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Abstract 
Since knowledge bases (KBs) are usually incom- 
plete, they should be able to provide informa- 
tion regarding their own incompleteness, which 
requires them to introspect on what they know 
and do not know. An important area of research 
is to devise models of introspective reasoning that 
take into account resource limitations. Under the 
view that a KB is completely characterized by the 
set of beliefs it represents (its epistemic state), it 
seems natural to model KBs in terms of belief. 
Reasoning can then be understood as the prob- 
lem of computing membership in the epistemic 
state of a KB. The best understood models of be- 
lief are based on possible-world semantics. How- 
ever, their computational properties are unaccept- 
able. In particular, they render reasoning in first- 
order KBs undecidable. In this paper, we propose 
a novel model of belief, which preserves many of 
the advantages of possible-world semantics yet, at 
the same time, guarantees reasoning to be decid- 
able, where a KB may contain sentences in full 
first-order logic. Moreover, such KBs have perfect 
knowledge about their own beliefs even though 
their beliefs about the world are limited. 

Introduction 
Since the information contained in a knowledge base 
(KB) is usually incomplete, a KB should not only be 
able to answer queries about the domain in question 
but also about its own state of incompleteness. In other 
words, a KB should possess self-knowledge, which it 
gains by introspection. For the purposes of this paper, 
we assume that a KB is capable of perfect introspection, 
that is, it knows exactly what it knows’ and does not 
know. Perfect introspection is not uncontroversial. For 
example, one may want to restrict knowledge of what 
is not known to concepts that one is at least aware of 
(see [14] for a formalization of this idea). However, we 

‘Although this paper is concerned with belief 
rather than knowledge, we nevertheless use both terms 
interchangeably. 

have adopted perfect introspection here simply because 
it comes at no additional computational cost. 

An important area of research is to devise models 
of introspective reasoning that take into account re- 
source limitations [9]. Under the view that a KB is 
completely characterized by the set of beliefs it repre- 
sents (its epistemic state), it seems natural to model 
KBs in terms of belief. Reasoning can then be under- 
stood as the problem of computing membership in the 
epistemic state of a KB. 

The best understood models of belief are based on 
possible-world semantics [lo, 81. Most autoepistemic 
logics, a favorite framework to study introspection 
(e.g. [20, 17, 181), specify epistemic states that have 
possible-world models, as shown in [21, 5, 171. A big 
advantage of possible world models is their simplicity. 
Unfortunately, they also make the assumption that a 
KB’s (or agent’s) beliefs are closed under logical con- 
sequence, a property often referred to as logical omni- 
science, which renders reasoning undecidable in first- 
order KBs. An important problem then is to find mod- 
els of belief with better computational properties. 

While there has been some progress in finding com- 
putationally attractive models of belief in the proposi- 
tional case [14], adding quantifiers to the framework in 
the obvious way leads to undecidability. In this paper, 
we remedy this situation and propose a new model of 
belief that preserves much of the simplicity of possible- 
world semantics yet, at the same time, guarantees that 
reasoning in first-order KBs is computable.2 

As in [14, 171, we use an approach that allows us 
to model the beliefs of a KB directly within the logic. 
Intuitively, a KB’s epistemic state can be characterized 
as the set of all sentences that are believed given that 
the sentences in the KB are all that is believed or, 
as we will say for short, ody-believed. This idea is 
formalized in a modal logic with two modal operators 
B and 0 for belief and only-believing, respectively. 
The epistemic state of a KB is characterized by the 
set of sentences cx for which OKB > Ba is valid.3 The 

‘In section “A Decidable KR Service,” we also discuss 
restrictions under which reasoning is in fact tractable. 

3Whenever KB occurs within a logical sentence, we 
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complexity of reasoning then reduces to the complexity 
of determining whether Bcu follows logically from OKB 
for a given KB and cy. 

The main contribution of this paper lies in the novel 
model-theoretic account of belief and only-believing. 
In particular, KBs under this model of belief may con- 
tain arbitrary first-order sentences and they have per- 
fect knowledge about what they do and do not believe 
even though their beliefs about the world are limited. 
Most importantly, the beliefs of such KBs are com- 
putable. 

In related work, Konolige [9] also addresses the is- 
sue of modeling introspection under resource limita- 
tions. However rather than proposing an actual in- 
stance of a computationally attractive reasoner, he 
presents a general framework in which one can be 
formalized. Work regarding decidable forms of first- 
order entailment (without introspection) is also rele- 
vant [7, 2, 22, 41, since it is a useful starting point 
when considering limited forms of belief. In particu- 
lar, Patel-Schneider’s [22] and Frisch’s [4] notions of 
entailment, which have a model-theoretic semantics, 
are good candidates as a basis for belief. Indeed the 
logic developed in this paper4 is shown to subsume 
Patel-Schneider’s t-entailment (Theorem 1). By us- 
ing a more expressive modal language, this paper goes 
beyond t-entailment by formalizing first-order beliefs 
about beliefs and agents introspecting on their own be- 
liefs. At the same time, we are able to preserve the 
computational benefits of t-entailment. Finally, belief 
is formalized in fairly intuitive model-theoretic terms. 

The rest of the paper is organized as follows. We 
begin by defining the syntax and semantics of OBL, 
the logic of belief and only-believing. This is followed 
by a brief discussion of the properties of belief. The 
next section formally establishes the decidability re- 
sult regarding which beliefs follow logically from only- 
believing a KB. After that, ,we apply these ideas to 
the specification of KR service routines ASK and TELL 
in the sense of [15]. Finally, we summarize the results 
and outline extensions of the current framework and 
future directions. 

The Logic OBL 

The key aspects of this logic are the semantics and 
properties of belief and only-believing, which ulti- 
mately gives us the specification of decidable, intro- 
spective reasoning in first-order KBs. Before turning 
to the technical definitions, we first introduce the two 
notions of belief informally. (The other logical connec- 
tives and quantifiers have the usual meaning.) 

mean the conjunction of all the sentences in the KB. 
*A preliminary model which addressed neither self- 

knowledge nor only-believing appeared in [II]. However, 
ultimately it proved to be too complex and was abandoned 
in favor of the current, much simpler model. 

Belief Belief is defined in a possible-world fashion. 
Roughly, an agent is assumed to imagine a set of states 
of affairs or situations M. The agent is then said to 
believe a sentence Q just in case o (or, as we will see 
below, a slightly modified CY) holds in all situations in 
M. Except for the definition of situations, which are 
described in more detail below, this framework is very 
similar to one that defines the logic weak 5’5 [6]. In fact, 
as in weulc S5, our approach results in agents capable of 
perfect introspection with respect to what they know 
and don’t know. 

In order to avoid the logical omniscience problem, we 
limit an agent’s ability to reason by cases in the fol- 
lowing two ways, which follow from the way situations 
are defined and used. For one, we allow beliefs not to 
be closed under modus ponens. For example, if p, q, 
and r are atomic facts, we allow an agent to believe 
(P v 4) A (3 v 4, yet fail to believe (p V r). Another 
way reasoning by cases is limited is by weakening the 
link between disjunction and existential quantification 
in the sense that an agent may believe P(a) V P(b) for 
a predicate P and distinct terms a and b, yet fail to 
believe 3zP(z). 

In OBL, closure under modus ponens is avoided by 
decoupling the notions of truth and falsity within situa- 
tions. Instead of assigning either true or false to atomic 
facts (predicates applied to individuals), situations are 
allowed to assign independent true-support and fulse- 
support to atoms. This corresponds to using four 
truth values {}, {t rue}, {false), and {true, false}, 
an idea originally proposed to provide a semantics for 
a fragment of relevance logic called tuutologicul entuil- 
ment [l, 3].5 Note that the classical worlds of possible- 
world semantics are a special kind of situations, namely 
those where each atomic fact has either true- or false- 
support but not both. In OBL, classical worlds are 
used to provide the standard notions of truth and vu- 
Zidity. Non-classical situations are only allowed to be 
part of what agents imagine (defining their beliefs). 
The fact that an agent’s imagination can be incomplete 
and inconsistent provides some intuition for situations 
that assign neither true- nor false-support to an atom 
or both true- and false-support. 

In order to weaken the link between disjunction and 
existential quantification, OBL restricts the interpre- 
tation of existential quantifiers within belief. Roughly, 
we require that an agent who believes the existence of 
an individual with a certain property must be able to 
name or give a description of that individual, although 
we do not require the agent to know who the individ- 
ual is. More concretely, for ~zP(x) to be believed there 
must be a closed term t (e.g. father(john)) such that 
P(t) is true in all accessible situations. In general, if 
the existential appears in the scope of universal quanti- 
fiers, the corresponding universals may (but need not) 

5Levesque [16] was the first to introduce the notion of 
four-valued situations to model a limited form of belief in 
a propositional framework. 
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occur in the description chosen for the existential. 

Only-Believing An agent who only-believes a sen- 
tence Q! believes cy and, intuitively, believes as little else 
as possible. In other words, the agent is maximally ig- 
norant while still believing a. 

As demonstrated in [14, 1’71, if belief is modeled 
by a set of situations, independent of whether they 
are four-valued or two-valued as in classical possible- 
world semantics, only-believing has a particularly sim- 
ple characterization: an agent only-believes a sentence 
a! if he or she believes a and the set of situations M 
the agent imagines is as large as possible, i.e., if we 
were to add any other world to M, the agent would no 
longer believe CX.~ 

With the special treatment of existential quantifica- 
tion as outlined above, there is, however, one compli- 
cation that needs to addressed. Consider the sentence 
a = %P( z). What should it mean for an agent, whose 
beliefs are modeled by a set of situations M, to only- 
believe a? Since a necessary requirement is that the 
agent believes CY!, there must be some closed term a 
such that P(a) is believed. It may be tempting to let 
M be the set of aldsituations where P(a) holds for some 
fixed closed term a. But that seems too strong. For 
example, to say that all the detective believes is that 
someone is the murderer conveys a lot less information 
than all the detective believes is that the driver of the 
red car is the murderer. 

One way around this problem is to require the 
terms that are used when only-believing an existen- 
tially quantified sentence to convey no information 
about the world. In other words, the terms should be- 
have like skolem functions or internal identifiers. For 
that reason, we introduce a special set, of function sym- 
bols which must be used when substituting existen- 
tials in the context of only-believing. Making sure that 
these function symbols carry no information about the 
world is treated as a pragmatic issue when applying the 
logic to knowledge bases. As we will see in section “A 
Decidable KR Service,” a simple way of dealing with 
the issue is to enforce that a user interacting with a KB 
is prevented from asking queries or telling the system 
sentences containing these special function symbols. 

The Language ,C 
The language is a modal first-order dialect with func- 
tion symbols, which are partitioned into two countably 
infinite sets F REG and FsK of every arity. The latter 
contains the function symbols that will be used to in- 
terpret existential quantifiers in the context of only- 
believing. The members of FsK are also referred to 
as Sk-functions. The language also contains a count- 
ably infinite set N of standard names, which are syn- 
tactically treated like constants. Their meaning is ex- 
plained below. 

6M need not be unique for the same reasons as there are 
multiple extensions in autoepistemic logic (see P4, 171). 

Given the usual definitions of terms and atomic 
formulas, a primitive term (formula) is a term 
(atomic formula) with only standard names as argu- 
ments. We also distinguish a special primitive formula 
true (with the obvious intended meaning). 

The formulas of C are constructed in the usual way 
from the atomic formulas, the connectives 1 and V, 
the quantifier 3,7 and the modal operators B and 0 
with the restriction that formulas of the form Ba! or 
Oa may not contain free variables. In other words, we 
ignore the issue of quantifying into belief (quantifying- 
in) as in 3zP(z)A-BP(x). Th is restriction will be lifted 
in a forthcoming paper [13]. To simplify the technical 
presentation below, we also require that no variable is 
bound more than once in a formula. Formulas without 
any occurrences of B or 0 are called objective, for- 
mulas without occurrences of 0 are called basic, and 
formulas whose predicate symbols all occur within the 
scope of a modal operator are called subjective. Sen- 
tences are, as usual, formulas without free variables. 

Notation: Sequences of terms or variables are some- 
times written in vector notation. E.g., a sequence 
of variables (~1, . . . , ok) is abbreviated as d. Also, 
32 stands for 3~1. . .%k. If a formula a contains 
the free variables $1,. . . , ~b:, a[xl/tl, . . . , xk/tk] (some- 
times abbreviated as c~[Z/q) denotes CY with every oc- 
currence of xi replaced by ti. In the case of one vari- 
able, we sometimes write a: instead of (u[x/t]. 

Definition 1 A quantifier within a formula CE occurs 
at the objective level of Q if it does not occur within 
the scope of a modal operator. 

Definition 2 A formula a is existential-free ifl Q 
contains no existential quantifiers at the objective level 
within the scope of an even number of T-operators. 

A Formal Semantics 
The semantics of OBL relies on the notion of situations, 
which are essentially four-valued extensions of classical 
(two-valued) Kripke worlds [lo]. All situations are de- 
fined over a fixed universe of discourse, which we take 
to be the standard names of the language. None of 
the results in this paper depends on this choice,s but 
it greatly simplifies the technical presentation. For ex- 
ample, the true- and false-support of predicates can be 
described by the true- and false-support of primitive 
formulas. Also, at, each situation, the closed terms of 
the language are interpreted by mapping them into the 
standard names. 
Definition 3 Denotation Functions 
A denotation function d is a mapping from closed 

70ther logical connectives like A, > , and 3 and the 
quantifier V are used freely and are defined in the usual 
way in terms of 1, V, and 3. 

8The use of standard names as the universe of dis- 
course becomes much more significant in the context of 
quantifying-in [15, 131. 
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terms into the standard names such that d(n) = n for 
alln E N and d(f(tl, . . . ,tk)) = d(f(d(tl), . . . , d(tk))). 
(f may be 0-ary.) 
d is canonically extended to apply to sequences as well, 
i.e., d((tl , - . -, tk)) = (d(h), . . . d(tk)). 

It is easy to see that denotation functions are uniquely 
determined by the values they assign to primitive 
terms. 
Definition 4 Situations 
A situation s is a triple s = (T, F, d), where T and F 
are subsets of the set of primitive sentences such that 
true E T and true $ F. d is a denotation function. 

Definition 5 Worlds 
A situation (T, F, d) is called a world, QJ 

p(Z)~Tep(n’)$Ff or all primitive formulas P(G) 

The following definitions are needed for the seman- 
tics of B and 0. In particular, they describe how to 
substitute terms for existentially quantified variables 
when interpreting belief (definition 9) and what kinds 
of terms are eligible in the context of B (definition 7) 
and 0 (definition 8). 
Definition 6 Existentially Quantified Variables 
Let cx be a formula in L. A variable x is said to be 
existentially (universally) quantified in cx ifl x is 
bound in the scope of an even (odd) number of l- 
operators. 

Definition 7 Admissible Terms 
Let cx be objective and x existentially quantified in CY. 

A term t is said to be an admissible substitution for x 
with respect to cx ifl every variable y in t is universally 
quantified in cx and x is bound within the scope of y. 

If the context is clear, we often say t is admissible 
for x or t is admissible. 

Definition 8 Sk-terms 
Let a be a sentence and x an existentially quantified 

variable bound at the objective level of a. Let U(x) 
be a sequence of the universally quantified variables in 
whose scope x is bound. Let f E J& be a function sym- 
bol of arity IU(x)l occurring nowhere else in CY. Then 
f(U(x)) is called an Sk-term (for x). 

Note that Sk-terms are also admissible. 
Definition 9 Let Q be a sentence and let Z = 
(ml..., xk) be a sequence of the existentially quanti- 
&ed variables bound at the objective level of a. Let 
t = (t1 , . . . , tk) be a sequence of terms s.t. ti is admis- 

sible for xi for all i. c$[Z/q denotes cx with all 3xi 
removed and with all occurrences of xi replaced by t;. 

To illustrate the previous definition, let (Y = 
;(;~Y(P(x,Y) V -3zQ(z))), tl a, and t2 

Then both tl and t2 ar: admissible an: 

a’[x;tl, +a] = (+‘Y(+, Y) V lQ(f ($>))a 

We are now in a position to define the semantic rules 
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for the sentences of G. The rules except for B and 0 
are no different from those in classical logic except that 
they are somewhat more longwinded because the true- 
and false-support of sentences have to be considered 
separately. 

Let s be a situation and M a set of situations. The 
true- ( +r ) and false-support ( +r ) relations for sen- 
tences in L are defined as: (Let P(o be an atomic sen- 
tence. cx and /3 are sentences except in rule 4., where 
o! 

1. 

2. 

3. 

4. 

5. 

6. 

may contain the free variable x.) 

M, s b=T ~(9 ++ P(d(g) E T, where s = (T, F, d) 

M,s l==~ p(g - P@(g) E F 

M,S+T~CY w M,++ 
M,s +=F icy c M,s +=T (Y 

M&T~VP e M,s~+y-M,skd 
M,sbFaVp a M,sbFaandM,sb& 
M,s~~ZIX~ _ forsomenEN M,sb~az 
M,s~~~xcY. -forallnEN M,sbFag 

For the following rules, let d = (xi, . . . , xk) be 
a sequence of the existentially quantified variables 
bound at the objective level of cr. 
M,s+rBa _ 

for all s’, ifs’ E M then M, s’ k=T a3[Z/fl, 
where t”is a sequence of admissible terms. 

M,sbFBa c--“, M,s#TB~ 

M,sbTO~ _ 
for all s’, s’ E M iff M, s’ b* J’[Z/&K], 
where <sk is a sequence of distinct Sk-terms. 

M,s~~OCX _ M,~~TOLY 

Note that, in the definition of B and 0, the same t’or 
& must be chosen for all s’ E M. Also note how the 
definition of only-believing differs only in two places 
from that of belief. For one, the terms that can be sub- 
stituted for existentials are restricted to mention ex- 
actly one Sk-function (the “internal identifiers”). The 
only other change involves replacing the “if” in the def- 
inition of belief by an “iff”. This ensures that the set 
of situations M is as large as possible. 

The notions of truth, logical consequence, validity, 
and satisfiability are defined with respect to worlds and 
non-empty sets of situations. 

A formula cx is true at a non-empty set of situa- 
tions M and a world w if M, w FT a. a is false if 
M, w Fr CY. A formula CY is valid (F(Y) iff cx is true at 
every world w and every non-empty set of situations 
M. a is satisfiable iff lo is not valid.g 

‘In [17, 141 ‘t 1 is shown that using arbitrary sets of situ- 
ations has the unintuitive effect that what is only-believed 
at an epistemic state (represented by a set of situations) is 
not completely determined by the basic beliefs at that state. 
This flaw can be overcome by using so-called maximal sets 
of situations [17, 141. S ince this issue is independent from 



Finally, if cx is objective, we often write s +r o in- disjunction are interpreted in the usual way and all the 
stead of M, s br cy, since nothing in the interpretation non-standard aspects are pushed into the semantics of 
of a depends on M (similar for s FF a). B and 0. 

Properties of Belief 
Apart from belief and only-believing, the logic behaves 
much like a classical first-order logic. For example, all 
the substitution instances of sentences that are valid 
in classical FOL are also valid in OBJ. In the rest of 
this section, we present important properties of belief. 

The following four examples of invalid sentences il- 
lustrate in what ways belief is not closed under classi- 
cal logical implication. Let P(a) and Q(b) be distinct 
atomic formulas. 

#W(4 v -p(a)> 
believed 

Valid sentences need not be 

#BP(u) A B(p(a) 3 Q(b)) 3 BQ(b) 
Ponens 

No Modus 

#BP(u) A BlP(u) > BQ(b) Inconsistent beliefs do 
not imply believing everything 

#B@(a) v P(b)) > B3xP(x) No existential 
generalization from disjunctions 

While the first three examples are a direct consequence 
of the four-valued situations, the fourth is a result of 
the special treatment of existential quantifiers within 
belief. 

Next we list some of the valid sentences concerning 
belief, which give an indication of what can be con- 
cluded from a given belief. Let cy and ,6 be arbitrary 
sentences. 

+Btrue A lB+,rue 
bB(cy A p) E BCY A B/3. 

/=B0B(oVp)AB(PVo) 
/=BVzcu > BCY: for any closed term t. 
k=BaF > B3zcu, where x is free in o and t is any 
closed term. 
+Ocr > Ba 

Believing objective sentences is strongly related to 
Patel-Schneider’s t-entailment: 
Theorem 1 OBL subsumes t-entailment 
Let CY and /3 be objective sentences containing neither 

standard names nor occurrences of true.” Then 

j==Ba > BP iff a bt ,8. 

This result is significant in itself, since it can be viewed 
as providing a new semantics for t-entailment. The 
original semantics of t-entailment has the peculiar 
property of interpreting disjunction in a non-standard 
way. In OBL, all the classical connectives including 

the main concern of this paper, we have chosen to ignore it 
here. 

“These restrictions are necessary in order to match the 
language of t-entailment. 

We conclude this section with a list of properties 
concerning self-knowledge. Let cy and /3 be arbitrary 
sentences and let p and cr be subjective sentences. 

Perfect Introspection: 
~BCV > BBa and ~~BcY > BlBa 

Self-Knowledge is Accurate: bBa > o 

Self-Knowledge is Complete: FO > Ba 

Self-Knowledge is consistent: +Ba > 43~0 

Self-Knowledge is Closed Under MP: 
l=w A (‘P v 4) 1 Ba 

The above results show that an agent with this model 
of belief has perfect knowledge about her own beliefs 
even if her beliefs about the world are limited. 

Computing What an 
Objective KB Knows 

The intuition behind only-believing the sentences in a 
knowledge base has been to capture what a KB knows 
or what epistemic state the KB represents. Ideally, one 
would like OKB to pick out a unique epistemic state 
from the range of states defined by the logic (in the 
form of sets of situations). Unfortunately, this is not 
the case for arbitrary KBs. For one, if the KB is not 
objective, OKB may be satisfied in multiple epistemic 
states for the same reason as there are multiple exten- 
sions in other autoepistemic logics such as [20]. Unlike 
other autoepistemic logics, OKB does not represent a 
unique epistemic state even if KB is objective. For 
example, 03xP(x) is satisfied by {s ] s br P(u)) for 
any constant a E J&. On the other hand, all those 
states are isomorphic up to renaming of Sk-functions. 
Moreover, they agree on all beliefs not mentioning sk- 
functions. In general, we obtain 

Theorem 2 Let KB be an objective sentence. Then 
for any sentence (Y not containing function sym- 
bols from &, exactly one of +OKB > Bcu or 
bOKB > lBcv holds. 

From a KB user’s point of view, this result can be ex- 
plained as follows: the user is not sure which internal 
identifiers (Sk-terms) the KB has chosen for its exis- 
tentially quantified variables, thus allowing for multi- 
ple possible epistemic states. However, the beliefs of 
the KB that matter to a user are those that are free 
of Sk-terms, and those, according to the theorem, are 
uniquely determined by the KB. In the next section, 
this view will be made explicit by defining routines that 
allow a user to interact with a KB. 

In the rest of this section, we prove that it is in fact 
decidable whether a belief without Sk-functions follows 
from only-believing a KB. Although the decidability 
result holds for beliefs containing OS, we restrict our 
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attention to basic beliefs in order to simplify the pre- 
sent at ion. 

The idea behind the procedure for deciding whether 
a KB believes CV., i.e., whether OKB > Ba is valid, is 
as follows. First we replace all occurrences of subsen- 
tences of the form By in a by true or ltrue depending 
on whether y is believed or not. This evaluation pro- 
ceeds from the innermost occurrence of B to the out- 
ermost so that at each step we are asking whether an 
objective sentence is believed, which can be computed 
using Patel-Schneider’s decidable t-entailment [22]. 

To perform the reduction, we need the following def- 
initions. 
Definition 10 Let KB and a be objective, CY without 
sk-function. 

RES[KB, crl = 
{ 

true if FOKB 1 BCX 
ltrue if bOKB 1 -BCX 

Definition 11 Let KB be objective and cy basic. 

]]o.]]xn = cv, for objective (Y 
IIlQlIKB = l 11Q11KB 
lb v PllKB = IbllKB v II&B 
l13xab = 3~ (I~IIKB 

llBallKB = RES[KB, ll~jlKB] 

The following three results are key to establishing de- 
cidability. 
Lemma 1 If KB is objective and CY basic without sk- 
functions, then /=OKB > Ba iff bOKB > B lla]lKB. 

Lemma 2 If KB and cy are objective, then 
/=OKB 1 BCX i$ ~:BKB 1 Ba. 

Theorem 3 (Patel-Schneider) t-entailment is decid- 
able. 

With these 
be proven. 

intermediate results, the main theorem can 

Theorem 4 The validity problem for sentences of the 
form OKB > Ba is decidable, assuming that KB is an 
objective sentence and a is a basic sentence not con- 
taining Sk-functions. 
Proof: Lemma 1 implies that deciding whether a KB 
believes an arbitrary basic sentence reduces to deciding 
whether it believes an objective sentence. Thus let us 
assume that both KB and o are objective. Next, with- 
out loss of generality, we replace every standard name 
in KB and a by a new constant occurring nowhere else. 
In addition, we simplify both sentences in case they 
contain occurrences of true (e.g. y V ltrue reduces to 
7). Then IOKB 1 Ba iff FBKB 1 Ba (by lemma 2) 
iff (a) KB = false or (b) a = true or (c) KB it cx 
(by theorem l), which is decidable (theorem 3). 

A Decidable KR Service 
In this section, we apply the results of this paper to the 
specification of a KR service in the sense of [15]. The 
idea is that a KB can be defined in purely functional 

terms by two operations ASK and TELL that allow a 
user to ask the KB queries and to add new information 
to it. All a user has to know about is an interaction 
langusage in which to phrase queries and updates. By 
defining the interaction language to consist of the basic 
sentences of L that do not contain Sk-functions, the 
results of the previous section can be readily applied to 
define ASK and TELL. Note that, from a user’s point of 
view, the absence of Sk-functions is of no concern since 
there are an infinite supply of other function symbols 
(9&o) at hand. 
Definition 12 ASK and TELL 
Let KB be an objective sentence and 0 a basic sentence 
without Sk-functions. 

( YES if bOKB 1 BCY A-B~CX 

TELL[KB, al = KBA II~IIKB - 

Note that the way TELLing a sentence o to a KB is han- 
dled. Any occurrence of a By within LY is first evalu- 
ated with respect to the old KB with the effect that an 
objective KB is always transformed into another objec- 
tive KB. ASK and TELL are also implementable, which 
follows easily from the last section. 
Corollary 1 ASK and TELL are decidable. 

Apart from being decidable, are these routines also ef- 
ficient? To answer this question, note that the com- 
plexity for both operations is dominated by the com- 
plexity of t-entailment, which follows easily from the 
way queries are evaluated using definition 10 and 11. 
Patel-Schneider [22] shows that, while t-entailment is 
intractable in general, it is indeed tractable under the 
following assumptions: the KB is in conjunctive nor- 
mal form (CNF); queries, when converted into CNF, 
are of size at most log(]KB]); individual clauses are of 
constant size; and finally, only log( /KB 1) clauses in the 
KB subsume a given clause in the query. From a KR 
point of view, these assumptions seem quite reason- 
able. The last condition, for example, can be satisfied 
if the KB uses many different predicates. 

Conclusions 
In this paper, we have developed a new model of be- 
lief and only-believing with perfect introspection for a 
full first-order language with function symbols. Most 
importantly, the model of belief has attractive compu- 
tational properties in that it specifies first-order knowl- 
edge bases whose epistemic states are computable and, 
under certain assumptions, efficiently computable. 

There are several ways this framework can be ex- 
tended. In a forthcoming paper [13], we show how an 
equality predicate and quantifying-in can be incorpo- 
rated, which allows us to make important distinctions 
between “knowing that” and “knowing what.” 
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The deductive component of the current framework 
is rather weak. One way of increasing its power is 
by using a sorted logic approach as in [4]. Also, the 
work by McAllester et. al. [19] seems applicable in 
this context. 

Finally, the logic developed here captures aspects 
of nonmonotonic reasoning similar to other autoepis- 
temic logics. For example, the default assumption that 
Tweety flies unless known otherwise is captured by the 
valid” sentence 

O[lBlFly(tweety) 3 Fly(tweety)] > BFly(tweety). 

In the first-order case, it has so far been very difficult 
to investigate how default reasoning affects the overall 
complexity of reasoning because the underlying deduc- 
tive component is already undecidable. Our framework 
allows, for the first time, to investigate this issue with 
a decidable deductive component in hand. 
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