
An Experiment in Direct Knowledge Acquisition 

Peter W. Mullarkey 
Schlumberger Laboratory for Computer Science 

P.O. Box 200015, Austin, TX 78720-0015, U.S.A. 
mullarkey@slcs.slb.com 

Abstract 
LQMS is a knowledge-based system that identifies and 
explains anomalies in data acquired from multiple sen- 
sors. The knowledge base was built by a sequence of 
domain experts. Its prototype performed with a high 
level of accuracy and that performance has been incre- 
mentally and significantly improved during develop- 
ment and field testing. Several points are developed in 
this pa.per. (1) The combination of an intuitive model 
(sufficient for the task) and powerful, graphical devel- 
opment tools allowed the domain experts to build a 
large, high performance system. (2) The Observation- 
Situation-Blation representation illustrates an inter- 
mediate point on the simplicity-expressiveness spec- 
trum, which is understandable to the domain experts, 
while being expressive enough for the diagnostic task. 
(3) The system was designed as a workbench for the 
domain experts. This enticed them to become more 
directly involved, and, resulted in a better system. (4) 
The use of an integrated knowledge base edit-tracking 
system was important to the project in several ways: 
it reassured computer-naive experts that they could 
not damage the overall system, which increased their 
productivity; and, it also allowed experts located in 
va.rious places around the world to compare, contrast, 
and integrate changes in a structured way. 

Introduction 
L&MS is a knowledge-based system that identifies 
and explains anomalies in data acquired from multi- 
ple sensors [O’Neill and Mullarkey, 19891. This paper 
describes its knowledge representation and graphical 
development tools, which allowed direct involvement 
of several domain experts in the construction of its 
knowledge base. 

Task Description 
The task is to enhance the performance of well-trained 
field engineers in a demanding environment (oil field 
exploration). Oil-well logs are made by lowering tools 
into the borehole and recording measurements made by 
sensors in the tools as they are raised to the surface. 
The resulting logs are sequences of values indexed by 

depth. Logging tools measure a variety of petrophysi- 
cal properties. The field engineer’s task involves data 
acquisition and interpretation, and is characterized by 
high data rates, with noisy and uncertain data. Earlier 
work on some aspects of the interpretation problem 
is discussed in [Smith, 19841. In this paper, we con- 
centrate on data acquisition. The quality of the data. 
may be affected by many sources: problems with the 
tools, problems with the downhole environment (e.g., 
unusual borehole geometry and fluids, extreme forma- 
tion conditions), and untoward interactions between 
the tools and the downhole environment. In normal 
circumstances, it takes three to five years for a field 
engineer (with an engineering degree) to become truly 
competent in this task. 

The goal of LQMS is to assure that the field en- 
gineers leave the field location with full knowledge 
of the quality of the data collected. Given the task 
complexity and the level of training required, it was 
clear from the outset that the knowledge-based system 
would need to encompass a large a.mount of knowledge 
in order to achieve high performance. This makes the 
acquisition of domain knowledge critical. 

Overview of LQMS 
LQMS has two main components: a signal-to-symbol 
module that identifies anomalous behavior in the sig- 
nal data and an analysis module that applies ex- 
plicit domain models to arrive at causal explanations 
for the anomalies. These two modules are imple- 
mented in an object-oriented paradigm, and commu- 
nicate via asynchronous message-passing. The sys- 
tem was implemented in the HyperClass environment. 
[Smith et al., 1987, Schoen et al., 19881 and Common 
Lisp and runs on both Sun and VAX workst,a.tions. 

The overall process can be envisioned as a progres- 
sion of transformations from the raw data, through 
a signal-to-symbol module, to the analysis module 
(which can direct the signal-to-symbol Illoduie to 
search for further evidence about features of interest). 
Our basic design philosophy is to have small, efficient 
computational agents (the signal-to-symbol module) 
whose responsibility is only to find anoma.lous seg- 
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ments of data, and then use more extensive domain 
knowledge in the analysis module to discern which 
anomalies are problems requiring action, and which are 
explainable in other ways. This decomposition allows 
the signal-to-symbol module to run real-time, while the 
analysis module works in background. 

A research prototype was deployed over a two-year 
field test program in several locations (Houston, TX; 
New Orleans, LA; Cairo, Egypt; Midland, TX; and, 
Paris, France). It has done an effective job of dealing 
with the task and providing a model that the users feel 
is intuitive. 

Knowledge Representation Model 
The analysis module consists of an inference engine 
that operates on domain knowledge represented as net- 
works. These networks are composed of Situations 
that can be used to explain groups of jZbservations 
connected by Relations; they are referred to as OSR 
networks. We will explain via the example shown in 
Figure 1. 

In the example network, Situations are boxed nodes 
(e.g., LDT-PROBLEM), Observations are unboxed 
leaf nodes (e.g., RHOB-UNUSUALLY-LOW). Rela- 
tions are unboxed interior nodes, drawn from the 
set AND, OR, COMB ( a weighted average), NOT, 
and ANY (essentially an OR that uses breadth-first 
search). 

The example network can be understood (and con- 
structed) from either of two viewpoints. 

1. From a symptomatic view, the network has possible 
explanations for the anomaly RHOB-UNUSUALLY- 
LOW (highlighted in the middle right section of the 
network). This observation means that the sensor is 
measuring a bulk density of the surrounding mate- 
rial that is lower than normally exp.ected, but not so 
low as to be out of the physical measurement range 
of the sensor. This anomaly can be explained by 
a misapplication of the sensor pad to the surround- 
ing rock (LDT-PAD-STANDOFF), allowing lower- 
density material (e.g., drilling fluid) to exist between 
the sensor and the material of interest, and/or a 
problem with the tool that houses the sensor (LDT- 
PROBLEM). 

2. From a “failure model” point of view, there are 
two subnetworks shown in Figure 1. One describes 
the observations that would be associated with an 
LDT sensor pad being out of contact with the bore- 
hole wall. The other describes the observations that 
would be associated with an LDT tool problem. 

The various domain experts have found that a choice 
of different ways of visualizing (and building) the net- 
works allows them to think about their knowledge in 
the way that is most natural for them. One domain 
expert prefers the symptomatic perspective, while an- 
other prefers the failure model view, and a third seems 
to be comfortable switching between these views. 

The basic components of the knowledge representa- 
tion scheme were derived by direct observation of the 
domain experts at work. This recognition that the be- 
havior of the experts is a real expression of the knowl- 
edge is discussed in [Musen, 19891 in regard to sepa- 
rating the knowledge level from the symbol level. The 
domain experts visually recognize an anomalous data 
pattern, and attempt to construct a set of conditions 
that could explain that anomaly. Their “heuristic asso- 
ciations” between anomalies and multiple possible ex- 
planations are not through explicit relations, but such 
relations are implicit in the context. For example, to 
support an LDT-PAD-STANDOFF there needs to be 
evidence of both borehole wall roughness (described by 
the upper subnetwork to the right of the AND in Fig- 
ure 1) AND an indication of abnormal density borehole 
fluid (described by the lower subnetwork to the right 
of the AND in Figure 1). In describing this situation, 
the AND relation would be obvious to a domain expert 
from the context. The OSR environment encourages 
the domain expert to make these implicit relations ex- 
plicit, both for obvious computability and to make the 
networks less ambiguous for the next domain expert. 

The OSR framework was developed to organize and 
unify the various concepts that seemed intuitive to the 
domain experts. These experts clearly had more than a 
jumble of loosely-connected heuristics, but did not use 
a complete structural and behavioral model. Our early 
experience with a rule-based prototype demonstrated 
that the domain experts had difficulty encoding their 
knowledge as rules. Furthermore, the prototype did 
not clearly support the domain experts’ model. This 
was also noted in [Davis and Ha,mscher, 19881. 

We were also led to believe tha.t a “deep model” 
approach was also not appropriate because: 

e No complete model exists for the domain. The lack 
of a strong domain model is a good reason for using 
a different approach [Hamscher, 1988, page 191. 

e The problem solving must be done in a real-time 
environment and “deep models” are typically com- 
putationally intensive. 

e The users do not reason with a deep model; hence, 
a system using such a model would be less under- 
standable to them. 

The inherent simplicity of the OSR framework is a 
strong asset, since (after three years of successful use) 
it appears to be expressive enough to cover the domain 
of interest, while being intuitively comfortable to a set 
of five geographically distributed domain experts with 
different backgrounds. Thus, it illustrates an interme- 
diate point on the simplicity-expressiveness spectrum. 

Inference 

LQMS uses its knowledge base of OSR networks in a 
way similar to the “cover and differentiate” problem- 
solving method used in MOLE [Eshelman, 19881. The 
signal-to-symbol module notices an anomaly. The 
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Figure 1: The OSR Network Editor (see text for legend) 

analysis module retrieves all situations that can ex- 
plain the anomaly. It gathers appropriate evidence 
for discrimination between the possible explanations 
by traversing the networks. It develops the best 
explanation(s) for the anomaly from the situations 
that have the highest belief, based on available ev- 
idence. LQMS combines evidence in the OSR net- 
works using an algebra that combines beliefs for the 
relation types in a conventional manner [Reboh, 1981, 
Buchanan and Shortliffe, 19841. Beliefs are repre- 
sented as a five-valued range with an explicit repre- 
sentation for unknown values. The particular combi- 
nation rule used is determined by the Relation type. 
A small set of relations has been found to work well in 
the LQMS domain. 

LQMS can show its reasoning with an animated dis- 

play of the OSR networks it is processing (highlighting 
nodes currently being processed, and changing fonts to 
indicate current belief). The user can also direct the 
system to explain its conclusions a.fter a session using a 
mouse-sensitive debriefing report to access the appro- 
priate OSR networks and signal-to-symbol agents. The 
system’s explanation of its results is clear and mean- 
ingful to our domain experts. Over the three years of 
construction, refinement and use, the main debugging 
tool used has been animated OSR networks. 

In addition to the basic framework, the OSR envi- 
ronment offers the domain expert several ways of aug- 
menting the networks with further experiential knowl- 
edge. 

e search first - The domain expert can specify a 
partial order of situations that are most likely to 
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explain a particular anomaly. 
o relative link weights - The links between a re- 

lation and its operands can be assigned different 
weights, thus their evidence will be combined based 
on the specified relative importance. 

e tie breaking - The domain expert can designate 
that some situations be preferred. Then if a “pre- . 
ferred” situation is among the equally believed ex- 
planations for an anomaly, it is selected as the best 
explanation. 

Knowledge-Acquisition Tools 
LQMS has a rich knowledge engineering environment 
(based on the HyperClass system). These tools have 
made it possible for domain experts to enter, test, and 
refine the OSR network knowledge base (which con- 
tains 1880 classes) with minimal assistance from the 
system developers. Like the knowledge editors in RO- 
GET [Bennett, 19851 and MOLE [Eshelman, 19881, the 
OSR Network Editor takes advantage of knowledge of 
the problem-solving method used in LQMS to assist 
the user in entering knowledge. This approach has 
been referred to as using a method-orierzted conceptual 
model to support knowledge acquisition [Musen, 19891. 

The “boxes and links” OSR Network Editor (Fig- 
ure 1) is the main tool for constructing, maintain- 
ing, and refining OSR networks. It has an integrated, 
object-oriented, edit-tracking system to notice, save 
(and restore) incremental changes to the knowledge 
base. This allows multiple domain experts to work 
independently on the knowledge base, making incre- 
ment a.1 changes. It supports review, comparison, and 
conflict detection of various changes proposed for the 
core knowledge base. Aside from indicating when they 
start and end editing sessions, the domain experts do 
not notice the presence of edit-tracking in their normal 
style of development. The edit-tracking capabilities 
enhanced both speed and consistency of development 
and inter-developer communication (discussed in the 
subsequent section, Support for Distributed Develop- 
ment). 

Experiences 
This section describes some of our experiences during 
the construction of L&MS. We begin with a timeline 
that summarizes the main knowledge-a.cquisition phase 
of its development. We then describe two episodes 
from late in the project that illustrate the ease with 
our domain experts could understand and modify the 
knowledge base. 

Development 
The initial domain expert (who will be referred to as 
DE1 ), had an engineering degree, over 15 years of var- 
ied field experience, and much exposure to program- 
ming. He worked on the project part-time, helped with 
the analysis of the domain, and prompted the develop- 
ment of the OSR idea. He was followed, with overlap, 

by a second domain expert (DEe), working full-time 
on the project. DE2 had an engineering degree, over 
ten years of varied field experience, and much exposure 
to programming. DE*, using the early knowledge- 
acquisition tools, built the first 80 networks, which 
represented behavior models for four basic tool types. 
The knowledge base by then included about 800 total 
classes. DE2 transferred back to the field after over a 
year on the project, and there was a 4 month gap be- 
fore a third domain expert (DE3) was transferred in 
from the field to work on the project. During this time, 
we developed the OSR Network editor, based on ob- 
serving DE2 and seeing that while he was able to con- 
struct the networks using the object/slot/value linkage 
editors, he always kept a current graphic display that 
would show him the developing structure. The new 
OSR Network editor allowed these activities to be uni- 
fied, thus increasing the productivity of future network 
development. This process of knowledge-acquisition 
tools being developed contemporaneously with the sys- 
tem is discussed in [Smith, 19841. DE3 had an engi- 
neering degree, over five years of field experience, and 
very little exposure to programming or workstations. 
DE3 reviewed the state of the system, revised fewer 
than 10% of the networks, and began adding models 
of three additional tools. These new tools were quite 
complex, and involved the addition of 200 networks 
(and tie-ins to many of the existing networks), over 
one and a half years. The system used during the final 
field tests and transferred from research to engineer- 
ing had models of nine tools, with over 280 networks, 
including 480 Observations, 280 Situations, and 680 
Relations. 

Refinement 
During the later development phase of the prototype, 
the system was field tested in five locations worldwide. 
Each of these field tests involved installing the sys- 
tem in an office environment where engineers would 
use it to replay previously run commercial data acqui- 
sition jobs and provide feedback on the utility, ease of 
use, and performance of the system. The office envi- 
ronment was selected since the commercial logging ac- 
quisition trucks work in a very high-cost, time-critical 
environment while the drilling rig is configured to al- 
low logging; while in the office, the systems and data 
are still available after normal work hours. Some 
of the field test sites provided excellent feedback on 
how naive users might benefit from the system’s anal- 
yses, while others provided feedback on how a complex, 
knowledge-based system would react to local modifica- 
tions. One of these latter (more technically demand- 
ing) locations was Cairo, Egypt, where by that time 
DE2 was working. During the field test, in addition to 
the normal use and testing of the system, DE2 recog- 
nized a weakness in the system’s coverage, understood 
the part of the knowledge base that required refine- 
ment, ma.de several changes, and tested and validated 
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his new (better) results. All this activity 
without the support of the developers. 

transpired 

Support for Distributed Development 
The next episode illustrates how the edit-tracking sys- 
tem acted as a communication vehicle. When LQMS 
was transferred to engineering, two more domain ex- 
perts (DE4 and later DES) became part of the team. 
After a period of electronic communication, DE3 met 
with DE,. They worked on understanding the cur- 
rent state of the system, and discussed refinements that 
might be made. After DE3 returned to his home lo- 
cation, he made several hundred changes (of various 
sizes) since he was still the principal domain expert. 
DE, then asked if he could find out what had been 
changed. Since all the changes DE3 had made were 
recorded by the edit-tracking system, it was straight- 
forward to generate a transcript of those changes. A 
single change summary is shown that captures adding 
a link from a situation (MULTIPLEXER#I-FAILURE) to 
an AND relation (AND-99). Although the transcript is 
very low level, DE4 found it quite helpful. 
Updating Object MULTIPLEXER#l-FAILURE 
Slot ACCOMPANIEDBY to ADD AND-99 

These transcripts were also used as a chronicle of 
knowledge base development. This automatic con- 
struction of a record of the construction and refine- 
ment of the knowledge base deals with one of the inher- 
ent problems in knowledge engineering: “interviewing 
without a record”[Forsythe and Buchanan, 19891. 

Performance 
The size of a knowledge base and ease of its construc- 
tion are interesting only when the system performs 
well. In this section, we summarize several studies of 
L&MS’s performance. 

DE4 performed a set of case studies on the system. 
The first set was done in 1988 before he had any knowl- 
edge of the internals of the system, while the second 
set was done in 1989 after DE4 had become famil- 
iar with the system. He was not responsible for the 
knowledge base development until after these studies 
were completed. In the earlier studies he found that 
correct diagnoses of causes of anomalies had been far 
from perfect (60% correct) but with the testing and re- 
finement activities (done by DE3 primarily), accuracy 
steadily improved. 

In June, 1989, DE4 ran eight, jobs and compiled the 
following estimated results. He judged approximately 
85% of the explanations to be reasonable. In fact, the 
system found and explained some problems likely to 
be missed by a normal field engineer. He believed 15% 
were wrong, since the given explanation could easily be 
shown to be inappropriate by anyone with a reasonable 
level of experience in log interpretation. 

All of the grading was done on the basis of infor- 
mation that an engineer would normally have avail- 
able post-hoc, in the office environment. This level of 

information is not always available to the field engi- 
neer, on location, so these results are very encourag- 
ing. Explanations classified as wrong were typically 
those that reasonably fit with a subset of the observa- 
tions, but conflicted with other available information. 
This additional information was missed for any of sev- 
eral reasons. It may have been omitted (or improperly 
included) in the OSR network. It was sometimes in- 
accessible because no Observers had been designed to 
monitor that particular data. We believe that most 
of these wrong explanations can be corrected through 
further completion of the knowledge base. 

LQMS was estimated by DE, to be performing at 
85% of the level of an experienced field engineer, and 
had shown that its performance can be improved in- 
crementally and substantially. 

Current Status 

The prototype LQMS was transferred to engineering 
in 1989 after three years of development and field t#est- 
ing. The system is being ported into the commercial 
environment of the data acquisition system. 

Related Work 
The idea of using networks to structure the asso- 
ciation of observations and situations has some of 
its roots in Hendrix’s partitioned semantic networks 
[Hendrix, 19791. 

The basic architectural approach of abstraction of 
data by low-level modules with higher-level process- 
ing (sometimes directing the low-level modules) is very 
much like Hearsay-II [Erman et al., 19801. The MOLE 
[Eshelman, 19881 system has many similarities to the 
OSR framework used in L&MS. MOLE has more pow- 
erful support for refinement of the knowledge base, 
although the OSR Network Editor has the capabil- 
ity to discover and display (partial) networks it con- 
siders incomplete (Figure 1-AddIncompleteNets com- 
mand). The domain expert has played a more ac- 
tive role in refining the knowledge base in LQMS 
(with good results). Based on the examples shown in 
[Eshelman, 19881, MOLE has a less expressive knowl- 
edge representation, in that there is only one “relation” 
called “covering (explanatory)“, which is visually en- 
coded as a link. Additionally, there is a presumption 
that initial symptoms are different in a significant way 
from other sy7r2pto7)1s and tha.t only initia,l sympt,oms 
can be used to prompt a diagnosis. In contrast, OSR 
has the concept of a trigger observation, but this is 
just an additional characteristic that any observation 
can have, although intuitively, some observations (e.g., 
value-out-of-range) are much more likely to be inter- 
esting triggers in a diagnosis task. We designed this 
uniformity into the observations since we believe that 
if a knowledge base describes a domain, there may be 
several uses for that knowledge (e.g., data quality diag- 
nosis, pre-interpretation data analysis, training), and 
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the trigger observations for the different uses may not 
be the same. 

There is a problem inherent with the development 
of ambitious systems: keeping the pace of develop- 
ment fast enough to maintain the domain experts’ in- 
terest and contribution [Buchanan et al., 19831. One 
approach is to use a team of developers, suggested by 
Reboh [Reboh, 1981, p. 941, one to interview the do- 
main expert and another to implement the knowledge 
in a prototype. The approach used in LQMS brings 
the domain expert directly to the center of the action 
and responsibility. This approach has the additional 
feature of making the domain expert a real part-owner 
of the system, with all the positive aspects that “own- 
ership” brings. 

Conclusions 
LQMS is a system based primarily on knowledge en- 
coded directly by domain experts. Its prototype per- 
formed with a high level of accuracy and that per- 
formance has been incrementally and significantly im- 
proved during development and field testing. Several 
points have been developed in this paper. 

The combination of an intuitive model (sufficient for 
the task) and powerful, graphical development tools 
allowed the domain experts to build a large, high 
performance system. There was a significant transi- 
tion from the prototype system based on rules (no 
direct interaction between domain expert and knowl- 
edge base) to the system based on OSR networks 
built with direct “boxes and links” editing (very pro- 
ductive interaction). 
The OSR representation illustrates an intermedi- 
ate point on the simplicity-expressiveness spectrum, 
which is understandable to non-developers, while be- 
ing expressive enough for the domain. 
The system was a natural workbench for the domain 
experts, which enticed them to become more directly 
involved, resulting in a better system. 
The edit-tracking system served many useful pur- 
poses. It reassured computer-naive experts that 
they could not damage the overall system, which 
increased their productivity. It also allowed experts 
located in various places around the world to com- 
pare, contrast, and integrate changes in a structured 
wa#y. 
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