
ase

Niall Murtagh and Masarnichi Shimura
Department of Computer Science, Tokyo Institute of Technology

2-12-1 0-okayama, Meguro-ku, Tokyo 152, JAPAN
email: nia.llQcs.titech.ac.jp

Abstract

Conventional methods for the parametric design of
engineering structures rely on the iterative re-use
of analysis programs in order to converge on a sat-
isfactory solution. Since finite element and other
analysis programs require considerable computer
resources, this research proposes a general method
to minimize their use, by utilizing constraint-
based reasoning to carry out redesign. A problem-
solver, consisting of constraint networks which ex-
press basic relationships between individual design
parameters and variables, is attached to the anal-
ysis programs. Once an initial design description
has been set out using the conventional analysis
programs, the networks can then reason about re-
quired adjustments in order to find a consistent
set of parameter values. We describe how global
constraints representing standard design behav-
ioral equations are decomposed to form binary
constraint networks. The networks use approx-
imate reasoning to determine dependencies be-
tween key parameters, and after an adjustment
has been made, use exact relationship informa-
tion to update only those parts of the design de-
scription that are affected by the adjustment. We
illustrate the ideas by taking as an example the
design of a continuous prestressed concrete beam.

31 Introduction

Parametric design refers to the design of engineering
objects, in which the parameters and variables describ-
ing the object are known, and the problem is one of
finding a consistent set of parameter values which con-
form to specified requirements. Conventional paramet-
ric design algorithms for civil and mechanical engineer-
ing structures use finite element and other structural
analysis programs to propose an initial solution. If the
solution is infeasible, redesign is carried out in iterative
fashion in order to converge on a feasible solution. The
analysis programs have to be treated as black-boxes
with fixed input and output, and hence each redesign

iteration requires a complete re-processing, irrespec-
tive of how smalI the change made to the previous de-
sign description. Furthermore, these analysis programs
are often large and require considerable computer re-
sources [Murthy and Addauki, 19871. Therefore, any
reduction in their usage through the application of in-
telligent redesign methods is advantageous for design
efficiency.

Previous research into structural engineering design
has dealt with meta-level control [Orelup et al, 19881,
domain independence [Dixon et al, 19871, and inno-
vative design [Murthy and Addanki, 19871, but has
not applied intelligent technology to the fundamental
analysis part of parametric design. In this research,
we replace the analysis programs in redesign with a
knowledge-based constraint reasoning process. This
provides the double advantage of minimizing the use of
expensive analysis programs, and of being able to up-
date only those parameters or variables in the design
description which require updating.

Constraint-based techniques have been shown to im-
prove the problem-solving capabilities for applications
such as combinatorial problems and vision [Montanari,
19741, [Mackworth, 19771, electrical circuit analysis
[Sussman and Steele, 19801, and preliminary structural
design [Sriram and Maher, 19861. A constraint-based
approach reflects the view that design is essentially
a process of integrating constraints from a variety of
sources [Mostow, 19851. In the present system, how-
ever, the constraints considered are restricted to those
that can be conveniently handled, i.e., numeric con-
straints on design parameter values. We explain how
constraint networks are formed for the type of applica-
tion considered here, and we propose an architecture
to accommodate a constraint-based problem solver to-
gether with structural analysis programs. The actual
design process is then detailed, showing how backward
reasoning enables dependencies between key parame-
ters to be determined, and how forward propagation
through the constraint network obviates the need to re-
access analysis modules. We illustrate our techniques
by referring to the design of a statically indeterminate
prestressed concrete beam.

MURTAGHAND~HIMURA 505

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

2 Design Process Model

A conventional parametric design problem is described
by parameters and variables, which can be classified
according to the following three groups:

Initial Parameters These include the user specifica-
tion together with certain other unknown parame-
ters whose values must be estimated before process-
ing can be carried out to determine performance pa-
rameter values.

Intermediate Variables These are determined
part of the processing of the initial parameters.

as

Design Performance Parameters These are pro-
vided either by the user or by engineering codes,
and they determine whether the solution proposed
by the initial parameter values is adequate or not.

Since it is not possible to directly determine the un-
known parameters from the specification and required
performance, conventional design is carried out in
an iterative generate-and-test manner, using analy-
sis programs to generate a complete description, be-
fore testing the performance parameters. The analy-
sis programs, cannot be fully replaced by more flexi-
ble reasoning systems, such as constraint-based prob-
lem solvers, because the analysis programs have certain
capabilities-for example, the handling of various data
types-which constraint-based reasoning systems do not
possess, e.g., analysis programs process both single and
multi-valued parameters, such as arrays of loads on a
multi-span beam, while constraint-based systems can
only reason about single valued parameters. There-
fore, we use both conventional and constraint-based
processing of parameters. Our system initially follows
the conventional algorithm using analysis programs to
generate an initial complete design description. How-
ever, in subsequent redesign, only extreme values need
be considered for each parameter, so that constraint-
based reasoning alone can complete the design prob-
lem.

3 Constraint Network Model

A standard constraint-satisfaction problem is charac-
terized by a set of variables or parameters, each of
which has a domain, finite or infinite, of possible val-
ues. To this is added a set of domain constraints and
a set of inter-parameter constraints.

Domain Constraints are unary constraints, c(p),
where c is a function mapping a parameter, p, onto a
particular domain of allowable values. In our model,
these constraints act on the initial and performance
parameters. Intermediate variables do not have unary
constraints and will accept auy value propagated to
them. Two levels of unary constraint exist:

o Unary limitconstraints restrict the parameter to a
multi-value domain within fixed limits, which cannot

0

be adjusted during design. They may be obtained
from a domain expert or textbook, or may be spec-
ified by the user.

Unary value-constraints assign a single numerical
value to each initial parameter, i.e., they further
tighten the limit-constraints so that a single value is
associated with the parameter prior to propagation.
These value-constraints may be supplied either by
the user as part of the design specification, in which
case the limit-constraints ensure that the value is
in the allowable domain, or they may be supplied
by the system, through default or other methods.
System-supplied unary value-constraints may be au-
tomatically adjusted during redesign, whereas user-
supplied constraints are considered as part of the
specification and may not be altered.

Inter-Parameter Constraints are L’n-ary” con-
straints, c(pl, p2 p,), where c is a function relat-
ing parameters pl, p2 pa, n 2 2. These constraints,
representing the laws of statics, geometry, mathemat-
ics, etc., link aJI the parameters/variables in the design
description. They are used to propagate the value-
constraints on the initial parameters, i.e., they force
an “nary” constraint between the initial and perfor-
mance parameters. If the constraints cannot be satis-
fied, adjustments have to be made. This is where the
manner of representation of the inter-parameter con-
straints can have a big influence on the efficiency of
the design. We now describe the treatment of these
constraints.

3.1 Constraint Decomposition

In conventional engineering design methods, global
inter-parameter constraints are represented by behav-
ioral equations contained in the analysis programs
which process the input description and check the re-
sult against performance requirements. This can be re-
garded as applying an “rrary” constraint to the initial
and performance parameters, where n is the number
of parameters involved.

We convert these %ary” constraints into binary
constraint networks for the following reasons:

In conventional methods which use “n-ary” con-
straints as in Figure l(a), specific or generalized de-
pendency relations between initial and performance
parameters must be explicitly stated, e.g., factor x
imposed loading = tensile stress. By linking all pa-
rameters together in a binary network, part of which
is shown in Figure l(c), approximate dependency re-
lations can be worked out by the system.

With a few “nary” constraints linking many param-
eters, as in Figure I(a), if one parameter is adjusted
then a complete re-computation involving all n pa-
rameters, is generally required to determine the ad-
justment necessary for the other parameters. The
“n-ary” constraint gives no information regarding

506 KNOWLEDGE ACQUISITION

(Initial Parameters

a-ary constraints
(representing relations or equations

involving 92 parameters)

(4

(Intermediate variables)

(iF)JeJ
ternary constraint:

prestress force/sction area = axial stress
(represents relation or equation

involving three variables)

w
section

prop ort ion al

x3Y-Y area /
axial

binary constraints
(representing relations between
pairs of variables or parameters)

Figure 1: Constraint Decomposition

individual parameter-to-parameter relations, so that
partial re-adjustment of the design description is not
possible. However, a binary constraint network di-
rectly relates individual parameters, enabling local
adjustments to be carried out and propagated only
to those parameters afFected by a change.

The “nary” constraints as in Figure l(a), are decom-
posed by firstly introducing intermediate variables as
“stepping-stones” in the propagation process, i.e., we
explicitly represent all steps in the evaluation of the
behavioral equations as nodes in the constraint net-
work. This reduces the “n-ary” constraint to simpler
forms, e.g., the ternary constraint shown in Figure
l(b), which processes two variable-values to produce
one new variable-value. Secondly, these simpler con-
straints are then further decomposed into binary con-
straints, or relations between pairs of nodes. After the
first step the constraints still represent equations, as in
Figure l(b), but after the second, we only have one-to-
one relations between nodes as in Figure l(c), and we
can directly transfer an adjustment from one node to
another, without having to consider any more than two
nodes at a time. In our system binary relations sim-
ilar to those shown in Figure l(c), cater for addition,
multiplication, etc., and power operators, as well as
the reverse operators. Certain complications that oc-
cur in the adjustment transfer process are dealt with
in section 4.1.

3.2 System Architecture

An expert system such as the one proposed here will
generally be built on top of existing procedural pre
grams, not the other way around. Therefore, it is nec-
essary to adapt constraint-based ideas to suit the de-
mands of conventional programs. As shown in Figure
2, the architecture consists of a 2-level structure, with
the constraint network set out in the upper, shallow-
knowledge level, and conventional analysis modules lo-
cated in the lower, procedural knowledge level. The
links between nodes in the upper level consist of sim-
plified direct dependency relations, as explained in the
previous section, while those which pass through the
lower level utilize traditional software tools, such as
finite element programs, etc. Unary constraints are
shown acting vertically down on the upper level. This
separation between top and bottom levels reflects the
distinction in conventional engineering terminology be-
tween “design” and %nalysis”. Design concerns initial
decisions, outline data, etc., and uses heuristics or shal-
low knowledge, while analysis concerns precise numeri-
cal values and uses procedural knowledge embedded in
algorithmic programs. User communication and sys-
tem output take place through the upper design level,
which is also used in redesign to carry out propagation
in forward and backward directions. The lower level
analysis modules are used in setting out a full initial
description, and typically link several nodes together,

MURTAGHAND~HIMURA 507

unary
initial intermediate performance

binary constraint network

conventional programs

module initial design propagation: -w--m-&-

Figure 2: System Architecture

i.e., they form “ttiary” constraints, which, for clarity,
we illustrate by dotted-line arrows.

4 Problem-solving Process

4.1 Application of Constraints

A design problem is commenced by the application
of unary constraints. Allowable domains and specific
values are assigned to the initial parameters, and al-
lowable domains are assigned to the performance pa-
rameters. The user specification provides some of
these unary constraints and the remainder are supplied
by the system. This is done either through system-
dependent default values, or through constraint derive
tion, which generalizes standard textbook heuristics
linking certain parameters, e.g., span/depth ratios.

t

For details of the constraint derivation algorithm, see
Murtagh and Shimura, 19891).

The values assigned to the initial parameters are
then propagated using the “n-axy” constraints. This
resembles standard propagation except that in the ini-
tial propagation the lower level algorithmic modules
are used and multiple parameter values are simulta-
neously operated on. A complete description is thus
obtained, and its validity is tested by the performance
parameters. Generally this fist complete description
will be invalid due to conflict between the propagated
constraint values and the allowable domains of the per-
formance parameters, and a redesign phase is automat-
ically commenced.

In the redesign phase, the system first determines
the dependency information necessary for redesign,
i.e., it back-propagates from the critical performance
parameter to determine how much the initial parame-
ters should be adjusted in order to achieve the required
alteration in the critical performance parameter. Thus,

it obviates the need to set out parameter-to-parameter
dependency information, although parameter ordering
[Dixon et al, 19871, specifying which parameter to ad-
just first, is still required.

After the adjustments required in the initial param-
eters have been established, one initial parameter is
selected for adjustment in accordance with the current
redesign strategy. The adjustment is carried out, and
forward propagation through the network updates the
nodes related to the adjusted initial parameter.

While the initial forward propagation can be re-
garded as a global propagation, the redesign phase is
based on local propagation. Local propagation has the
advantage that it is fast because it uses only simple
relationships and deals only with single-valued nodes.
However, it relies on approximate reasoning in back-
propagation, due to the presence of loops or cycles
in the network. Referring to Figure 3(a), in baclc-
propagation where more than one link lead out of the
node N4, the required adjustment in N4 is propagated
to both N2 and N3, an adjustment in either one be-
ing sufficient to produce the required adjustment in
N.#. Where the two paths subsequently lead into a
single node Nl, a cycle or loop occurs. In general,
the two adjustments back-propagated to Nl along the
two paths, will not be the same. In order to combine
the values, we propose an empirically derived approx-
imate equivalence equation, supplemented with a self-
updating heuristic correction factor, F.

proposed
adjustments

x9 Y

executed
adjustment

F x [x x ?//(a: + dl

The heuristic factor, initially set to 1, and updated
after adjustment, is used to speed up the adjustment
process, i.e., it attempts to move immediately to the
top of the current hill. This factor is problem-specific

508 KNOWLEDGE ACQUISITION

(a) Node relations represented (b) Node relations represented
by binary links by operators

(Arrows show direction of forward propagation)

Figure 3: Loop in Binary Constraint Network

Design Parameter Values
paraameter 9aame user specification
no of spans 3
span lengths 10 ?n,18 m, 10 7-n
end fixities cantilever, pinned
dead load 5 kN/m
live load 6 kN/m

computed parameters
initial value final value

concrete strength 35 N/mm’ 40 N/mm’
section width 300 mm 450mm
section depth 650 mm 800 mm
prestress steel

strength 1950 N/mm2 1950 N/mm2
cover to steel t 30 mm 103 mm
balanced load

factor $ 0.4 0.486
tStee1 cover determines max prestress tendon sag.
$Proportion of load balanced by prestress.

Table 1: Design Description for Prestressed Beam

and path-specific. Hence, although it has no usefulness
in the first adjustment, since its value is 1, it performs
better than over-generalized statistical factors and will
enable convergence to be quickly obtained in a subse-
quent adjustment of the same parameter.

In forward propagation, where multiple adjustments
are passed to a single node, they are super-imposed
to give the exact required adjustment. The difference
between forward and backward propagation, while not
obvious from Figure 3(a), can be seen more clearly
in Figure 3(b), which shows the links passing through
operators, which act like ternary constraints.

5 Implementation and Results

The system at present comprises four partially over-
lapping constraint networks, each network joining the
initial parameters with one particular performance pa-
rameter. These networks are written in Prolog, while

the structural analysis modules are in C. The analysis
modules in the current system carry out bending mo
ment and shear computations, prestress system com-
putations, and ultimate strength verification. Table 1
shows the numeric data for the design of a 3-span pre-
stressed concrete beam. The design was carried out us-
ing the constraint network for redesign and also using
conventional techniques, i.e., using the analysis pro-
grams only. The same results were obtained for each
case, since the constraint networks exactly reflect the
processing of the analysis programs. However, the con-
ventional design method necessitated accessing each of
the analysis programs a total of 18 times, while the
constraint-based method only required the use of the
analysis programs once, in the initial design.

6 Comparison with Related Research

Relaxation [Leler, 19881 involves making an initial
guess at the value of an object, estimating the resultant
error, and making new guesses in order to converge on
a rational value. We have adapted this technique to
the demands of engineering design, focusing on how
to represent relations between the objects, and how to
improve the convergence methods.

In [Chan and Paulson, 19871, constraints are used
for determining design descriptions as welI as checking
proposed descriptions for a structural engineering ap-
plication. However, procedures are required for each
intended use of the constraint. We also use constraints
in different ways, but instead of setting out numerous
procedures, we avail of simplified relationships repre-
sented by constraint networks. One of the ways in
which we utilize the constraints, in addition to check-
ing, is in establishing parameter-to-parameter depen-
dency information, using local constraint relationships
together with problem-specific heuristic factors. Thus
we do not need to set out explicit dependency rela-
tionships as in more conventional systems [Dixon et
al, 19871.

In [Mackworth, 19771 consistency algorithms are
proposed for attaching feasible values to variables, and
for filtering infeasible values in constraint networks.

MURTAGHAND~HIMURA 509

Only unary and binary constraints are treated, and
the inter-variable constraints are assumed to be inex-
pensive, unlike those represented by analysis programs
in engineering design. Hence, our research focuses on
the nature of the inter-variable constraints.

In [Dechter and Pearl, 19871, the variable-domains
consist of a finite number of discrete values, en-
abling candidate-ordering and/or elimination to be
used. These techniques cannot be used in engineer-
ing design where the parameters normally have con-
tinuous and therefore infinite domains. However, the
continuous nature of the domain values permits move-
ment from one candidate value to another, using only
information concerning the extent to which the previ-
ous value was unsatisfactory, thug avoiding expensive
re-computation procedures.

7 Conelusion

This system has shown how a constraint-based problem
solver can improve the efficiency of parametric engi-
neering design, by minimizing the use of large analysis
programs and updating only the minimum number of
parameters and variables in redesign. The fundamen-
tal difference between previous work and the present
system is the following: in conventional systems the re-
design process releases all intermediate variables from
their currently assigned values, and after some alter-
ation to the initial parameter(s), re-assigns these vari-
ables using the same methods as before. In our system,
redesign does not release variables from their current
values, but instead automatically adjusts the values of
those variables related to the most critical performance
parameter, by propagation through the constraint net-
work. Forward propagation is exact, depending only
on the binary constraints between the parameters and
variables. Back propagation is generally approximate,
due to loops or cycles in the constraint networks, and
relies on ad hoc procedures. At best this will give exact
accuracy (for single path, or no-loop dependencies) and
good approximations for other multi-path dependen-
cies. At worst, it will rely on the heuristic correction
factor to steer the adjustment in the right course. The
system at present uses a general hill-climbing strategy.
A parametric design system should ideally have a va-
riety of strategies, as shown in [Orelup et al, 19881.
However, this is a separate issue to the one considered
in the present research.

The strategy used in this work is applicable to para-
metric design problems in which basic relationships be-
tween parameters and variables can be obtained from
the behavioral equations, and in which multi-valued
parameters can be rationalized into controlling single
values for reasoning purposes. Although the system
has been tested in only one domain, parametric de-
sign does not differ radically from domain to domain,
so that our strategy has the potential to be applied
generally.

5 10 KNOWLEDGE ACQUISITION

References

[Brown and Breau, 19861 Brown, D.C., Breau, R.,
Types of Constraints in Routine Design Problem-
Solving, in Applications of Artificial Intelligence in
Engineering Problems, Proceedings of the 1st In-
ternational Conference, Southampton U.K., 1986,
Springer-Verlag.

[Chan and Paulson, 19871 Chan, W.T., Paulson, B.C.

[:

1

Jr, Exploratory Design using Constraints, in Arti-
ficial Intelligence in Engineering Design, Analysis
and Manufacturing 1, 1987, pp. 59-71.

Dechter and Pearl, 19871 Dechter, R., Pearl, J., Net-
work Based Heuristics for Constraint-Satisfaction
Problems, in Artificial Intelligence 34, 1987, pp.l-
38.

Dixon et al, 19871 Dixon, J.R., Howe, A., Cohen,
P.R., Simmons, M.K., Dominic I: Progress Toward
Domain Independence in Design by Iterative Re-
design, in Engineering with Computers 2, 1987, pp.
137-145.

[Leler, 19881 Leler, Wm., Constraint Programming
Languages, their Specification and Generation, 1988,
Addison- Wesley Publishing Company.

[Mackworth, 19771 Mackworth, A., Consistency in
Networks of Relations, in Artificial Intelligence 8,
1977, pp. 99-118.

[Montanari, 19741 Montanari, U., Networks of Con-
straints: Fundamental Properties and Applications
to Picture Processing, in Information Sciences 7,
1974, pp. 95-132.

[Mostow, 19851 Mostow, J., Toward Better Models of
the Design Process, in AI Magazine 6, 1985, Spring.

[Murtagh and Shimura, 19891 Murtagh, N., Shimura,
M., A Constraint-Based Hybrid Engineering Design
System, in Proceedings of The Third IFIP WG 5.2
Workshop on Intelligent CAD, 1989, Osaka, Japan,
(to be published by North-Holland).

[Murthy and Addanki, 19871 Murthy, S., Addanki, S.,
PROMPT: An Innovative Design Tool, in Proceed-
ings of AAAI, 1987, pp. 637-642.

[Orelup et al, 19881 Orelup, M-F., Dixon, J.R., Co-
hen, P.R., Simmons, M.K., Dominic II: Meta-Level
Control in Iterative Redesign, in Proceedings of
A A AI, 1988, pp. 25-29.

[Sriram and Maher, 19861 Sriram, D., Maher, M.L.,
The Representation and Use of Constraints in Struc-
tural Design, in Applications of Artificial Intelli-
gence in Engineering Problems, Proceedings of the
1st International Conference, Southampton U.K.,
1986, Springer-Verlag.

[Sussman and Steele, 19801 Sussman, G.J., Steele,
G.L. Jr, Constraints -a Language for Expressing Al-
most Hierarchical Descriptions, in Artificial Intelli-
gence, 14, 1980 pp. l-39.

