
A Design Based Approach to Constructing Computational Solutions to Diagnostic Problems 

D. Volovik & I. A. Zualkernan 
Department of Computer Science 

University of Minnesota, Minneapolis, Minnesota USA 

P. E. Johnson 
Department of Information & Decision Sciences 

University of Minnesota, Minneapolis, Minnesota USA 

C. E. Matthews 
IBM Application Business Systems, Rochester, Minnesota USA 

Abstract 
Troubleshooting problems in real manufacturing 

environments impose constraints on admissible solutions 
that make the computational solutions offered by 
“troubleshooting from first principles” and the conventional 
experience based expert systems approaches infeasible. 
In this paper we present a computational theory for a 
solution to these problems that is based on the Principle of 
Locality and exploits the domain specific weak methods of 
troubleshooters and debugging knowledge of the 
designers. The computational theory is evaluated by 
generating focus of attention heuristics for a moderately 
complex digital device. 

1. Computational Problem 

We are interested in finding computational 
solutions to diagnostic problems as they occur in real 
manufacturing environments [Johnson 891. This 
class of problems introduces two constraints on any 
computational solution: 1) the devices are large and 
complex, which precludes any solution that relies on 
a complete simulation or on enumeration of the 
various fault propagation paths through one or more 
abstractions of the device (e.g., [Genesereth 84],[de 
Kleer 871, [Reiter 871) and 2) the life-cycle of these 
devices is short, which makes any solution (e.g., 
[Freiling 851) that relies on trouble-shooting 
knowledge specific to a particular device unfeasible. 

The first constraint suggests that any 
computational solution to this class of problems 
should have a uniform mechanism for handling the 
order of complexity of these devices. The second 
constraint precludes the use of any troubleshooting 
knowledge that is compiled for a specific device as 
an adaptation to the task of troubleshooting that 
device. 

2. Computational Theory 

The task of troubleshooting complex large-scale 
devices can be viewed as a two step process: 1) 
Determine an appropriate search space in which the 
fault is “local” [Davis 841 and 2) Apply weak- 
troubleshooting methods on this space to locate the 
fault. A search space is defined by a specification of 

appropriate ‘pathways of interactions” that are 
exploited by a weak troubleshooting method. 

Although the definition of our computational 
problem precludes the use of device-specific 
troubleshooting knowledge, device-independent 
but domain-specific troubleshooting methods [Reed 
881 developed by troubleshooters can be a valid 
component of a computational solution. However, a 
solution that relies solely on these methods, given 
the constraints of the computational problem is not 
adequate. There are two difficulties with such a 
solution: 

1) Domain specific weak methods are used by 
troubleshooters only when the device specific 
heuristics fail; this means that the best performance 
one can expect from a solution that relies solely on 
these methods would be that of a troubleshooter’s 
performance on a new device. 

2) The locus of search spaces that can be used by 
troubleshooters is restricted by device 
representations available in their task environment. 
The representations of a device available to 
troubleshooters in real manufacturing environments, 
however, often consist of just the physical device 
itself (which leads to the used of a search space 
based on physical pathways of interaction) and at 
most one other level of abstraction (such as 
schematic for digital designs). This means that any 
solution that relies solely on weak-methods of 
troubleshooting will have the restriction that it can 
only work for faults that are ‘local’ in search spaces 
that can be derived from these representations. A 
large class of interesting faults are not ‘local’ in a 
search space derived from the physical 
representation of a device [Davis 841. 

Another source of knowledge that is admitted by 
the definition of the computational problem is that of 
designers conducting the task of debugging, which 
though different from troubleshooting, has 
components that are similar to the troubleshooting 
task. Designer’s task environment has a rich variety 
of representations of the device. In any design 
process, these consist of various by-products of the 
design. For example, in the case of digital hardware 

VOLOVIK ET AL. 5 17 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



design, the designers may use requirements, 
functional specifications and block level descriptions 
in addition to the schematics and the physical 
representation of a device. 

Our solution to the computational problem 
described above is to exploit the knowledge of how 
designers debug designs in addition to the device- 
independent methods and search spaces of the 
troubleshooters. This solution has the advantage 
that it can detect faults that are not only ‘local’ in the 
search spaces of troubleshooters, but ones that are 
‘local’ in the various spaces that result from the 
combination of the search spaces used by designers 
for debugging a class of devices. 

This solution is based on a computational theory 
that can be stated as follows: 

1) The task of troubleshooting is to determine the 
appropriate search space in which a fault is local and 
then apply domain dependent weak troubleshooting 
method to the search space until the fault is found. 

2) The source for domain dependent weak 
troubleshooting methods is the task of 
troubleshooting in the domain. 

3) The source for appropriate search spaces is task 
of debugging by designers in the domain during the 
design phase. 

The construction of a computational solution 
based on the computational theory consist of the 
following steps: 

1) Determine weak trouble-shooting methods 
used by troubleshooters in a domain. 

2) Determine search spaces used by designers in 
debugging designs in the domain 

3) Use the “principle of locality” as an 
organizational principle to construct a solution that 
applies weak troubleshooting methods of 
troubleshooters to search space used by the 
designers. 

3. Experimental Validation of the 
Computational Theory 

To asses the validity of the computational theory 
described above, we chose the domain of small card 
digital design. This is an appropriate domain under 
the definition of the computational problem as the 
small card designs are fairly complex devices (- 1 O2 - 
103 components at the schematic level) and the life- 
cycles of these cards are short; typical life is w 2 
years. 

3.1 Constructing a Computational 
Solution for Digital Devices 

Previous work don& in the domain of 
troubleshooting digital devices indicates that 
troubleshooters use a variety of domain specific 
weak troubleshooting methods [Reed 891. As a first 
test of the computational theory, we concentrate on 

a method called initial focus of attention method. 
This is a method that troubleshooters use to initially 
focus on a sub-set of the device, given certain 
symptoms. The symptoms in the case of digital 
design typically consist of test failures on a specific 
device. 

As a first step in the validation process, a designer 
(with 10 years of experience with constructing small 
card digital designs) was asked to construct a design 
for an Interrupt Control Coprocessor with the 
following features: 

l One level prioritized Interrupts 
0 Subroutine handling capabilities 
e LIFO stack for return address storage 
a Interrupt masking by software and hardware 
0 Stack full flag 

The resulting device consisted of 254 
components (LSl’s and gates) with approximately 
104 signals. In addition to the designing the device, 
the designer was also asked to write tests (see 
endnote #I) for the device (a normal part of the 
design process). The designer was asked to think 
aloud as he conducted the design and these 
comments (verbal protocols) were tape-recorded 
along with the various by-products generated by the 
designer as he constructed the design. 

An analysis of the verbal protocols during the 
process of debugging design indicated that the 
designer used the search space schema for initial 
focus of attention shown in Figure 1. 

This space is based on pathways of interaction that 
go across the various representations of design 
available to the designers (e.g., functional 
specifications, workbook level design and tests). 

Given the nature of the search space used by the 
designers and the domain specific weak 
troubleshooting methods of troubleshooters, the 
principle of locality was used to construct a 
computational model that used “path following” weak 
method on the search space. 

To apply the principle of locality we identify the 
types of faults that are local in component spaces of 
the search space. For example, in the space defined 
by test specifications, immediately obvious faults are 
patterns of test failures. These failures are detected 
in the space through observations of test outcomes 
generated by the testing equipment. Interactions of 
tests and specifications establish pathways of 
interaction between these two spaces. If pathways of 
interaction map local faults in one space (e.g. 
specification faults) into local faults in another space 
(e.g. test failures), propagating the faults from one 
space into another along the pathway is desirable. 
This allows detection of specification failures in a 
specification space by observing test failures in the 
test space. 

5 18 KNOWLEDGE ACQUISITION 



Functional 

Figure 1. Search Space Schema for Focus of Attention 

Similarly, failures of modules in workbook-level 
specification space are detectable through pathways 
of interaction between functional specifications and 
workbook-level modules. Single-stepping from 
failing tests to failing specifications to failing modules 
is an example of a weak search method for traversing 
along the pathways of interaction. 

When local faults in one space cannot be mapped 
along pathways of interaction into local faults in 
another space, different pathways of interaction are 
required for successful diagnosis. The suitable 
pathway should preserve the locality of faults. 

An instance of search space schema for focus of 
attention method for the interrupt controller (see 
Figure 2) demonstrates how the principle of locality is 
used to identify appropriate pathways of interaction. 
For example, test T3 verifies specifications C and E 
and test T8 verifies specifications A and C. 
Specification C is implemented by module c, 
specification E by modules dand e, and specification 
A by module a. If tests T3 and T8 both fail at the same 
time, specifications C and/or E are failing at the same 
time as specifications A and/or C are failing. 
Assuming singular faults and disjoint modules, one 
of modules c or d or e is failing at the same time as 
one of the modules a or c is failing. Thus, module c is 
failing and specification C is failing. 

On the other hand, test T7 verifies specification B 
which is implemented by module 6. If both T7 and T3 
fail, b is failing at the same time as c or dor e is failing, 
which is not possible under the assumptions 
(singular faults and disjoint modules). Fault locality is 
not preserved along the pathways. 

Different pathways of interaction that map test 
spaces into workbook-level spaces can be 
constructed by identifying signals (on which tests 

fail) with modules that generate these signals. In 
workbook-level spaces, for example, failure of tests 
T7 or T3 can be due to any of the signals I, rd, halt, 
stf, mask, SEQ, pendO or SAVfailing. In test spaces, 
T7 failure is detected on rd and T3 on halt. In 
workbook-level spaces rd is generated by dor e and 
ha/t is generated by d or e, thus either d or e, for 
example, is faulty. 

An application of the path following method to the 
above search space results in a computational 
solution that is based on the following heuristics: 

(i) Start with a set of failing tests. 
(ii) Use interactions of tests and functional 

specifications to propose a set of failing high level 
functional specifications, given a set of failing tests. 

(iii) Use interactions of specifications via 
aggregation and decomposition to propose a set of 
failing low-level functional specifications. 

(iv) Use an interaction across representations of 
low-level functional specifications and high-level 
workbook modules to propose a set of failing high- 
level workbook modules. 

and 

(i) Start with a set of failing tests. 
(ii) Use the mapping between interactions of tests 

and functional specifications they check, and among 
modules via signals/busses to -propose a set of 
failing high-level workbook modules, given a set of 
failing tests. 

VOLOVIK ET AL. 5 19 



Signals/ 
Buses 

Tests Specs Modules Modules 

Figure 2: Instance of Search Space Schema for Focus of Attention 
The above heuristics can be implemented by the 

following two rules: 

IF 
a substantial number of tests fail and a 
substantial number of test failures are 
caused by a variety of different test signals 
THEN 
among all the test that fail and that point to a 
possible failure of a set of functional units (areas) 
on the board, chose an area or areas that the 
majority of tests point to 
ACTION 
the areas most tests point to are likely to contain 
a fault. 

IF 
a substantial number of tests fail and a 
substantial number of test failures are caused by 
a small number of different test signals 
THEN 
among all the functional units or areas on the 
board that generate this small set of failing 
signals, chose the area that generates the most 
such failing signals 
ACTION 
the areas that generate the most failing signals 
are likely to contain the fault and the signals are 
good starting test points 

Although in this paper we discuss only the initial 
focus of attention method, the corresponding 
search spaces for other domain dependent weak 
troubleshooting methods is given in Appendix A. 

3.2 Evaluation of the Computational 
Solution 

The validation of the computational solution was 
carried out as summarized in Figure 3. 

A simulation model of the board as designed by 
the designers was constructed using a commercially 
available simulation environment running on IBM- 
PS/2 Model 70. A variety of faults such as bridge- 
faults, stuck-at faults and general component failure 
were introduced in the simulation. Bridge faults arise 
from shorts (see [Davis 841 for a description). The 
stuck-at faults consist of input or output of a 
component held to a constant value. Component 
failures were simulated by either eliminating the 
component or substituting one component for 
another. For example, a failed NOT gate behaves like 
a wire. 

For each fault introduced, tests created by the 
designer were run on the simulation to produce test 
results for that fault. Test results for each fault were 
used as the input to the computational solution that 
generated the predictions about the area on the 
board where the fault exists (focus of attention). 

520 KNOWLEDGE ACQUISITION 



Apply initial 
focus of 
attention 

(test results 
as inputs) 

Repeat the process for several possible faults in 
the design for preselected common types of faults 

Figure 3. Process used to Evaluate the Computational Solution 

3.3 Results 
The results from testing the computational SOiUtiOn 

were evaluated by using the following two criteria: 

Effectiveness = Number of Correct/v Predicted Faults 

Total Number of Faults introduced 

Power = Number of Components in the Predicted Sub-set 

Total Number of Components 

Table 1. gives the distribution of the various types 
of faults introduced on the board. 

4. Conclusions 

Of the 27 faults introduced, the Overall We are attempting to construct solutions to an 

effectiveness was 77.8 %. The effectiveness interesting class of computational problems that 

measure of computational solution demonstrates 
impose unique constraints on an admissible 

that generated troubleshooting heuristics correctly solution. ln this paper we have proposed a 

predict a functional area on the board where the fault 
computational theory that exploits designer’s 

is located for 77.8% of all faults that were introduced. 
knowledge obtained from the process of designing a 

The power of the focus of attention method is 
device, and combines it with domain specific weak- 

given in Table 2. 
troubleshooting methods by using the principle of 
locality as the organizational principle. We have also 

The reduction in search space measure from Table 
2. demonstrates that the focus of attention method 

presented results on the feasibility of the 

(on average) reduces the search area on the board 
computational theory by applying it to the process of 
designing digital devices to generate focus of 

where the fault is located to 27.9% of all the 
components (area) of the board. Comparing the 

attentions heuristics. The initial results, although 

best, worst and average cases in Table 2 
limited, seem promising. We are in the process of 
extending the approach to incorporate additional 

demonstrates that computational solution might be weak methods. 
imprecise, reducing the search by only to 70.5%, or 
very accurate, reducing the search to 8.8% of all 
components. 

Fault Type Number of Faults Number of Faults Caught 
Introduced 

Table 1. Distribution of Faults Introduced to the Simulation Model 

Table 2. Power of Focus of Attention Method Q 

VOLOVIK ET AL. 521 



Bibliography 

[Davis 841 R. Davis, “Diagnostic Reasoning Based 
on Structure and Behavior,” Artificial Intelligence, 
No. 24, Volumes 1-3, 1984, pp. 347-410. 

[Freiling 851 M. Freiling, J. Alexander, S. Messick, 
S. Rehfuss, and S. Shulman, “Starting a Knowledge 
Engineering Project: A Step-by-step Approach,” 
The Al Magazine, No. 6, Vol. 3, 1985, pp. 150-l 64. 

[Genesereth 841 M. R. Genesereth, “The Use of 
Design Descriptions in Automated Diagnosis,” 
Artificial Intelligence, No. 24, 1984, pp. 41 l-436. 

[Johnson 891 P. E. Johnson, D. Volovik, I. A. 
Zualkernan and C. E. Matthews, “Design Knowledge 
for Discovering Troubleshooting Heuristics,” in 
Proceedings of IASTED Symposium on Expert 
Systems Theory and Applications, June 26-28, 
1989, Zurich, pp. 17-21. 

[de Kleer 871 J. de Kleer and B. C. Williams, 
“Diagnosing Multiple Faults,” Artificial Intelligence, 
No. 32, 1987, pp. 97-130. 

]Reed 881 N. E. Reed, E. R. Stuck, and J. B. 
Moen, “Specialized Strategies: An Alternative to 
First Principles in Diagnostic Problem Solving,” 
Proceedings of the Seventh National Conference 
on Artificial Intelligence, Vol. 1, August 1988, pp. 
364-368. 

[Reiter 871 R. Reiter, “A Theory of Diagnosis from 
First Principles,” Artificial Intelligence, No. 32, 1987, 
pp. 57-95. 

Endnote #I. 
The typical tests written by designers are used 

by designers for validation and hence are not 
sufficient for troubleshooting as they only check 
top level functional specifications. 

Appendix A 

I interaction to track interfaces on the schematic 

t a remote point along 

b-system functional level 

522 KNOWLEDGE ACQUISITION 


