HyperClass environment.
[Smith et al., 1987, Schoen et al., 19881 and Common
Lisp and runs on both Sun and VAX workst,a.tions.

The overall process can be envisioned as a progres-
sion of transformations from the raw data, through
a signal-to-symbol module, to the analysis module
(which can direct the signal-to-symbol Illoduie to
search for further evidence about features of interest).
Our basic design philosophy is to have small, efficient
computational agents (the signal-to-symbol module)
whose responsibility is only to find anoma.lous seg-

498 KNOWLEDGE ACQUISITION

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

ments of data, and then use more extensive domain
knowledge in the analysis module to discern which
anomalies are problems requiring action, and which are
explainable in other ways. This decomposition allows
the signal-to-symbol module to run real-time, while the
analysis module works in background.

A research prototype was deployed over a two-year
field test program in several locations (Houston, TX;
New Orleans, LA; Cairo, Egypt; Midland, TX; and,
Paris, France). It has done an effective job of dealing
with the task and providing a model that the users feel
is intuitive.

Knowledge Representation Model
The analysis module consists of an inference engine
that operates on domain knowledge represented as net-
works. These networks are composed of Situations
that can be used to explain groups of jZbservations
connected by Relations; they are referred to as OSR
networks. We will explain via the example shown in
Figure 1.

In the example network, Situations are boxed nodes
(e.g., LDT-PROBLEM), Observations are unboxed
leaf nodes (e.g., RHOB-UNUSUALLY-LOW). Rela-
tions are unboxed interior nodes, drawn from the
set AND, OR, COMB (a weighted average), NOT,
and ANY (essentially an OR that uses breadth-first
search).

The example network can be understood (and con-
structed) from either of two viewpoints.

1. From a symptomatic view, the network has possible
explanations for the anomaly RHOB-UNUSUALLY-
LOW (highlighted in the middle right section of the
network). This observation means that the sensor is
measuring a bulk density of the surrounding mate-
rial that is lower than normally exp.ected, but not so
low as to be out of the physical measurement range
of the sensor. This anomaly can be explained by
a misapplication of the sensor pad to the surround-
ing rock (LDT-PAD-STANDOFF), allowing lower-
density material (e.g., drilling fluid) to exist between
the sensor and the material of interest, and/or a
problem with the tool that houses the sensor (LDT-
PROBLEM).

2. From a “failure model” point of view, there are
two subnetworks shown in Figure 1. One describes
the observations that would be associated with an
LDT sensor pad being out of contact with the bore-
hole wall. The other describes the observations that
would be associated with an LDT tool problem.

The various domain experts have found that a choice
of different ways of visualizing (and building) the net-
works allows them to think about their knowledge in
the way that is most natural for them. One domain
expert prefers the symptomatic perspective, while an-
other prefers the failure model view, and a third seems
to be comfortable switching between these views.

The basic components of the knowledge representa-
tion scheme were derived by direct observation of the
domain experts at work. This recognition that the be-
havior of the experts is a real expression of the knowl-
edge is discussed in [Musen, 19891 in regard to sepa-
rating the knowledge level from the symbol level. The
domain experts visually recognize an anomalous data
pattern, and attempt to construct a set of conditions
that could explain that anomaly. Their “heuristic asso-
ciations” between anomalies and multiple possible ex-
planations are not through explicit relations, but such
relations are implicit in the context. For example, to
support an LDT-PAD-STANDOFF there needs to be
evidence of both borehole wall roughness (described by
the upper subnetwork to the right of the AND in Fig-
ure 1) AND an indication of abnormal density borehole
fluid (described by the lower subnetwork to the right
of the AND in Figure 1). In describing this situation,
the AND relation would be obvious to a domain expert
from the context. The OSR environment encourages
the domain expert to make these implicit relations ex-
plicit, both for obvious computability and to make the
networks less ambiguous for the next domain expert.

The OSR framework was developed to organize and
unify the various concepts that seemed intuitive to the
domain experts. These experts clearly had more than a
jumble of loosely-connected heuristics, but did not use
a complete structural and behavioral model. Our early
experience with a rule-based prototype demonstrated
that the domain experts had difficulty encoding their
knowledge as rules. Furthermore, the prototype did
not clearly support the domain experts’ model. This
was also noted in [Davis and Ha,mscher, 19881.

We were also led to believe tha.t a “deep model”
approach was also not appropriate because:

e No complete model exists for the domain. The lack
of a strong domain model is a good reason for using
a different approach [Hamscher, 1988, page 191.

e The problem solving must be done in a real-time
environment and “deep models” are typically com-
putationally intensive.

e The users do not reason with a deep model; hence,
a system using such a model would be less under-
standable to them.

The inherent simplicity of the OSR framework is a
strong asset, since (after three years of successful use)
it appears to be expressive enough to cover the domain
of interest, while being intuitively comfortable to a set
of five geographically distributed domain experts with
different backgrounds. Thus, it illustrates an interme-
diate point on the simplicity-expressiveness spectrum.

Inference

LQMS uses its knowledge base of OSR networks in a
way similar to the “cover and differentiate” problem-
solving method used in MOLE [Eshelman, 19881. The
signal-to-symbol module notices an anomaly. The

MULLARKEY 499

AddSituation
AddObservation

AddlncompleteNets
CreateRelation

CreateLink
ModifyLinkWeight
ReplaceRelation

DeleteLink
DeleteRelation

---_-----------

HideRight
HideLeft

HideNode
ExpandRight
ExpandLeft
Move Node

Refresh
_----__-__--____

ShowAll
NewNetwork

Start ParmEditor
Describe

:
OR(,

,, CALI-HIGH-SLOPE

,,OR c’

“‘/=t-COMB 6;:’ l ;;;;[LS;o;MALHIGH

“.oR <:‘-
% DCAL-UNUSUALLY-HIGH

I

i ,. OLS-MINUS-QSS-UNUSUALLY-HIGH

:

!’

;oFK:*

: . QLS-MINUS-QSS-UNUSUALLY-LOW

LDT-PAD-STANDOFF ~-ANN
\ DRHO-HIGH-VARIANCE

\

\
COMB. - - - LOW-MUD-DENSITY

\

‘ORi;;- ‘\\,
\ ‘\ ‘, #(+iiE-k COMB. - - - HIGH-MUD-DENSIT)
8 ‘\
’ ‘\
: ‘.

‘\ COM&

. . I’ ‘; DRHO-UNUSUALLY-LOW

COMB I’

I .

:
*. DRHOLAFiGE-STEi

,
; PEF-LARGF-STEP 1

COMB l ‘i F&F-uNu$uALLy-HIGH
-.OR<:(: I

LDT-PROBLEM /--ANY
.- <EF-UNUSUALLY-LOW

DRHO-TOO-LOW ; : :
I I

\ DRHO-TOO-HIGH i

\

I I I I

I, !SSHV-H/GH-VARIANCE

\
/OR<:: : ’ :

COMB ,:’ ‘.jLSHV-HIGH-VARIANCE
.

‘.COMB; _ . .OR:--- RHOB-UNUSUALLY-HIGH

Figure 1: The OSR Network Editor (see text for legend)

analysis module retrieves all situations that can ex-
plain the anomaly. It gathers appropriate evidence
for discrimination between the possible explanations
by traversing the networks. It develops the best
explanation(s) for the anomaly from the situations
that have the highest belief, based on available ev-
idence. LQMS combines evidence in the OSR net-
works using an algebra that combines beliefs for the
relation types in a conventional manner [Reboh, 1981,
Buchanan and Shortliffe, 19841. Beliefs are repre-
sented as a five-valued range with an explicit repre-
sentation for unknown values. The particular combi-
nation rule used is determined by the Relation type.
A small set of relations has been found to work well in
the LQMS domain.

LQMS can show its reasoning with an animated dis-

play of the OSR networks it is processing (highlighting
nodes currently being processed, and changing fonts to
indicate current belief). The user can also direct the
system to explain its conclusions a.fter a session using a
mouse-sensitive debriefing report to access the appro-
priate OSR networks and signal-to-symbol agents. The
system’s explanation of its results is clear and mean-
ingful to our domain experts. Over the three years of
construction, refinement and use, the main debugging
tool used has been animated OSR networks.

In addition to the basic framework, the OSR envi-
ronment offers the domain expert several ways of aug-
menting the networks with further experiential knowl-
edge.

e search first - The domain expert can specify a
partial order of situations that are most likely to

500 KNOWLEDGEACQUISITION

explain a particular anomaly.
o relative link weights - The links between a re-

lation and its operands can be assigned different
weights, thus their evidence will be combined based
on the specified relative importance.

e tie breaking - The domain expert can designate
that some situations be preferred. Then if a “pre- .
ferred” situation is among the equally believed ex-
planations for an anomaly, it is selected as the best
explanation.

Knowledge-Acquisition Tools
LQMS has a rich knowledge engineering environment
(based on the HyperClass system). These tools have
made it possible for domain experts to enter, test, and
refine the OSR network knowledge base (which con-
tains 1880 classes) with minimal assistance from the
system developers. Like the knowledge editors in RO-
GET [Bennett, 19851 and MOLE [Eshelman, 19881, the
OSR Network Editor takes advantage of knowledge of
the problem-solving method used in LQMS to assist
the user in entering knowledge. This approach has
been referred to as using a method-orierzted conceptual
model to support knowledge acquisition [Musen, 19891.

The “boxes and links” OSR Network Editor (Fig-
ure 1) is the main tool for constructing, maintain-
ing, and refining OSR networks. It has an integrated,
object-oriented, edit-tracking system to notice, save
(and restore) incremental changes to the knowledge
base. This allows multiple domain experts to work
independently on the knowledge base, making incre-
ment a.1 changes. It supports review, comparison, and
conflict detection of various changes proposed for the
core knowledge base. Aside from indicating when they
start and end editing sessions, the domain experts do
not notice the presence of edit-tracking in their normal
style of development. The edit-tracking capabilities
enhanced both speed and consistency of development
and inter-developer communication (discussed in the
subsequent section, Support for Distributed Develop-
ment).

Experiences
This section describes some of our experiences during
the construction of L&MS. We begin with a timeline
that summarizes the main knowledge-a.cquisition phase
of its development. We then describe two episodes
from late in the project that illustrate the ease with
our domain experts could understand and modify the
knowledge base.

Development
The initial domain expert (who will be referred to as
DE1), had an engineering degree, over 15 years of var-
ied field experience, and much exposure to program-
ming. He worked on the project part-time, helped with
the analysis of the domain, and prompted the develop-
ment of the OSR idea. He was followed, with overlap,

by a second domain expert (DEe), working full-time
on the project. DE2 had an engineering degree, over
ten years of varied field experience, and much exposure
to programming. DE*, using the early knowledge-
acquisition tools, built the first 80 networks, which
represented behavior models for four basic tool types.
The knowledge base by then included about 800 total
classes. DE2 transferred back to the field after over a
year on the project, and there was a 4 month gap be-
fore a third domain expert (DE3) was transferred in
from the field to work on the project. During this time,
we developed the OSR Network editor, based on ob-
serving DE2 and seeing that while he was able to con-
struct the networks using the object/slot/value linkage
editors, he always kept a current graphic display that
would show him the developing structure. The new
OSR Network editor allowed these activities to be uni-
fied, thus increasing the productivity of future network
development. This process of knowledge-acquisition
tools being developed contemporaneously with the sys-
tem is discussed in [Smith, 19841. DE3 had an engi-
neering degree, over five years of field experience, and
very little exposure to programming or workstations.
DE3 reviewed the state of the system, revised fewer
than 10% of the networks, and began adding models
of three additional tools. These new tools were quite
complex, and involved the addition of 200 networks
(and tie-ins to many of the existing networks), over
one and a half years. The system used during the final
field tests and transferred from research to engineer-
ing had models of nine tools, with over 280 networks,
including 480 Observations, 280 Situations, and 680
Relations.

Refinement
During the later development phase of the prototype,
the system was field tested in five locations worldwide.
Each of these field tests involved installing the sys-
tem in an office environment where engineers would
use it to replay previously run commercial data acqui-
sition jobs and provide feedback on the utility, ease of
use, and performance of the system. The office envi-
ronment was selected since the commercial logging ac-
quisition trucks work in a very high-cost, time-critical
environment while the drilling rig is configured to al-
low logging; while in the office, the systems and data
are still available after normal work hours. Some
of the field test sites provided excellent feedback on
how naive users might benefit from the system’s anal-
yses, while others provided feedback on how a complex,
knowledge-based system would react to local modifica-
tions. One of these latter (more technically demand-
ing) locations was Cairo, Egypt, where by that time
DE2 was working. During the field test, in addition to
the normal use and testing of the system, DE2 recog-
nized a weakness in the system’s coverage, understood
the part of the knowledge base that required refine-
ment, ma.de several changes, and tested and validated

MULLARKEY 501

his new (better) results. All this activity
without the support of the developers.

transpired

Support for Distributed Development
The next episode illustrates how the edit-tracking sys-
tem acted as a communication vehicle. When LQMS
was transferred to engineering, two more domain ex-
perts (DE4 and later DES) became part of the team.
After a period of electronic communication, DE3 met
with DE,. They worked on understanding the cur-
rent state of the system, and discussed refinements that
might be made. After DE3 returned to his home lo-
cation, he made several hundred changes (of various
sizes) since he was still the principal domain expert.
DE, then asked if he could find out what had been
changed. Since all the changes DE3 had made were
recorded by the edit-tracking system, it was straight-
forward to generate a transcript of those changes. A
single change summary is shown that captures adding
a link from a situation (MULTIPLEXER#I-FAILURE) to
an AND relation (AND-99). Although the transcript is
very low level, DE4 found it quite helpful.
Updating Object MULTIPLEXER#l-FAILURE
Slot ACCOMPANIEDBY to ADD AND-99

These transcripts were also used as a chronicle of
knowledge base development. This automatic con-
struction of a record of the construction and refine-
ment of the knowledge base deals with one of the inher-
ent problems in knowledge engineering: “interviewing
without a record”[Forsythe and Buchanan, 19891.

Performance
The size of a knowledge base and ease of its construc-
tion are interesting only when the system performs
well. In this section, we summarize several studies of
L&MS’s performance.

DE4 performed a set of case studies on the system.
The first set was done in 1988 before he had any knowl-
edge of the internals of the system, while the second
set was done in 1989 after DE4 had become famil-
iar with the system. He was not responsible for the
knowledge base development until after these studies
were completed. In the earlier studies he found that
correct diagnoses of causes of anomalies had been far
from perfect (60% correct) but with the testing and re-
finement activities (done by DE3 primarily), accuracy
steadily improved.

In June, 1989, DE4 ran eight, jobs and compiled the
following estimated results. He judged approximately
85% of the explanations to be reasonable. In fact, the
system found and explained some problems likely to
be missed by a normal field engineer. He believed 15%
were wrong, since the given explanation could easily be
shown to be inappropriate by anyone with a reasonable
level of experience in log interpretation.

All of the grading was done on the basis of infor-
mation that an engineer would normally have avail-
able post-hoc, in the office environment. This level of

information is not always available to the field engi-
neer, on location, so these results are very encourag-
ing. Explanations classified as wrong were typically
those that reasonably fit with a subset of the observa-
tions, but conflicted with other available information.
This additional information was missed for any of sev-
eral reasons. It may have been omitted (or improperly
included) in the OSR network. It was sometimes in-
accessible because no Observers had been designed to
monitor that particular data. We believe that most
of these wrong explanations can be corrected through
further completion of the knowledge base.

LQMS was estimated by DE, to be performing at
85% of the level of an experienced field engineer, and
had shown that its performance can be improved in-
crementally and substantially.

Current Status

The prototype LQMS was transferred to engineering
in 1989 after three years of development and field t#est-
ing. The system is being ported into the commercial
environment of the data acquisition system.

Related Work
The idea of using networks to structure the asso-
ciation of observations and situations has some of
its roots in Hendrix’s partitioned semantic networks
[Hendrix, 19791.

The basic architectural approach of abstraction of
data by low-level modules with higher-level process-
ing (sometimes directing the low-level modules) is very
much like Hearsay-II [Erman et al., 19801. The MOLE
[Eshelman, 19881 system has many similarities to the
OSR framework used in L&MS. MOLE has more pow-
erful support for refinement of the knowledge base,
although the OSR Network Editor has the capabil-
ity to discover and display (partial) networks it con-
siders incomplete (Figure 1-AddIncompleteNets com-
mand). The domain expert has played a more ac-
tive role in refining the knowledge base in LQMS
(with good results). Based on the examples shown in
[Eshelman, 19881, MOLE has a less expressive knowl-
edge representation, in that there is only one “relation”
called “covering (explanatory)“, which is visually en-
coded as a link. Additionally, there is a presumption
that initial symptoms are different in a significant way
from other sy7r2pto7)1s and tha.t only initia,l sympt,oms
can be used to prompt a diagnosis. In contrast, OSR
has the concept of a trigger observation, but this is
just an additional characteristic that any observation
can have, although intuitively, some observations (e.g.,
value-out-of-range) are much more likely to be inter-
esting triggers in a diagnosis task. We designed this
uniformity into the observations since we believe that
if a knowledge base describes a domain, there may be
several uses for that knowledge (e.g., data quality diag-
nosis, pre-interpretation data analysis, training), and

502 KNOWLEDGE ACQUISITION

the trigger observations for the different uses may not
be the same.

There is a problem inherent with the development
of ambitious systems: keeping the pace of develop-
ment fast enough to maintain the domain experts’ in-
terest and contribution [Buchanan et al., 19831. One
approach is to use a team of developers, suggested by
Reboh [Reboh, 1981, p. 941, one to interview the do-
main expert and another to implement the knowledge
in a prototype. The approach used in LQMS brings
the domain expert directly to the center of the action
and responsibility. This approach has the additional
feature of making the domain expert a real part-owner
of the system, with all the positive aspects that “own-
ership” brings.

Conclusions
LQMS is a system based primarily on knowledge en-
coded directly by domain experts. Its prototype per-
formed with a high level of accuracy and that per-
formance has been incrementally and significantly im-
proved during development and field testing. Several
points have been developed in this paper.

The combination of an intuitive model (sufficient for
the task) and powerful, graphical development tools
allowed the domain experts to build a large, high
performance system. There was a significant transi-
tion from the prototype system based on rules (no
direct interaction between domain expert and knowl-
edge base) to the system based on OSR networks
built with direct “boxes and links” editing (very pro-
ductive interaction).
The OSR representation illustrates an intermedi-
ate point on the simplicity-expressiveness spectrum,
which is understandable to non-developers, while be-
ing expressive enough for the domain.
The system was a natural workbench for the domain
experts, which enticed them to become more directly
involved, resulting in a better system.
The edit-tracking system served many useful pur-
poses. It reassured computer-naive experts that
they could not damage the overall system, which
increased their productivity. It also allowed experts
located in various places around the world to com-
pare, contrast, and integrate changes in a structured
wa#y.

Acknowledgments
There have been many people associated with the suc-
cessful history of the LQMS project without whom
these lessons would not have been possible. With re-
spect to the knowledge-acquisition aspects, I would like
to acknowledge the efforts of our excellent domain ex-
perts: Alistair Cox, Ace Dumestre, Laurent Moinard,
and Alan Sibbit. The core development team included
Dennis O’Neill, Paul Gingrich, and the user interface
work of Ruven Brooks. Although this paper primarily

describes work on the research prototype, the engi-
neering team at Schlumberger Austin Systems Center,
involved in the technology transfer, provided valuable
interactions. Bob Young was a. critical resource during
the original development of the OSR ideas, provided
the spark of motivation to produce this paper, and ex-
cellent feedback to make it right. Eric Schoen and Reid
Smith supplied insightful comments and helpful point,-
ers. Stan Vestal and SLCS allowed this retrospective
activity to occur.

References
[Bennett, 19851 James S. Bennett. ROGET: A

knowledge-based consultant for acquiring the con-
ceptual structure of a diagnostic expert system.
Journal of Automated ReasonGng, 1149-74, 1985.

[Buchanan and Shortliffe, 19841 B. G. Buchanan and
E.H. Shortliffe. Rule-Bused Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Pro-
gramming Project. Addison-Wesley, Reading, Mass.,
1984.

[Buchanan et al., 19831 Bruce G. Buchanan, David
Barstow, Robert Bechtal, James Bennett, William
Clancey, Casimir Kulikowski, Tom Mitchell, and
Donald A. Waterman. Constructing an expert sys-
tem. In Frederick Hayes-Roth, Donald A. Water-
man, and Douglas B. Lenat, editors, Building Expert
Systems, chapter 5, pages 127-168. Addison-Wesley,
Reading, Mass., 1983.

[Davis and Hamscher, 19SS] Randall Davis and Wal-
ter Hamscher . Model-based reasoning: Trou-
bleshooting. In H.E. Shrobe and AAAI, editors, Ex-
p1orin.g Artificial Intelligence, pages 347-410. Mor-
gan Kaufmann, 1988.

[Erman et al., 19801 L. D. Erman, F. Hayes-Roth,
V. R. Lesser, and D. R. Reddy. The Hearsay-
II speech-understanding system: Integrating lmowl-
edge to resolve uncertainty. Computing Surveys,
12(2):213-253, June 1980.

[Eshelman, 19881
Larry Eshelman. MOLE: A knowledge-acquisition
tool for cover-and-differentiate systems. In Sandra
Marcus, editor, Automating Knowledge Acquisition
for Expert Systems, chapter 3, pages 37-80. Kluwer
Academic Publishers, Bost,on, Mass., 1988.

[Forsythe and Buchanan, 19891 Diana E. Forsythe
and Bruce G. Buchanan. Knowledge acquisition
for expert systems: Some pitfalls and problems.
IEEE Transactions on Systems, Man and Cybernet-
ics, 19(3):435-442, May/June 1989. Special issue on
perspectives in knowledge engineering.

[Hamscher, 19881 Walter C. Hamscher. Model- bused
Troubleshooting of Digital Systems. PhD thesis, MIT
AI Lab, 1988.

MULLARKEY 503

[Hendrix, 19791 G. G. Hendrix. Encoding knowledge
in partitioned networks. In Associative Networlcs-
The Representation and Use of Knowledge in Com-
puters, pages 51-92. Academic Press, New York,
NY, 1979.

[Musen, 19891 Mark A. Musen. Automated Generation
of Model-Based Knowledge-Acquisition Tools. Re-
search Notes in Artificial Intelligence. Pitman Pub-
lishing, London, 1989. Revision of Stanford Univer-
sity PhD dissertation (STAN-CS-881194).

[O’Neill and Mullarkey, 19891 D. M. O’Neill and P. W.
Mullarkey. A knowledge-based approach to real time
signal monitoring. In Proceedings of the Fifth Con-
ference on Artificial Intelligence Applications, pages
133-140, March 1989.

[Reboh, 19811 R. Reboh. Knowledge engineering tech-
niques and tools in the Prospector environment.
Technical Report 243, SRI International, Menlo
Park, Calif., June 1981.

[Schoen et al., 19881 Eric Schoen, Reid G. Smith, and
Bruce G. Buchanan. Design of Knowledge-Based
Systems with a Knowledge-Based Assistant. IEEE
Transactions on Software Engineering, 14(12): 1771-
1791, December 1988.

[Smith et al., 19871 R. G. Smith, P. S. Barth, and
R. L. Young. A substrate for object-oriented in-
terface design. In Research Directions in Object-
Oriented Programming. MIT Press, Cambridge,
MA., 1987.

[Smith, 19841 R. G. Smith. On the Development of
Commercial Expert Systems. AI Magazine, 5(3):61-
73, Fall 1984.

504 KNOWLEDGE ACQUISITION

