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Abstract 

Conventional methods for the parametric design of 
engineering structures rely on the iterative re-use 
of analysis programs in order to converge on a sat- 
isfactory solution. Since finite element and other 
analysis programs require considerable computer 
resources, this research proposes a general method 
to minimize their use, by utilizing constraint- 
based reasoning to carry out redesign. A problem- 
solver, consisting of constraint networks which ex- 
press basic relationships between individual design 
parameters and variables, is attached to the anal- 
ysis programs. Once an initial design description 
has been set out using the conventional analysis 
programs, the networks can then reason about re- 
quired adjustments in order to find a consistent 
set of parameter values. We describe how global 
constraints representing standard design behav- 
ioral equations are decomposed to form binary 
constraint networks. The networks use approx- 
imate reasoning to determine dependencies be- 
tween key parameters, and after an adjustment 
has been made, use exact relationship informa- 
tion to update only those parts of the design de- 
scription that are affected by the adjustment. We 
illustrate the ideas by taking as an example the 
design of a continuous prestressed concrete beam. 

31 Introduction 

Parametric design refers to the design of engineering 
objects, in which the parameters and variables describ- 
ing the object are known, and the problem is one of 
finding a consistent set of parameter values which con- 
form to specified requirements. Conventional paramet- 
ric design algorithms for civil and mechanical engineer- 
ing structures use finite element and other structural 
analysis programs to propose an initial solution. If the 
solution is infeasible, redesign is carried out in iterative 
fashion in order to converge on a feasible solution. The 
analysis programs have to be treated as black-boxes 
with fixed input and output, and hence each redesign 

iteration requires a complete re-processing, irrespec- 
tive of how smalI the change made to the previous de- 
sign description. Furthermore, these analysis programs 
are often large and require considerable computer re- 
sources [Murthy and Addauki, 19871. Therefore, any 
reduction in their usage through the application of in- 
telligent redesign methods is advantageous for design 
efficiency. 

Previous research into structural engineering design 
has dealt with meta-level control [Orelup et al, 19881, 
domain independence [Dixon et al, 19871, and inno- 
vative design [Murthy and Addanki, 19871, but has 
not applied intelligent technology to the fundamental 
analysis part of parametric design. In this research, 
we replace the analysis programs in redesign with a 
knowledge-based constraint reasoning process. This 
provides the double advantage of minimizing the use of 
expensive analysis programs, and of being able to up- 
date only those parameters or variables in the design 
description which require updating. 

Constraint-based techniques have been shown to im- 
prove the problem-solving capabilities for applications 
such as combinatorial problems and vision [Montanari, 
19741, [Mackworth, 19771, electrical circuit analysis 
[Sussman and Steele, 19801, and preliminary structural 
design [Sriram and Maher, 19861. A constraint-based 
approach reflects the view that design is essentially 
a process of integrating constraints from a variety of 
sources [Mostow, 19851. In the present system, how- 
ever, the constraints considered are restricted to those 
that can be conveniently handled, i.e., numeric con- 
straints on design parameter values. We explain how 
constraint networks are formed for the type of applica- 
tion considered here, and we propose an architecture 
to accommodate a constraint-based problem solver to- 
gether with structural analysis programs. The actual 
design process is then detailed, showing how backward 
reasoning enables dependencies between key parame- 
ters to be determined, and how forward propagation 
through the constraint network obviates the need to re- 
access analysis modules. We illustrate our techniques 
by referring to the design of a statically indeterminate 
prestressed concrete beam. 
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2 Design Process Model 

A conventional parametric design problem is described 
by parameters and variables, which can be classified 
according to the following three groups: 

Initial Parameters These include the user specifica- 
tion together with certain other unknown parame- 
ters whose values must be estimated before process- 
ing can be carried out to determine performance pa- 
rameter values. 

Intermediate Variables These are determined 
part of the processing of the initial parameters. 

as 

Design Performance Parameters These are pro- 
vided either by the user or by engineering codes, 
and they determine whether the solution proposed 
by the initial parameter values is adequate or not. 

Since it is not possible to directly determine the un- 
known parameters from the specification and required 
performance, conventional design is carried out in 
an iterative generate-and-test manner, using analy- 
sis programs to generate a complete description, be- 
fore testing the performance parameters. The analy- 
sis programs, cannot be fully replaced by more flexi- 
ble reasoning systems, such as constraint-based prob- 
lem solvers, because the analysis programs have certain 
capabilities-for example, the handling of various data 
types-which constraint-based reasoning systems do not 
possess, e.g., analysis programs process both single and 
multi-valued parameters, such as arrays of loads on a 
multi-span beam, while constraint-based systems can 
only reason about single valued parameters. There- 
fore, we use both conventional and constraint-based 
processing of parameters. Our system initially follows 
the conventional algorithm using analysis programs to 
generate an initial complete design description. How- 
ever, in subsequent redesign, only extreme values need 
be considered for each parameter, so that constraint- 
based reasoning alone can complete the design prob- 
lem. 

3 Constraint Network Model 

A standard constraint-satisfaction problem is charac- 
terized by a set of variables or parameters, each of 
which has a domain, finite or infinite, of possible val- 
ues. To this is added a set of domain constraints and 
a set of inter-parameter constraints. 

Domain Constraints are unary constraints, c(p), 
where c is a function mapping a parameter, p, onto a 
particular domain of allowable values. In our model, 
these constraints act on the initial and performance 
parameters. Intermediate variables do not have unary 
constraints and will accept auy value propagated to 
them. Two levels of unary constraint exist: 

o Unary limitconstraints restrict the parameter to a 
multi-value domain within fixed limits, which cannot 

0 

be adjusted during design. They may be obtained 
from a domain expert or textbook, or may be spec- 
ified by the user. 

Unary value-constraints assign a single numerical 
value to each initial parameter, i.e., they further 
tighten the limit-constraints so that a single value is 
associated with the parameter prior to propagation. 
These value-constraints may be supplied either by 
the user as part of the design specification, in which 
case the limit-constraints ensure that the value is 
in the allowable domain, or they may be supplied 
by the system, through default or other methods. 
System-supplied unary value-constraints may be au- 
tomatically adjusted during redesign, whereas user- 
supplied constraints are considered as part of the 
specification and may not be altered. 

Inter-Parameter Constraints are L’n-ary” con- 
straints, c(pl, p2 . . . . . . p,), where c is a function relat- 
ing parameters pl, p2 . . . . . . pa, n 2 2. These constraints, 
representing the laws of statics, geometry, mathemat- 
ics, etc., link aJI the parameters/variables in the design 
description. They are used to propagate the value- 
constraints on the initial parameters, i.e., they force 
an “nary” constraint between the initial and perfor- 
mance parameters. If the constraints cannot be satis- 
fied, adjustments have to be made. This is where the 
manner of representation of the inter-parameter con- 
straints can have a big influence on the efficiency of 
the design. We now describe the treatment of these 
constraints. 

3.1 Constraint Decomposition 

In conventional engineering design methods, global 
inter-parameter constraints are represented by behav- 
ioral equations contained in the analysis programs 
which process the input description and check the re- 
sult against performance requirements. This can be re- 
garded as applying an “rrary” constraint to the initial 
and performance parameters, where n is the number 
of parameters involved. 

We convert these %ary” constraints into binary 
constraint networks for the following reasons: 

In conventional methods which use “n-ary” con- 
straints as in Figure l(a), specific or generalized de- 
pendency relations between initial and performance 
parameters must be explicitly stated, e.g., factor x 
imposed loading = tensile stress. By linking all pa- 
rameters together in a binary network, part of which 
is shown in Figure l(c), approximate dependency re- 
lations can be worked out by the system. 

With a few “nary” constraints linking many param- 
eters, as in Figure I(a), if one parameter is adjusted 
then a complete re-computation involving all n pa- 
rameters, is generally required to determine the ad- 
justment necessary for the other parameters. The 
“n-ary” constraint gives no information regarding 
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Figure 1: Constraint Decomposition 

individual parameter-to-parameter relations, so that 
partial re-adjustment of the design description is not 
possible. However, a binary constraint network di- 
rectly relates individual parameters, enabling local 
adjustments to be carried out and propagated only 
to those parameters afFected by a change. 

The “nary” constraints as in Figure l(a), are decom- 
posed by firstly introducing intermediate variables as 
“stepping-stones” in the propagation process, i.e., we 
explicitly represent all steps in the evaluation of the 
behavioral equations as nodes in the constraint net- 
work. This reduces the “n-ary” constraint to simpler 
forms, e.g., the ternary constraint shown in Figure 
l(b), which processes two variable-values to produce 
one new variable-value. Secondly, these simpler con- 
straints are then further decomposed into binary con- 
straints, or relations between pairs of nodes. After the 
first step the constraints still represent equations, as in 
Figure l(b), but after the second, we only have one-to- 
one relations between nodes as in Figure l(c), and we 
can directly transfer an adjustment from one node to 
another, without having to consider any more than two 
nodes at a time. In our system binary relations sim- 
ilar to those shown in Figure l(c), cater for addition, 
multiplication, etc., and power operators, as well as 
the reverse operators. Certain complications that oc- 
cur in the adjustment transfer process are dealt with 
in section 4.1. 

3.2 System Architecture 

An expert system such as the one proposed here will 
generally be built on top of existing procedural pre 
grams, not the other way around. Therefore, it is nec- 
essary to adapt constraint-based ideas to suit the de- 
mands of conventional programs. As shown in Figure 
2, the architecture consists of a 2-level structure, with 
the constraint network set out in the upper, shallow- 
knowledge level, and conventional analysis modules lo- 
cated in the lower, procedural knowledge level. The 
links between nodes in the upper level consist of sim- 
plified direct dependency relations, as explained in the 
previous section, while those which pass through the 
lower level utilize traditional software tools, such as 
finite element programs, etc. Unary constraints are 
shown acting vertically down on the upper level. This 
separation between top and bottom levels reflects the 
distinction in conventional engineering terminology be- 
tween “design” and %nalysis”. Design concerns initial 
decisions, outline data, etc., and uses heuristics or shal- 
low knowledge, while analysis concerns precise numeri- 
cal values and uses procedural knowledge embedded in 
algorithmic programs. User communication and sys- 
tem output take place through the upper design level, 
which is also used in redesign to carry out propagation 
in forward and backward directions. The lower level 
analysis modules are used in setting out a full initial 
description, and typically link several nodes together, 
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Figure 2: System Architecture 

i.e., they form “ttiary” constraints, which, for clarity, 
we illustrate by dotted-line arrows. 

4 Problem-solving Process 

4.1 Application of Constraints 

A design problem is commenced by the application 
of unary constraints. Allowable domains and specific 
values are assigned to the initial parameters, and al- 
lowable domains are assigned to the performance pa- 
rameters. The user specification provides some of 
these unary constraints and the remainder are supplied 
by the system. This is done either through system- 
dependent default values, or through constraint derive 
tion, which generalizes standard textbook heuristics 
linking certain parameters, e.g., span/depth ratios. 

t 

For details of the constraint derivation algorithm, see 
Murtagh and Shimura, 19891). 

The values assigned to the initial parameters are 
then propagated using the “n-axy” constraints. This 
resembles standard propagation except that in the ini- 
tial propagation the lower level algorithmic modules 
are used and multiple parameter values are simulta- 
neously operated on. A complete description is thus 
obtained, and its validity is tested by the performance 
parameters. Generally this fist complete description 
will be invalid due to conflict between the propagated 
constraint values and the allowable domains of the per- 
formance parameters, and a redesign phase is automat- 
ically commenced. 

In the redesign phase, the system first determines 
the dependency information necessary for redesign, 
i.e., it back-propagates from the critical performance 
parameter to determine how much the initial parame- 
ters should be adjusted in order to achieve the required 
alteration in the critical performance parameter. Thus, 

it obviates the need to set out parameter-to-parameter 
dependency information, although parameter ordering 
[Dixon et al, 19871, specifying which parameter to ad- 
just first, is still required. 

After the adjustments required in the initial param- 
eters have been established, one initial parameter is 
selected for adjustment in accordance with the current 
redesign strategy. The adjustment is carried out, and 
forward propagation through the network updates the 
nodes related to the adjusted initial parameter. 

While the initial forward propagation can be re- 
garded as a global propagation, the redesign phase is 
based on local propagation. Local propagation has the 
advantage that it is fast because it uses only simple 
relationships and deals only with single-valued nodes. 
However, it relies on approximate reasoning in back- 
propagation, due to the presence of loops or cycles 
in the network. Referring to Figure 3(a), in baclc- 
propagation where more than one link lead out of the 
node N4, the required adjustment in N4 is propagated 
to both N2 and N3, an adjustment in either one be- 
ing sufficient to produce the required adjustment in 
N.#. Where the two paths subsequently lead into a 
single node Nl, a cycle or loop occurs. In general, 
the two adjustments back-propagated to Nl along the 
two paths, will not be the same. In order to combine 
the values, we propose an empirically derived approx- 
imate equivalence equation, supplemented with a self- 
updating heuristic correction factor, F. 

proposed 
adjustments 

x9 Y 

executed 
adjustment 

F x [x x ?//(a: + dl 

The heuristic factor, initially set to 1, and updated 
after adjustment, is used to speed up the adjustment 
process, i.e., it attempts to move immediately to the 
top of the current hill. This factor is problem-specific 
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(a) Node relations represented (b) Node relations represented 
by binary links by operators 

(Arrows show direction of forward propagation) 

Figure 3: Loop in Binary Constraint Network 

Design Parameter Values 
paraameter 9aame user specification 
no of spans 3 
span lengths 10 ?n,18 m, 10 7-n 
end fixities cantilever, pinned 
dead load 5 kN/m 
live load 6 kN/m 

computed parameters 
initial value final value 

concrete strength 35 N/mm’ 40 N/mm’ 
section width 300 mm 450mm 
section depth 650 mm 800 mm 
prestress steel 

strength 1950 N/mm2 1950 N/mm2 
cover to steel t 30 mm 103 mm 
balanced load 

factor $ 0.4 0.486 
tStee1 cover determines max prestress tendon sag. 
$Proportion of load balanced by prestress. 

Table 1: Design Description for Prestressed Beam 

and path-specific. Hence, although it has no usefulness 
in the first adjustment, since its value is 1, it performs 
better than over-generalized statistical factors and will 
enable convergence to be quickly obtained in a subse- 
quent adjustment of the same parameter. 

In forward propagation, where multiple adjustments 
are passed to a single node, they are super-imposed 
to give the exact required adjustment. The difference 
between forward and backward propagation, while not 
obvious from Figure 3(a), can be seen more clearly 
in Figure 3(b), which shows the links passing through 
operators, which act like ternary constraints. 

5 Implementation and Results 

The system at present comprises four partially over- 
lapping constraint networks, each network joining the 
initial parameters with one particular performance pa- 
rameter. These networks are written in Prolog, while 

the structural analysis modules are in C. The analysis 
modules in the current system carry out bending mo 
ment and shear computations, prestress system com- 
putations, and ultimate strength verification. Table 1 
shows the numeric data for the design of a 3-span pre- 
stressed concrete beam. The design was carried out us- 
ing the constraint network for redesign and also using 
conventional techniques, i.e., using the analysis pro- 
grams only. The same results were obtained for each 
case, since the constraint networks exactly reflect the 
processing of the analysis programs. However, the con- 
ventional design method necessitated accessing each of 
the analysis programs a total of 18 times, while the 
constraint-based method only required the use of the 
analysis programs once, in the initial design. 

6 Comparison with Related Research 

Relaxation [Leler, 19881 involves making an initial 
guess at the value of an object, estimating the resultant 
error, and making new guesses in order to converge on 
a rational value. We have adapted this technique to 
the demands of engineering design, focusing on how 
to represent relations between the objects, and how to 
improve the convergence methods. 

In [Chan and Paulson, 19871, constraints are used 
for determining design descriptions as welI as checking 
proposed descriptions for a structural engineering ap- 
plication. However, procedures are required for each 
intended use of the constraint. We also use constraints 
in different ways, but instead of setting out numerous 
procedures, we avail of simplified relationships repre- 
sented by constraint networks. One of the ways in 
which we utilize the constraints, in addition to check- 
ing, is in establishing parameter-to-parameter depen- 
dency information, using local constraint relationships 
together with problem-specific heuristic factors. Thus 
we do not need to set out explicit dependency rela- 
tionships as in more conventional systems [Dixon et 
al, 19871. 

In [Mackworth, 19771 consistency algorithms are 
proposed for attaching feasible values to variables, and 
for filtering infeasible values in constraint networks. 
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Only unary and binary constraints are treated, and 
the inter-variable constraints are assumed to be inex- 
pensive, unlike those represented by analysis programs 
in engineering design. Hence, our research focuses on 
the nature of the inter-variable constraints. 

In [Dechter and Pearl, 19871, the variable-domains 
consist of a finite number of discrete values, en- 
abling candidate-ordering and/or elimination to be 
used. These techniques cannot be used in engineer- 
ing design where the parameters normally have con- 
tinuous and therefore infinite domains. However, the 
continuous nature of the domain values permits move- 
ment from one candidate value to another, using only 
information concerning the extent to which the previ- 
ous value was unsatisfactory, thug avoiding expensive 
re-computation procedures. 

7 Conelusion 

This system has shown how a constraint-based problem 
solver can improve the efficiency of parametric engi- 
neering design, by minimizing the use of large analysis 
programs and updating only the minimum number of 
parameters and variables in redesign. The fundamen- 
tal difference between previous work and the present 
system is the following: in conventional systems the re- 
design process releases all intermediate variables from 
their currently assigned values, and after some alter- 
ation to the initial parameter(s), re-assigns these vari- 
ables using the same methods as before. In our system, 
redesign does not release variables from their current 
values, but instead automatically adjusts the values of 
those variables related to the most critical performance 
parameter, by propagation through the constraint net- 
work. Forward propagation is exact, depending only 
on the binary constraints between the parameters and 
variables. Back propagation is generally approximate, 
due to loops or cycles in the constraint networks, and 
relies on ad hoc procedures. At best this will give exact 
accuracy (for single path, or no-loop dependencies) and 
good approximations for other multi-path dependen- 
cies. At worst, it will rely on the heuristic correction 
factor to steer the adjustment in the right course. The 
system at present uses a general hill-climbing strategy. 
A parametric design system should ideally have a va- 
riety of strategies, as shown in [Orelup et al, 19881. 
However, this is a separate issue to the one considered 
in the present research. 

The strategy used in this work is applicable to para- 
metric design problems in which basic relationships be- 
tween parameters and variables can be obtained from 
the behavioral equations, and in which multi-valued 
parameters can be rationalized into controlling single 
values for reasoning purposes. Although the system 
has been tested in only one domain, parametric de- 
sign does not differ radically from domain to domain, 
so that our strategy has the potential to be applied 
generally. 
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