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Abstract 
The power of knowledge acquisition systems that em- 
ploy failure-driven learning derives from two main 
sources: an effective global credit assignment process 
that determines when to acquire new knowledge by 
watching an expert’s behavior, and an efficient local 
credit assignment process that determines what new 
knowledge will be created for completing a failed ex- 
planation of an expert’s action. Because an input (e.g., 
observed action) to a failure-driven learning system can 
generate multiple explanations, a learning opportunity 
to extend the incomplete domain theory can go un- 
observed. This paper describes a failure-driven learn- 
ing with a context analysis mechanism as a method to 
constrain explanations and thereby increase the num- 
ber of learning opportunities. Experimentation using a 
synthetic expert system as the observed expert shows 
that the use of context analysis increases the number of 
learning opportunities by about 47%, and increases the 
overall amount of improvement to the expert system by 
around 10%. 

Introduction 
Knowledge acquisition is the major bottleneck in the 
development of expert systems. One promising method 
to overcome this difficulty is exemplified by the Learn- 
ing Apprentice System [Mitchell et al., 19851 and other 
apprenticeship learning programs, which assimilate new 
problem solving knowledge by observing and analyzing 
a human expert’s actions [Kodratoff and Tecuci, 19871 
[Wilkins, 1988a]. 

Apprenticeship learning involves first recognizing a 
failure to interpret an expert’s actions and then acquir- 
ing new knowledge to recover from the failure. The 
detection of a failure can be done either by outside hu- 
man experts or by the apprenticeship learning system 
itself. When outside human experts are used, the hu- 
mans point out the the expert system’s failure and pro- 
vide the apprenticeship learning system with a learning 
opportunity [Mitchell et al., 19851 [Kodratoff and Te- 
cuci, 19871. Hence, in such systems, the global credit as- 
signment as defined in [Dietterich and Buchanan, 19811 
is done by a human and is not addressed in the learning 
process. 

In contrast, when an apprenticeship learning sys- 
tem recognizes a failure by watching a human expert’s 
problem solving steps, it must employ a global credit 
assignment process to determine when to learn. For 
example, the ODYSSEUS apprenticeship learning pro- 
gram [Wilkins, 1988a] for the HERACLES classification 
shell [Clancey, 19871 watches an expert and tries to ex- 
plain the expert’s observed actions. An explanation in 
ODYSSEUS is created by backward chaining the meta- 
level strategy rules. When ODYSSEUS fails to explain 
an action, it assumes that relevant facts are missing 
from its knowledge base. 

Apprenticeship learning systems use diverse means 
to acquire new knowledge from failures [Mitchell et al., 
1985; Kodratoff and Tecuci, 1987; Wilkins, 1988a]. The 
most common approach is to construct an explanation 
of the failure. ODYSSEUS suggests new knowledge 
that can complete a failed meta-rule chain when this 
knowledge is added to the knowledge base. 

Therefore, the power of knowledge acquisition sys- 
tems that employ an apprenticeship learning method 
derives from two main sources: an effective global credit 
assignment process that determines when to acquire 
new knowledge by watching an expert’s behavior, and 
an efficient local credit assignment process that deter- 
mines what new knowledge will be created for complet- 
ing a failed explanation of an expert’s action. 

Because a human’s observed action can be explained 
in many different ways, a learning opportunity can go 
unnoticed. If the learning system does not filter out 
implausible explanations, its performance may be seri- 
ously hampered. In order to profit fully from watching 
an expert, the learning system must be able to reason 
about explanations as well as generate them. 

In this paper we present an effective mechanism to 
avoid masking of learning opportunities by multiple 
explanations in apprenticeship learning system. The 
method reasons about the generated explanations and 
has been demonstrated to improve the performance of 
the learning system. We also offer an efficient method 
to suggest missing knowledge to recover from failures 
through a repair module that employs top-down and 
bottom-up approaches to infer new knowledge. The 
repair program reasons about failures, suggests new 
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knowledge based on induction over solved cases, and 
verifies the suggested knowledge based on the context. 

Explanation Generation 
When a human expert takes an incomprehensible ac- 
tion and fails to do what a learning system expects him 
or her to do, failure driven learning attempts to under- 
stand the action by generating plausible explanations 
of the expert’s behavior. Understanding is a process 
that explains the incomprehensible action in a context- 
sensitive way. Hence, it is important to represent ex- 
planations and contexts declaratively. 

Experts usually employ problem solving strategy 
knowledge that is obtained through experience. There- 
fore, strategy knowledge is an important part of ex- 
plaining an observed action. We implemented the MIN- 
ERVA expert system shell [Park et al., 19891 that uses 
explicit and flexible strategy knowledge. MINERVA 
is a rule-based expert system shell that is a Prolog 
reimplementation and enhancement of HERACLES ex- 
pert system shell [Clancey, 19871. The enhancement 
was guided by experience gained from the ODYSSEUS 
[Wilkins, 1988b] apprenticeship learning program for 
HERACLES. In MINERVA, the representation of the 
meta-level strategy knowledge is more explicit, declar- 
ative, and modular. This strategy knowledge is a Horn 
clause. The following is an example: 

goal(clarify-finding(Finding1)) :- 
new-datum(Findingl), 
not value( Findingl, no), 
clarified-by( Findingl, Finding2), 
not concluded( Finding2), 
goal(findout (Finding2)). 

The head of this clause consists of name and ar- 
gument of this strategy knowledge source. The body 
consists of a sequence of premises followed by a sub- 
goal. A strategy knowledge source is activated only 
by a new change of problem state and invokes a sub- 
goal that changes problem states. When the premises 
of an activated knowledge source are satisfied, the sub- 
goal is inserted into the agenda. MINERVA employs 
explicit schedule knowledge to determine which subgoal 
to perform next. Subgoals are of two types: actions and 
tasks. An action refers to a subgoal that tries to find 
out a symptom. A task refers to a subgoal that invokes 
another task. For example, a subgoal apply-ruZe(RuZe) 
represents a task that fires a domain rule. It triggers a 
sequence of tasks that find the values of antecedents of 
the domain rule, checks if the values satisfy conditions, 
and evaluates the domain rule. The modular represen- 
tation and the opportunistic control of strategy knowl- 
edge source is suitable both for flexible problem solving 
and efficient knowledge acquisition. 

We view an expert’s action as a coproduction of strat- 
egy knowledge, domain knowledge, and problem solv- 
ing state. Finding relevant explanations of an expert’s 
action hinges on the notion of differential modelling, 

whereby the expert’s behavior is compared to the 
pert system’s choices for the same circumstances. 

ex- 

The modular knowledge sources predict all reason- 
able actions that an expert might take based on the new 
problem solving states. The problem solving states can 
be acquired from the expert or by inferring from the 
expert’s problem solving steps. Predicted actions and 
tasks are justified by the explanations that describe why 
those are expected by the expert system. And, we will 
say that apprentice understands an observed action if 
it can construct an explanation of the same expected 
action or the relevant task. 

Failure Detection 

If an apprenticeship learning system fails to generate an 
explanation of an expert’s action, this suggests that the 
knowledge base is missing a piece of information that 
the expert knows. This kind of explanation failure is 
categorized as the expectation failure type. 

While the detection of the expectation failure is im- 
portant, it is also important to be able to recognize 
and learn from situations where explanations are not 
coherent with a problem solving context. When fail- 
ure driven learning encounters a situation where all the 
generated explanations fail to be consistent with the 
problem solving context, it discards them and tries to 
understand the action by finding a new explanation that 
is coherent with the context. This kind of explanation 
failure is categorized as the context failure type. 

For example, suppose a human physician asks a ques- 
tion on headache-duration. Perhaps she wants to clar- 
ify a finding headache, because headache-duration is a 
more specific fact. Or, she might intend to differenti- 
ate two diseases; the symptom of one disease hypothe- 
sis is long headache-duration and the other has short 
duration. Hence, a learning system cannot identify 
which explanation is a plausible intention of the ques- 
tion without using a bias. However, if the physician 
asked many questions on the detailed facts of headache 
just before, her intention is more likely to be clarifica- 
tion of headache. In contrast, if she asked questions 
on both diseases, she is probably trying to differentiate 
between the hypotheses. We need meta level reasoning 
about generated explanations to judge the quality of 
these multiple explanations. 

Our model of knowledge acquisition includes the de- 
tection of both types of failures and the generation of 
explanations for the failures (see Figure 1). The global 
and local credit assignment processes are guided by rea- 
soning about strategy knowledge and context analysis. 

The scope of this work is limited by the assumption 
that the strategy knowledge of the expert system is 
complete, consistent, and correct. Thus, when a dis- 
crepancy arises between what the learning system ex- 
pects and what the human expert apparently does, the 
learning system is justified in assuming that strategy 
knowledge is right and domain knowledge is wrong. 

5 12 KNOWLEDGE ACQUISITION 



constraints 

Figure 1: A knowledge acquisition cycle 

Using expectations to generate 
explanations ZJ 

We use an expect-explain method to understand ob- 
served actions (see Figure 1). As the learning program 
watches the human expert’s actions, it builds a prob- 
lem solving model which contains all the given facts, 
derived facts, and hypotheses. Whenever the learning 
program observes an action, it updates the problem 
solving model and predicts the next possible actions 
based on the problem solving model and its strategic 
knowledge (see section ). 

Expectation failure detection 

In order for the learning system to explain an ex- 
pert’s action, it tries to connect the action to one of 
its expected actions. If the observed action is one of 
those predicted, then the learning system understands 
the action. The justification of the expected action is a 
candidate explanation for the expert’s action. 

An observed action may be related to an expected 
task. Suppose the system expects a task that executes 
a domain rule. If an observed action is one of the an- 
tecedents of the domain rule, the explainer assumes the 
task’s explanation as a candidate explanation of the 
observed action. In order to find the path between the 
observed action and the task, the learning program runs 
meta rules backward. A declarative and explicit repre- 
sentation of meta rules makes it easy for the learning 
program to run the system backward. 

When the learning system fails to find a candidate 
explanation for the observed action, this suggests that 
the knowledge base is missing the piece of information 
that prompted the expert to take the observed action. 
This expectation failure triggers the repair module to 
refine the incomplete knowledge base by finding missing 
knowledge that will allow a coherent explanation of the 
expert’s actions. 

Context analysis 
An explanation is relevant to an observed action if it 
coheres with the problem solving context as well as ad- 
dresses the action. To understand an action by finding 
an explanation, it is important to recognize whether an 
explanation is relevant to the context as well as the ob- 
served action. Even if a single goal may prompt the 
human expert to ask a question, when we try to find 
reverse mappings from the question to possible expla- 
nations, there will be many possible answers. To single 
out the correct explanation among them requires rea- 
soning about the context where the action is taken. 

In general, experts tend to take an action which is co- 
herent with their problem solving context. For example, 
physicians usually ask follow-up questions on current 
hypotheses or symptoms. When human apprentices en- 
counter difficulties to understand an expert’s actions, 
they have an urge to find an explanation based on the 
human expert’s problem solving context. 

Constrain context failure 

The learning program observes a human expert’s ac- 
tion one at a time and generates a set of explanations 
of the action. An explanation consists of a strategy 
knowledge source name, such as clarify-finding, and a 
focus of attention such as headache (see a knowledge 
source example in section ). 

The context analysis program maps an observed ac- 
tion on the explanation plane (see Figure 2). The ex- 
planation plane has two axes. The strategy axis rep- 
resents all the predefined strategy knowledge sources. 
The focus axis represents human expert’s actions, de- 
rived facts, and hypotheses. An explanation on this 
plane has a pointer to a set of actions that are explained 
by the explanation. The context analysis program also 
keeps track of observed actions until a context failure 
occurs. 

Figure 2: A context transition guided by a goal transi- 
tion network 

Since an action can have multiple explanations, the 
mapping may be one-to-one or one-to-many. An expla- 
nation on the explanation plane becomes a sub-context 
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that explains a subset of observed actions. When the 
context analysis program inputs the set of explanations 
of the first action, it creates as many sub-contexts as ex- 
planations in the set. As the context analysis program 
inputs a succession of explanation sets, it creates many 
sub-contexts that explain a subset of observed actions. 
Since the context analysis program keeps track of ob- 
served actions, it can find a sub-context that explains 
all the actions. Such a sub-context is considered as the 
context of the observed actions. 

However, this simple method to build a context may 
produce many redundant context failures even if the 
human expert changes his or her goal slightly. It is nec- 
essary for the context analysis program to understand 
such change and not to consider it as a context failure. 
We use a goal transition network to identify a natural 
goal transition from a context failure (see Figure 2). 

There are at least three factors which can be jus- 
tified as rational bases for people to make causal de- 
scriptions: contiguity, similarity, and statistical [An- 
derson, 19871. Our context analysis program currently 
considers contiguity and similarity factors to constrain 
redundant context failures. By the similarity factor 
we mean similar contexts. Contexts are similar if 
their strategy axes are the same and their focus axes 
can be grouped by a known relation. For example, 
suppose context-i and context-:! consist of (clar- 
ify-finding, surgery) and (clarify$nding, neurosurgery), 
respectively. Since surgery and neurisurgery is defined 
by a relation more-specific, a transition from context-i 
to context-2 is considered as a natural one. This tran- 
sition describes a human expert’s natural stream of di- 
agnosis that attempts to find out more detailed facts 
progressively. 

By the contiguity factor we mean contiguous tran- 
sition. A transition from context-1 to context-2 is 
contiguous if their focus axes are the same and the tran- 
sition between strategy is declared to be plausible. For 
example, (cZarifyJCzding, X) and (process-finding, X) 
’ are different contexts. When a human expert starts 
to ask a question that is explained by (process-finding, 
X), after he or she asked questions related to (clar- 
&finding, X), the observed action can not be explained 
by the current context (clarify-finding, X). Hence, the 
simple context analysis program considers the explana- 
tion (process-finding, X) as a context failure and tries to 
repair the failure. However, the transition from (czar- 
ify_finding, X) to (process-finding, X) is a stream of 
the diagnostic reasoning sequence. This transition de- 
scribes a human expert’s reasoning approach that pre- 
dicts hypotheses related to a symptom after he or she 
find out more detailed facts of the symptom. 

A transition on the goal transition network plane rep- 
resents such allowable transitions to guide context tran- 
sitions. In the current system, the goal transition net- 
work is explicitly hand-coded. 

‘The first seeks more specific information 
applies domain rules related to X. 

and the second 

In Figure 2, action1 and action2 are described by a 
context {sl,fl}. B ecause no transitions are known from 
{s2,f2} to {s3,f2} and {sl, fl} to {sS,f2) in the goal 
transition network, only {sl,fl) becomes the context 
when action2 is observed. Then, the context analy- 
sis program projects explanations of action3 for con- 
text {sl,fl). If the context {sl,fl) were unable to cover 
any explanation of action3, the transition model would 
guide the induction program in considering the transi- 
tion from {sl,fl) to {s,d,fl) as a natural one. 

Suppose projected explanations of an action-n are 
too far from the current context on the explanation 
plane and no paths in the goal transition model can 
explain them. Then the context analysis program con- 
siders two possible cases: the expert may have changed 
his or her goal or the system may be missing a piece 
of information. When the context analysis program 
encounters such a situation where no explanation co- 
heres with the context, it saves the current context, 
restarts the context analysis by posting sub-contexts of 
action-n, and waits to see the next actions. If some of 
the sub-contexts explain subsequent actions, the con- 
text analysis program assumes the expert changed his 
or her goal. However, if the subsequent actions are ex- 
plained by the saved context instead of the sub-contexts 
of action-n, the explanations of action-n are not co- 
herent with the expert’s problem solving behavior. The 
context analysis program recognizes the explanations of 
the action-n as a context failure. If a failure driven 
learning system does not employ this context analysis, 
multiple explanations may mask a learning opportunity 
in this situation. 

Failure Recovery and Constraints 
When the global credit assignment program encounters 
an explanation failure, it triggers a repair module. The 
repair module employs top-down and bottom-up ap- 
proaches to infer new knowledge. While the top-down 
interpretation fires a set of knowledge sources to predict 
actions and tasks, the bottom-up interpretation accepts 
observed actions and finds tasks related to the actions 
by running the meta rules backward. 

We employ a combined method (see Figure 1) that 
first runs meta rules backwards [Wilkins, 1988b] and 
then runs strategy knowledge sources forward. Both 
searches will suggest plausible paths which connect the 
observed action and the strategy knowledge sources, 
and also post constraints to predicates in the paths. 
These constraints and the use of the meta-level strategy 
knowledge enable the repair module to reduce search 
space. 

Construction 
constraints 

of explanation and 

When the learning system detects expectation failures 
and context failures, it invokes a bottom-up repair mod- 
ule that drives meta rules backward from an observed 
action to tasks (see Figure 1). Since in medical di- 
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n I Learning II Method-l II Method-2 
Disease opportu- expectatron multrple expectation context multiple 

nities failure masking failure failure masking 
Bacterial Meningitis 40 11 29 11 8 21 
Brain Abscess 3 0 3 0 1 2 
Cluster Headache 16 16 0 16 0 0 
Fungal Meningitis 0 0 0 0 0 0 
Migraine 5 0 5 0 2 3 
Myco-TB Meningitis 6 6 0 6 0 0 
Primary Brain Tumor 1 0 1 0 1 0 
Subarach Hemorrhage 34 18 16 18 13 3 
Tension Headache 3 0 3 0 3 0 
Viral Meningitis 26 15 11 15 3 8 
Totals 134 66 I 68 II 66 , 31 , 37 -L 

Table 1: Comparison of failure detection with and without context analysis. Method-Z and Method-l represent the 
failure detection method with and without context analysis, respectively. 

agnosis, the backward search may suffer from combi- 
natorial explosion, the bottom-up repair module runs 
the meta rules backward from an observed action to 
tasks that are used as subgoals of strategy knowledge 
sources. Hence the backward search is not deep and 
the number of paths from the action to tasks is small 
The bottom-up repair module generates constraints of 
the tasks as well as finds tasks that are related to the 
observed action. For example, suppose the human ex- 
pert asks about seizures and the learning system fails to 
find explanations of the action. The bottom-up module 
runs meta-rules backward from the observed action to 
a task such as apply-ruZe(domain-rulel) and the con- 
straint that domain-rule1 must have seizures in the an- 
tecedent. The tasks and constraints of the argument 
generated by the bottom-up module are used to deter- 
mine the subgoals of strategy knowledge sources. 

The top-down repair module is run after the bottom- 
up module and determines the heads of strategy knowl- 
edge sources based on the context and sub-contexts. 
This assumes the human expert diagnoses a case in a 
context sensitive way. The top-down module instanti- 
ates a set of strategy knowledge sources using subgoals, 
constraints, and instantiated heads generated both re- 
pair modules. A strategy knowledge source in MIN- 
ERVA is designed to be instantiated by the bindings 
of head and subgoal. Suppose the current context 
is (explore-hypothesis, primary-brain-tumor), then the 
top-down repair module instantiates explore-hypothesis 
strategy knowledge source and adds a constraint that 
domain-rule1 must conclude primary-brain-tumor. In 
this example, domain-rule1 has one antecedent seizures 
and must conclude primary-brain-tumor. 

The constraints are used to remove an instanti- 
ated knowledge source from the candidate explana- 
tions of the unexplained action. The top-down repair 
module first removes an instantiate knowledge source 
whose constraints of a premise are contradictory.2 Sup- 

2MINERVA uses a maintenance system to maintain the 
dependency structure of facts and hypotheses. 

pose an instantiated knowledge source has a con- 
straint that domain-rule1 must have an antecedent 
vaZue(headache,yes). However, if the patient is known 
not to have a headache, the knowledge source contains 
a contradictory condition and is removed from the can- 
didate set. 

If a premise of an instantiated knowledge source is 
not contradictory and fails to be satisfied, it may be 
the missing knowledge that is responsible for the failed 
explanation. Suppose there is no rule that has the de- 
sired symptom in the antecedent and the desired dis- 
ease in the consequent; this means the knowledge base 
is missing the domain rule. The repair module identifies 
that a domain rule is missing and induces the domain 
rule which has the desired disease in the consequent 
and has the symptom in the antecedent, using the case 
library. Moreover, the repair module produces new do- 
main rules which have more specific antecedents and 
also conclude the disease. If this domain rule generates 
a coherent explanation and its belief value calculated 
by Pearl’s method [Pearl, 19861 over a library of 112 
solved cases exceeds the threshold, it will be added to 
the knowledge base. 

Experimental Results 
We have completed two experiments using the knowl- 
edge refinement method described in this paper. The 
first experiment tests the performance of the failure de- 
tection program. The second experiment tests the re- 
pair module which generates new domain knowledge 
based on the failure, and also tests the diagnostic ac- 
curacy of the MINERVA expert system shell [Park et 
al., 19891 after learning has taken place. We used a col- 
lection of 112 solved medical cases that were obtained 
from records at Stanford Medical Hospital. 

The synthetic agent method [Wilkins, 1988a] was 
used in experiments: MINERVA with complete domain 
knowledge is used as a synthetic agent. We created ten 
incomplete knowledge bases. An incomplete knowledge 
base is missing all the domain rules which conclude a 
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Disease 
Bacterial Meningitis 
Brain Abscess 
Cluster Headache 
Fungal Meningitis 
Migraine 
Myco-TB Meningitis 
Primary Brain Tumor 
Subarach Hemorrhage 
Tension Headache 
Viral Meningitis 
All diseases 

Incomplete 
KB 

Perf.1 
50 
54 
55 
53 
57 
57 
60 
53 
53 
60 

Refined 
KB 

Perf.2 Yerf.3 
59 61 
54 57 
58 58 
53 53 
57 58 
61 61 
60 77 
59 60 
53 60 
62 67 
64 75 

Table 2: The performance of MINERVA after failure 
driven learning and context analysis. Each experiment 
is done over a library of 112 solved medical cases. 

specific disease (see Table 1). In Table 1, learning op- 
portunity means that a missing rule is a part of the syn- 
thetic agent’s explanation. MuEtipZe masking represents 
a case where multiple explanations mask an explana- 
tion failure. When the failure detection method with- 
out context analysis is applied, it can detect 66 out of 
134 missing domain rule applications (49.2% accuracy). 
When the failure detection method with context anal- 
ysis is used, it can detect 97 out of 134 missing domain 
rule applications (72.4%accuracy). Hence, the proposed 
method increased the number of learning opportunities 
by 47%. 

In Table 2, under performance 1 column, the per- 
formance of MINERVA with missing knowledge is re- 
ported. Each experiment is done over a library of 112 
solved cases with an incomplete knowledge base that is 
missing all the rules that conclude one designated dis- 
ease. Under performance 2 column, the improved per- 
formance after failure driven learning without context 
analysis is presented. Each incomplete knowledge base 
is refined by the failure driven learning method. And 
each improved knowledge base is used to diagnose the 
112 case library. Under performance 3 column, further 
improved performance after failure driven learning and 
context analysis is reported. After the system learns 
new knowledge for each disease, it adds all the knowl- 
edge to the existing knowledge base. The results of 
experiments with these new knowledge bases are shown 
in the last rows of performance 2 and performance 3 
columns. 

Conclusion 
We have presented an effective and efficient knowledge 
acquisition method that employs failure driven learning. 
The failure detection process has been demonstrated 
to pinpoint the context failure as well as the expecta- 
tion failure. It enables the learning program to avoid 
masking of learning opportunities due to the existence 
of multiple explanations, thereby improving the perfor- 
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mance of the knowledge acquisition process. Our failure 
repair approach generates explanations and constraints 
using a bottom-up search followed by a top-down in- 
stantiation. A subject for future work is to develop a 
method which can reduce the number of redundant con- 
text changes by building a more robust goal transition 
model. 
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