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Abstract 
C~vscsl theories are default theories which explicitly 
accommodate a distinction between ‘explained’ and 
‘unexplained’ propositions. This is accomplished by 
means of an operator ‘C’ in the language for which 
propositions a! are assumed explained when literals of 
the form Car hold. The behavior of causal theories is 
determined by a preference relation on models based 
on the minimization of unexplained abnormality. We 
show that causal networks, general logic programs and 
theories for reasoning about change can be all naturally 
expressed as causal theories. We also develop a proof- 
theory for causal theories and discuss how they relate 
to autoepistemic theories, prioritized circumscription, 
and Pearl’s C-E calculus. 

Introduction 
Preferential entailment has emerged as a powerful 
means for specifying non-monotonic behavior. An or- 
der on interpretations determines the preferred models 
of a given theory, and those models determine in turn 
the propositions that the theory non-monotonically en- 
tails. Shoham [1988], who most clearly articulated the 
framework, used a preference order on interpretations 
to specify the behavior of temporal theories dealing 
with change. Similar proposals have been advanced 
for logic programs with negation [Przymusinski, 19871 
and defeasible inheritance hierarchies [Krishnaprasad 
et QZ., 19891 among others. 

In all these proposals, the preference order adopted 
is tailored to the particular task or domain addressed. 
Still, the appeal of preferential entailment as a uni- 
fying framework for non-monotonic inference could be 
enhanced if a general domain-independent criterion for 
inferring preferences from theories could be developed. 
A general proof-theory, for instance, if available, could 
then be imported by any individual domain as well. 
Similarly, the resulting framework would subsume the 
expressive power of individual domains, enabling a user 
to express, say, theories which combine patterns of in- 
ference characteristic of theories for reasoning about 
change with those of general logic programs. 

An attempt in this direction was recently reported 
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in [Geffner, 1989b], where it was shown that non- 
monotonic inference in several domains of interest in 
AI could be understood in terms of a model pref- 
erence criterion based on the minimization of unex- 
plained abnormality. ‘Explanations’ were defined as 
logical derivations constrained by the fomt of the for- 
mulas in the knowledge base. A formula lp j q, for 
example, was assumed to permit an explanation of q 
in terms of an assumption lp, but to exclude an expla- 
nation of p in terms of an assumption lq. Thus, the 
different semantics associated with two logically equiv- 
alent logic programs q +- lp and p t lq, for instance, 
could be accounted for. 

In this paper we pursue the same goal and intuition 
as in [Geffner, 1989131 but proceed with a different for- 
malization. Rather than appealing to the syntactic 
form of the rules in the knowledge base to distinguish 
between logically equivalent theories, we appeal to a 
richer language. Such a language includes a new op- 
erator ‘C’ for which propositions ar are assumed ex- 
plained when literals of the form Co hold. Default 
theories over the new language are called cszssal the- 
ories. As we will show, not only causal theories do 
abide by the principle that equal models imply equal 
behavior, but they also provide a significant additional 
expressive power. Causal networks, general logic pro- 
grams and theories about change can be all naturally 
expressed as causal theories. Moreover causal thee- 
ries lend themselves to a simple sound and complete 
proof-theory. 

Causal Theories 
A causal theory is a default theory augmented with a 
‘causal’ operator ‘C.’ Default theories are essentially 
what McCarthy’s [1986] refers to as “abnormality” the- 
ories: classical first order theories in which certain lit- 
erals, abnormalities (resp. assumptions), are expected 
to be false (resp. true). ’ The language of causal theo- 
ries is closed under all standard connectives, while ex- 

‘Note that unlike McCarthy, we will be concerned with 
abnormality liter& as opposed to abnormal indiuiduals. 
The trade-offs involved in that choice are discussed in 
[Geffner, 1989a, section 4.31. 
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eluding expressions with embedded causal operators. 
We usually denote abnormalities by atoms of the form 
abi(a), and use the symbol cy possibly indexed as a 
variable ranging over abnormalities. Additionally, we 
often partition the formulas in a causal theory T into 
two sets: a background context K containing the for- 
mulas which express generic knowledge (e.g. “penguins 
are birds”), and an evidence set E containing the for- 
mulas which express knowledge specific to the situa- 
tion at hand (e.g. “Tweety is a bird” ; see [Geffner and 
Pearl, 19871). 

The operator C is most commonly used to encode 
causal or explanatory rules of the form “if o then b” 
as sentences of the form Q + Cb (see [Pearl, 1988a]). 
A rule such as “rain causes the grass to be wet” may 
thus be expressed as a sentence rain + Cgrassset, 
which can then be read as saying that if rain is true, 
grass-wet is explained. We assume that the operator 
C obeys certain minimal constraints which correspond 
to the postulates of system T in modal logic [Hughes 
and Cresswell, 19681: 

[Cl] ccl =+ a 
[C2] C(cy 3 p> * (Ca =3 q?) 
[C3] If k cy then Ccu 

[Cl] forces every explained proposition to be true, 
while [C2] and [C3] guarantee the set of explained 
proposition to be closed under deduction. The ex- 
pression ‘ ig a’ in [C3] is an abbreviation of K t- a, 
which says that in any causal theory every proposition 
that logically follows from its background context is 
explained. 

An interpretation A4 that satisfies a causal theory T 
and the constraints [Cl]-[C3] will be said to be a model 
of T. Moreover, we will refer to the set of abnormalities 
rendered true by an interpretation M as the gap of the 
interpretation and denote it as A[M]. Since the prefer- 
ence relation on models will be an exclusive function of 
the model gaps we will find useful to group models into 
classes of models. Formally, the class C of T with a gap 
A[C] will represent the non-empty collection of models 
M of T with a gap A[M] C A[C]. Intuitively, since the 
negation of abnormalities are usszamptions expected to 
hold, a class C with a gap A[C] represents the collec- 
tion of models which validate all assumptions logically 
compatible with A[C]. Models and classes of T with 
minimal gaps will be said to be minimal. Moreover, 
we will say that a proposition p holds in a class C of T, 
when p holds in every model in C. Proof-theoretically 
this is equivalent to require that p be derivable from T 
and a set of assumptions compatible with A[C].2 

The operator C is used as a device to order the 
classes of models of the theories T of interest. As 
in [Geffner, 1989b], such a preference order is defined 
as a function of the abnormalities and the expluined 

2The notions o f derivability and consistency are to be 
understood relative to the postulates [Cl]-[C3]. 

abnormalities in the different classes. An abnormality 
a is explained in a class C when the literal Co holds 
in C. If we denote the set of explained abnormalities 
in a class C by AC[C] , then the preference relation on 
classes of a theory T can be described as follows: 
Definition 1 A class C is as preferred as a class C’ iff 
A[C] - A’[C] C A[C’]. C is preferred to C’ iff C is us 
preferred us CT but 6’ is not us preferred us C. 

In words, a class C is preferred to a class C’ when ev- 
ery abnormality in C but not in C’ has an explanation, 
but not vice versa. Notice that this preference rela- 
tion on classes is not necessarily transitive, and thus, 
certain care is required for defining the propositions 
which a given theory culssully entails. 

Let us say that a collection B of classes constitute 
a basis for a theory T if for every class C of T not in 
B, there is a class C’ in B such that C’ is preferred 
to C. Moreover let us say that a basis B svpports a 
proposition p if p holds in every class in 8. Then, we 
will say that a proposition p is cuvsully entailed by 
a causal theory T when there is a basis for T which 
supports p. 

Most theories T of interest will be well-founded in 
the sense that for any non-minimal model M of T 
there will be a minimul model M’ of T such that 
A[M’] c A[M].3 I n such cases, causal entailment can 
be computed by considering the minimal classes of T 
only. Indeed, B will be a basis for a well-founded the- 
ory T iff for every minimal class C of T not in 8, 8 
includes a minimul class C’ preferred to C. 

Moreover, T will often possess a single minimal basis 
8. In such cases, we will refer to the classes in M as 
the preferred classes of T. For such theories causal 
entailment can be cast in the more familiar form in 
which a proposition is causally entailed when it holds 
in all the preferred classes. 
Example 1 Let us consider first a simple causal the- 
ory T given by the single sentence labi =+ Cabs, 
where abl and ab2 are two different abnormalities. 
Such a theory admits two minimal classes: a class 
Cl, comprised by the models of T which only sanc- 
tion the abnormality abl, and a class C.2, comprised 
of the models which only sanction the abnormality 
ab2. Thus Ci has an associated gap A[&] = {abi), 
while C2 has an associated gap A[C2] = { ab2). Both 
classes represent the minimal classes of T, as there 
is no model of T that satisfies both labi and labs, 
together with the restriction Co =+ cy. The abnormal- 
ities cy explained in each class C can be determined by 
testing which literals Ca hold in C. As we said, this 
amounts checking whether there is a set of assump- 
tions legitimized by C which together with T implies 
Co. Thus, in the class C.2, the abnormality ab2 is 

3A sufficien t c ondition for T to be well-founded is that T 
gives rise to a finite number of bound assumptions, where 
an assumption is bound when it is in conflict with other 
assumptions (see [Geffner, 1989a]). 
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of a unique abnormality 
causal rules: 

predicate abi and a pair of explained as the literal Cab2 logically follows from T 
and the assumption labi. On the other hand, the 
abnormality abl is not explained in Cl, as there is 
no set of assumptions validated by Cl which supports 
the literal Cabi. It follows then, that the class C2 is 
preferred to Cl, as A[&] - A’[&] = 0 C A[&], but 
A[&] - AC[G] = (abi) e A[&] = {abz}. Further- 
more, since the theory T is well-founded, and Cl and 
C2 are the only minimal classes of T, it follows then 
that 8 = (C2) is the single minimal basis of T, and 
thus, that C2 is the single preferred class of T. As a 
result, the propositions labi and ab2 which hold in 
C2 are (causally) entailed by T. 

Applications 
In this section we consider the use of causal theories 
for reasoning about change and for specifying and ex- 
tending the semantics of general logic programs. For 
the use of causal theories for inheritance and abductive 
reasoning see [Geffner , 1989a]. 

Reasoning about Change 
Theories for reasoning about change need to represent 
the effects of actions, the conditions which can prevent 
actions from achieving their normal effects, and the 
tendency of certain aspects of the world (fluents) to 
remain stable (see [McDermott, 19821). Here we will 
refer to the first type of rules as change rules, to the 
second type as cancellation rules, and to the third type 
as persistence rules. 

Change, cancellation and persistence rules can inter- 
act in various ways. The Yale shooting scenario [Hanks 
and McDermott, 19871 illustrates a problem that re- 
sults from spurious interactions between change and 
persistence rules. We now present general guidelines 
to locally map general theories for reasoning about 
change into causal theories which avoid those prob- 
lems. The guidelines are uncommitted about the par- 
ticular temporal notation used. For simplicity, we use a 
simple reified temporal language sufficient to illustrate 
the relevant issues. Other notations could be used as 
well. The notation p(z)t below, where p is a predicate 
and t is a time point, is used as an abbreviation of the 
sentence Holds(p(z), t), to read “fluent p(z) holds at 
time t.” We also assume for simplicity a discrete time 
where t precedes t + 1. 

First we specify the encoding of rules about change. 
A rule describing the effect e(x) of an action a(x) with 
precondition p(z) is encoded as a causal rule of the 
form: 

p(x)t A a(+ * Ce(x)t+i 
where 3: is a tuple of variables and both z and t are 
universally quantified. Such a rule can be read as stat- 
ing that given the precondition p(x), a(x) causes or 
explains e( 2). 

Often, however, rules about change are defeasible. 
Defeasible rules about change are encoded by means 

p(x)t A a(x)t A labi( * Ce(x)t+l 
p(x)t A a(x)t A C-e(x)t+l * Cabi( 

where the second rule simply asserts that the violation 
of an expected change is explained when there is an 
explanation for the negation of the expected effect (a 
similar rule is needed for modeling inheritance hierar- 
chies [Geffner , 1989a]). 

The persistence of a fluent f (e.g. on(a, b)), on the 
other hand, is encoded by the expressions: 

ft A labi( * ft+l 
Clft+l * Cabi( 

where abi(f) t is an abbreviation of the atom abi(f, t), 
read “the persistence of f holds at time t.” Thus, 
while the first rule expresses the tendency of fluents to 
remain stable, the second rule expresses that changes 
are explained when the negation of the projected fluent 
is explained. 

For the causal encoding of a version of the Yale 
Shooting problem, see [Geffner, 1989a]. Here we will 
consider a slightly richer example’due to Ginsberg and 
Smith [1988]. 
Example 2 Let us assume that there is a room with 
some ducts that maintain the room ventilated. More- 
over, an object sitting on a duct, blocks the duct, and 
if all ducts get blocked, the room becomes stuffy. This 
information is encoded in a causal theory with back- 
ground: 

duct(x) A 3~. on(y, x)t 3 Cblocked(x)t 
px.duct(x) =$ blocked(x)t] =S Cstuffyt+l 

move-t& y)t A lab& Y)t * Con@, y)t+i 
move-to(x, y)t A C-(x, y)t+i =P Cabl(x, y)t 

The persistence of the fluents on(x, y), stuff Jr, and 
blocked(x) y), and their negations, is expressed as 
stipulated above. To keep in mind that alJ these flu- 
ents are really terms,* we use the notation f to denote 
the fluent which is the complement of f. Thus, for 
instance, on(a, b) stands for the ‘negation’ of on(a, b). 
Namely, if on(a, b) holds at time t, on(a, b) will not, 
and vice versa. This is expressed by a constraint 

ft =dt 
which renders f and f incompatible, provided that the 
complement of 7 is f itself. 

Finally, we need to express that an object cannot be 
on two different places at the same time: 

on(x, y)t A on(x, z)t 3 y = x 
Given this background K, we consider a theory T = 

(K, E) describing a room with two ducts dl and d2. 
Furthermore, at time t = 0 it is known that the room 

‘Recall that blocked(s, Y)t is an abbreviation of the 
atom Holds(blocked(z, y), t). 
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is not stuffy, that a block a is sitting on top of duct 
dl, and that a block b is sitting on a place different 
than d2. Namely, E = {duct(zyj z 4 dl V z = d2, 
stuffmy on(a, dl)o, on@, d&}. 

In the context T, the fluents stuff yo, on(a, di)O, 
and on(b, d& project both forward and backward in 
time. If block b is moved to duct d:, at time t = 0, 
however, conflicts among these projections arise, r& 
sulting in three classes of minimal models: the in- 
tended class C where the action is successful and, as 
a result, the two ducts get blocked and the room be- 
comes stuffy; the class C’, where the action is successful 
but somehow the block a has been removed from duct 
dl; and the class, C”, where the action is unsuccessful 
and the block b remains in a place different than d2. 
Nonetheless, the interpretation of causal theories sin- 
gles out the intended class C as the only preferred class, 
capturing the intuition that block a stays on dl and 
that the room becomes stuffy. Note that such a behav- 
ior arises 
axioms. 

without the presence of explicit cancellation 

Logic Programming 
While the adequacy of the framework presented for 
reasoning about change rests mainly on empirical 
grounds -how natural it is to express knowledge about 
these domains and how closely the resulting behavior 
resembles the behavior intended by the user- a grow- 
ing body of work on the semantics of general logic pro- 
grams will permit us to assess the expressivity and 
semantics of causal theories on more formal grounds. 

As it is standard, we consider only the Herbrand 
models of programs. Moreover, since for answering ex- 
istential queries, a program involving variables can be 
shown to be equivalent to a program without variables, 
we will be dealing mainly with variable-free logic pro- 
grams. More precisely, we will analyze the semantics 
of general logic programs in terms of two mappings 
Cg[ -1, i = 1,2, each converting a program P into a 
causal theory Ci[P]. Each mapping associates a dif- 
ferent “meaning” with P. For the purposes of logic 
programming, C,[P] is the most relevant. The map- 
ping Cs[ .] will b e used mainly to illustrate the relation 
between the interpretation of general logic programs 
and the semantics of causal theories. We assume every 
atom in a logic program to be an “abnormality” and 
write CA to represent the class of Herbrand models M 
whose “abnormalities” are among those of A. Namely, 
if ic denotes the formulas not involving the causal op- 
erator, CA will stand for the collection of models M 
such that A4 n 1c 5 A. 

We consider first the mapping Ci [ e ] which converts 
each rule 

Y+al,...,%a,l 1,*--y P +na 

in P, where n > 0 and m 1 0, and o’s, p’s and 7 are 
atoms, into a causal rule of the form 

Ccvl A ...AcQr,AlplA...Alpm~cy . 

Example 3 Consider a program P given by the fol- 
lowing rules: 

c t a,-b 
d+-rc 
a+ 

P gives rise to two minimal models: A41 = {a, c} 
and M2 = {a, b, d}, the former of which is the sin- 
gle canonical or perfect model of P [Apt et al., 1987; 
Przymusinski, 19871. 

The mapping Cr[ -1 maps P into the causal theory 
Cl [PI: 

CaA-rb+Cc 
-c j Cd 
true * Ca 

Cl[P] gives rise to two minimal classes CM~ and CM~, 
with gaps Ml and MS as above. Furthermore, in the 
former class, the atoms a and c are both explained, 
as C,.[P], lb l- Ca A Cc holds, and lb is a legitimate 
assumption in cM1. On the other hand, only the atom 
a is explained in CM,. Thus, the class CM, is the single 
preferred class of Cl [PJ . As a result, the canonical 
model Ml of P and the preferred class CM~ of Cl[P] 
sanction the same non-causal (free from ‘C’) literals. 

As the example suggests, for stratified programs the 
following correspondence between the canonical model 
of P and the single preferred class of the theory Cl[P] 
can be established? 

Theorem 1 M is the canonical model of a stratified 
program P if and only if CM is the single preferred class 
of Cl [PI * 

Moreover, if we say that a class of models is per- 
fectly coherent when it explains every abnormality that 
it sanctions, we obtain a correspondence between the 
stable models of a program P [Gelfond and Lifschitz, 
1988; Fine, 19891 and the perfectly coherent classes of 
the causal theory Cl [PI, even when P is not stratified. 

Theorem 2 M is a stable model of an arbitrary pro- 
gram P if and only if CM is a perfectly coherent class 
of the causal theory C,[P]. 

In spite of this correspondence, however, the seman- 
tics of causal theories Cl[P] and the stable seman- 
tics of logic programs P diverge outside the family 
of stratified programs. On the one hand, programs 
may lack stable models (e.g. {p + 1~)); on the 
other, causal theories C,[P] may give rise to multiple 
preferred classes even when P accepts a single stable 
model (e.g. P = {a t-b,b+-a,p+-b,p+-p}). 

Logic Programs and Causal Networks We now 
investigate the semantics associated with a second 
mapping Cz[ -1 of logic programs into causal theories. 

‘Proofs can be found in [Ceffner, 1989a]. 
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For a logic program P, Cz[P] represents the collection 
of rules which result from mapping each rule 

in P, 
-y+a1,-*-, 

into a causal 
%a,-( 13.. P ‘9-l Pm 
rule of the form: 

a1 A... ACtnAyP1A . ..A+.,, =SCr 

The difference with the previous translation is that 
the positive antecedents of the resulting causal rules do 
not need to be “causally” established. This renders the 
models of the causal theory C2 [ P] as models of Cl [PI, 
though not the other way around. As a result, the 
semantics of causal theories of the form C2[P] differs 
from that of Cl[P] even within the family of stratified 
programs. 

For instance, the stratified program P = {Q + 
lp, p t r, r + p}, possesses a single canonical model 
M = {q}, and thus CM is the single causally preferred 
class of Cl[P]. On the other hand, the mapping C2[ -1 
renders the causal theory C2[P] = {lp a Cq,r a 
Cp,p 3 Cr) which accepts two preferred classes CM 
and CMI, with M = {q) and M’ = (p,r}. 

In this example, the ‘anomalous’ behavior of the the- 
ory C2[P] is a consequence of the circularity relating 
the atoms p and r. ‘Circular’ explanations are pre- 
cluded in C,[P] but not in Cz[P]. What is interesting, 
however, is that once these circularities are removed, 
the ‘anomalous’ behavior is guaranteed to disappear. 

Let us say that a program P is acyclic when its 
dependency graph does not contain cycles. Acyclic 
programs are thus stratified. Moreover, acyclic pro- 
grams, not only preclude ‘recursion trough negation,’ 
but every type of recursion. For acyclic programs, the 
following result applies. 
Theorem 3 Let P be an acyclic program. Then the 
class CM, where M is the canonical model of P, is the 
unique preferred class of the theories C,[P] and Cz[P]. 

In other words, once recursion is removed the two 
mappings examined result into an identical behavior, 
in correspondence with the received semantics of logic 
programs. While the requirement of acyclicity is un- 
acceptably strong in the domain of programming, it 
is common among network representational languages, 
such as inheritance hierarchies [Touretzky, 19861 and 
Bayesian networks [Pearl, 1988b]. Indeed, causal the- 
ories of the form C2[P] for acyclic programs P, possi- 
bly augmented by integrity constraints, provide a suffi- 
ciently expressive language for reasoning in causal net- 
works. [Geffner, 1989a] discusses the use of such rep- 
resentations for abductive reasoning as well as some 
of their advantages over the representations resulting 
from the mapping Cl [ - 1. 

Proof-Theory 
The proof-theory of causal theories is structured in the 
form of an-argument-based system (e.g. [Loui, 19871). 
We assume the theories of interest are well-founded in 
the sense defined above. The notions of consistency 

and derivations are to be understood relative to pos- 
tulates [Cl]-[C3]. 

We start with some terminology. Assumptions are 
the complements of abnormalities. We denote the com- 
plement of a proposition p as p, thus, if p is an abnor- 
mality p is an assumption, and vice versa. Further- 
more, in a context T, a set A of assumptions con- 
stitutes an argument if the set A is consistent with T. 
Moreover, A is an argument for q, if q is derivable from 
the causal theory T + A, and an argument against q, 
if lq is derivable from T + A. When the context T 
is understood, we also say that A supports q and lq 
respectively. Now, if A is not an argument in T, then 
A is said to be a conjtict set. Two arguments are in 
conflict when their union is a conflict set. In such a 
case we also say that one argument refutes the other. 

For instance, in a theory T consisting of the ex- 
pressions labi j Cab2 and lab3 j Cq, the argu- 
ments A1 = {labi) and A2 = {labs) are in conflict. 
On the other hand, no argument is in conflict with 
A3 = {1ab31. 

By the minimality of preferred classes, it easily fol- 
lows that propositions supported by unrefuted argu- 
ments are entailed. Thus, for example, we can safely 
conclude that propositions Cq and q above are en- 
tailed, as they are supported by the unrefuted argu- 
ment As. 

Often, however, refuted arguments may also provide 
legitimate support. Once such example is the propo- 
sition ab2 which is entailed by T in spite of having a 
single minimal supporting argument Ar which is re- 
futed by Az. Intuitively, what is going on is that A1 
not only refutes AZ, but also explains its negation. We 
will say in that case that Ar is protected from As. As 
we will see, propositions supported by protected argu- 
ments may also be entailed. 

Formally, let us say that an argument A explains a 
proposition p when A is an argument for Cp. Then 
the notion of protection can be defined as follows: 

Definition 2 An argument A is protected from a 
conflicting argument A’ i$ there is a set A” C A’ - A 
such that A + A’ - A” is not a conflict set, and every 
abnormality Q, ti E A”, is explained by A + A’ - A”. 

Similarly we will say that an argument A is stronger 
than a conflicting argument A’ when A is protected 
from A’ but A’ is not protected from A. In the exam- 
ple above, for instance, A1 is stronger than the con- 
flicting argument Aa. If we say that an argument is 
stable when it is stronger than any conflicting argu- 
ment, we obtain the following sufficient conditions for 
a proposition to be causally entailed: 

Theorem 4 If a proposition p is supported by an sta- 
ble argument, then p is causally entailed. 

Yet, theorem 4 does not provide necessary condi- 
tions. For instance, the proposition ab3 is causally en- 
tailed by the theory comprised of the formulas labi V 
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lab2 =$ Cab3 and abl V ab2, and yet, ab3 is not 
supported by any stable argument. 

A simple extension of the definitions above takes 
care of such cases. Let us refer to a collection of argu- 
ments as a cover, and let us say that a cover supports a 
proposition p if every argument in the cover supports p. 
Furthermore, let us say that an argument is in conjtict 
with a cover when the argument is in conflict with ev- 
ery argument in the cover, and that a cover is stronger 
than a conflicting argument A when it contains an ar- 
gument stronger than A. Moreover, let us also say 
that a cover is stable when it is stronger than every 
conflicting argument. Then, the following sound and 
complete characterization of causal theories results: 

Theorem 5 (Main) A proposition p is causally en- 
tailed if and only if it is supported by a stable cover. 

For the theory comprised of the sentences labi V 
lab2 j Cab3 and abl V ab2, it is easy to show that 
the pair of arguments A1 = {labi} and A2 = (lab2) 
constitute a stable cover. Since such a cover supports 
the proposition of ab3, it follows then that ab3 is en- 
tailed by the theory. 

Related Work 
Causal theories are an elaboration of ideas in [Geffner, 
1989b], where the notions of explanations, classes, 
and coherence were originally presented. The adop- 
tion here of a causal operator as part of the object- 
level language, however, has simplified matters con- 
siderably, providing additional expressive power and 
permitting the construction of a proof-theory. Part 
of the motivation for the move came from a proposal 
due to Pearl to explicitly incorporate a causal lan- 
guage into default theories. Pearl’s proposal [Pearl, 
1988a] draws on work in causal probabilistic networks 
to suggest a distinction between defaults which en- 
code explanations (e.g. fire ---) smoke) from defaults 
which trigger explanations (e.g. smoke + fire). He 
calls the former defaults causal and the latter eviden- 
tial. He argues that the language of default theo- 
ries should accommodate such a distinction, and in 
particular, that explanation ‘giving’ defaults should 
be prevented from triggering explanation ‘seeking’ de- 
faults. Pearl’s proposal to preclude such chains con- 
sists of three parts. First, he labels every default as 
either causal, e.g. rain +c grass-wet, or eviden- 
tial, e.g. grass-wet -)E sprinklermq second, he 
distinguishes the status of propositions p established 
on causal grounds, Cp, from those established on evi- 
dential grounds, Ep; and third, he introduces a calcu- 
lus for reasoning with causal and evidential rules which 
purposely precludes deriving q from Cp and an eviden- 
tial rule p -)E q. 

Though differing in detail and goals, the reading of 
the operator ‘C’ in causal theories follows Pearl’s intu- 
itions. Pearl, however, focuses on evidential reasoning, 
while we focus on default reasoning. A proposal for 

performing evidential reasoning in causal theories is 
discussed in [Geffner , 1989a]. 

Causal theories are also related to Moore’s [1985] 
autoepistemic theories. The autoepistemic encodin 
L[P] of a stratified logic program P [Gelfond, k 1987 , 
for instance, turns out to be the “dual” of the causal 
encoding Ci [P] (i.e. in L[P] every negated atom is 
preceded with the autoepistemic operator ‘L’, while 
in Cl[P] every non-negated atom is preceded with the 
causal operator ‘C’) and they both legitimize the same 
behavior. Indeed, it is possible to understand the au- 
toepistemic operator L as an evidential operator, with 
Lo meaning “there is evidence for cy.” Namely, instead 
of using the causal operator C under the conventions 
that 

lo is an assumption 
Co + cy must hold for every (plain) sentence cy, and 
(Y is explained in a class when Co holds, 

we could have used 
conventions that 

an evidential operator E under the 

1Ecu is an assumption 
cy + Ea, must hold for every (plain) sentence cy, and 
Ecu is explained in a class when a holds. 

Under such an approach the evidential encoding of 
a logic program would be identical to the autoepis- 
temic encoding, except for the presence of E’s instead 
of L’s. Moreover, both encodings would sanction an 
equivalent semantics for stratified programs. For non- 
stratified programs, however, as for most default theo- 
ries, the duality between causal and autoepistemic dis- 
appears. First, default theories may lack stable mod- 
els; second, the prefix lL, as no causal prefix, “gener- 
ates” the assumptions needed. 

The fact that the operator ‘C’ establishes a prefer- 
ence for the abnormality q over the abnormality p in 
a theory like lp + Cq, raises the question of whether 
the semantics of causal theories can be understood in 
terms of prioritized circumscription [McCarthy, 19861. 
The answer is a qualified no: there are causal thee- 
ries for which no priority order on the abnormalities 
will render an equivalent behavior. The causal theory 
{la A lb =2 Cc A Cd, lc A ld 3 Ca A Cb) for abnor- 
malities a, b, c, and d, is one such example. Still, the 
semantics of such theories could in principle be cap- 
tured by defining priorities for non-atomic formulas. 

Finally, another family of theories related to those 
treated in this paper is Shoham’s [1988] causal theo- 
ries. Shoham’s causal theories are epistemic theories 
designed for efficient reasoning about change. They 
are interpreted by a preference criterion which rewards 
models in which “as little is known for as long as possi- 
ble.” While there is no direct correspondence between 
our causal theories and Shoham’s, it seems possible to 
understand the intuition behind Shoham’s chronolog- 
ical minimization in terms of the ideas of explanation 
and coherence. If we recall that we regard an abnor- 
mality cv as explained in a class C when C validates a 
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set of assumption A which supports the truth of Co, 
chronological minimization assumes cy explained by A 
instead, when A supports the truth of (Y, without in- 
volving assumptions about times past cy. 
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