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Abstract 
Reasoning about causality is an interesting applica- 
tion area of formal nonmonotonic theories. Here we 
focus our attention on a certain aspect of causal rea- 
soning, namely causaZ asymmetry. In order to provide 
a qualitative account of causal asymmetry, we present 
a justification-based approach that uses circurnscrip- 
tion to obtain the minimality of causes. We define the 
notion of causal and evidential support in terms of a 
justification change with respect to a circumscriptive 
theory and show how the definition provides desirable 
interactions between causal and evidential support. 

1 Introduction 
Commonsense reasoning has provided a rich applica- 
tion area for nonmonotonic logic. As some researchers 
have noted, however, certain aspects of causal reason- 
ing which are prevalent in ordinary discourse have not 
received due treatment by nonmonotonic logic[Pearl, 
19SSa]. 

In this paper, we will focus on the phenomenon of 
causal asymmetry which results because two causes 
of an observation interact differently than two conse- 
quences of a common cause. In [Pearl, 19SSa], Pearl 
presents a causal reasoning system as an attempt to 
provide a qualitative account of such causal direc- 
tionality shown in his Bayesian analysis[Pearl, 1988b]. 
His system, however, generates certain counterintuitive 
conclusions, as Section 3 will illustrate. 

Here we introduce a better qualitative account of 
causal directionality that overcomes the difficulty men- 
tioned in Section 3. Our approach is not as detailed as 
the probabilistic account of causal directionality, but a 
qualitative approach has its advantages: it is simpler 
and more intuitive than the probabilistic approach. 

In Section 2, we will briefly describe Pearl’s causal 
reasoning system and clarify a few implicit assump- 
tions made by the system. In the following sec- 
tion, we will look into some difficulty with his frame- 
work. In Section 4, we present a simple circum- 
scriptive theory[McCarthy, 19861 that allows us to 
draw explanatory conclusions. Finally we will give a 
justification-based account of causal directionality us- 

ing this circumscriptive theory and also discuss how 
our approach improves on Pearl’s. 

2 I?earl’s Causal Reasoning System 
In [Pearl, 1988a], Pearl states that it is necessary to 
know whether a given proposition was established by 
causal or evidential considerations, and that there is 
a causal asymmetry stemming from the fact that two 
causes of an observation interact differently than two 
consequences of a common cause; in the absence of a di- 
rect relation between the two, the former compete with 
each other, while the latter support each other. For ex- 
ample, when we observe a rash we are more likely to 
observe fever as well because measles always involves 
both fever and rash. In contrast, when we know that 
the cause of a rash is measles, it is less likely that the 
patient is also suffering from an allergy. In order to 
produce such an asymmetry, Pearl proposes a reason- 
ing system in which every proposition is labeled as ei- 
ther cuusalty or evidentially established, every rule is la- 
beled as either cuusuZor evidential, and inference rules 
are defined according to these labels. That is, each rule 
in the system is labeled as C (connoting “causal”) or 
E (connoting “evidential”), and P -)c Q means “P 
causes Q” and Q +E P means “Q is evidence for P”. 
Similarly each proposition is labeled either as E or C 
where E(P) means that P is believed for evidential 
reasons and C(Q) means that Q is believed for causal 
reasons. The semantics of the C - E distinction are 
defined by the following three inference rules 

P--e& P--v& P-E& 

C(P) E(P) E(P) 

C(Q) C(Q) E(Q) 
while purposely precluding the inference rule 

P-+E& 

cm 

Q 
Before we explain how these inference rules deal with 

causal asymmetry, we want to clarify a few assump- 
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tions made by Pearl’s reasoning system. First, in his 
reasoning system it is not specified how we initially 
obtain propositional labels. When we have some la- 
bels for certain propositions initially, we can deduce 
other labeled propositions by using the initially labeled 
propositions and rules according to the inference rules 
sanctioned by the system. Without any initial labeling, 
however, we cannot use the inference rules at all. But 
from the fact that we can use a causal rule P -)c Q to- 
gether with a proposition P regardless of its label, we 
can obtain labels for certain propositions without any 
initial labeling for P. From now on, whenever we have 
a rule P -+c Q and a proposition P without any label, 
we will assume that C(Q) follows. Secondly, there is an 
implicit correspondence between causal and evidential 
rules. That is, the database must have Q -fE P when- 
ever it has P -)c Q. If we can represent evidential 
rules without assuming the existence of their causal 
counterparts, some inference rules can be counterintu- 
itive. If there is a strong correlation between two events 
without any causal connection, sometimes we should 
allow the inference prohibited by Pearl’s reasoning sys- 
tem. For example, suppose that the database has the 
sentence ‘v’x.Take,cs22l(x) +E BrownHair to- 
gether with C(Take,cs221( John)); we can easily imag- 
ine a situation in which John is taking cs221 to fulfill 
his course requirements, hence Take As221 (John) is 
“causally established.” It is apparent that we should 
conclude BrownHair( John). We can justify the rea- 
soning system presented above only when we assume 
the coexistence of both causal and evidential rules. 

With these assumptions in mind, let us look at 
the following example, which is slightly modified from 
[Pearl, 1988a]. 

Example 1 
Suppose we have the knowledge about causation that 
rain causes grass to be wet, that a sprinkler also causes 
wet grass and that rain causes slippery roads. Its trans- 
lation into Pearl’s representation will be as follows: 

Rain +C WetGrass; 
Sprinkler -+c WetGrass; 
Rain +C SlipperyRoad; 
Wet Grass +E Rain; 
WetGrass +E Sprinkler; 
SbipperyRoad -fE Rain. 

If we came to know WetGrass because of Rain, 
WetGrass would be labeled C according to the as- 
sumption mentioned above. When WetGrass is la- 
beled C, it cannot be used to infer Sprinkler together 
with the evidential rule WetGrass -)E Sprinkler, be- 
cause it is not sanctioned by the system. This shows 
how two causes of a single effect work against each 
other. On the other hand, if SlipperyRoad were la- 
beled E, we would deduce E(Rain) using the eviden- 
tial rule SlipperyRoad -)E Rain, and C(WetGrass) 

would follow from E(Rain) and Rain +C WetGrass. 
In this case, two consequences of a single cause work 
for each other. 

3 Difficulty with Pearl’s System 

With the assumptions mentioned in the previous sec- 
tion in mind, we will now see what can go wrong 
with Pearl’s reasoning system. For instance, when 
WetGrass is established evidentially, it can be used to 
infer both Rain and Sprinkler, which is rather coun- 
terintuitive. Instead, what we would like to conclude 
from WetGrass is Rain or Sprinkler. 

One way to overcome this counterintuitive result is 
to weaken the meaning of the labels (C and E) from 
that of acceptance to that of support. That is, we rein- 
terpret the meaning of E(Sprinkder) as there is evi- 
dential support for Sprinkler, not as Sprinkler holds 
for an evidential reason. Once we reinterpret the E la- 
bel as support, concluding E(Rain) and E(Sprinkler) 
from WetGrass is no longer counterintuitive. We have 
reason to believe that it might have rained, and also 
that the sprinkler might have been on. 

Once we weaken the meaning of the E label from ac- 
ceptance to support, we must also weaken the meaning 
of the C label. Since one of the three inference rules 
allows us to infer C(Q) from E(P) and P -+c Q and 
E(P) means only that P is evidentially supported, we 
are no longer justified in saying that Q holds for a 
causal reason. Instead, we can say that Q is cuusuNy 
supported. 

Having a notion of support and making a distinction 
between causal and evidential support may be useful. 
However, we still need a mechanism to draw conclu- 
sions. If we know it rains, it is clear that we should 
conclude that the grass is wet, in addition to conclud- 
ing that there is causal support for the wet grass. In 
the following sections, we will show how a simple cir- 
cumscriptive theory can be used to draw conclusions 
and then see how we can use this circumscriptive the- 
ory to define the notion of support. 

4 Circumscription for Minimization of 
Causes 

In this section, we propose a simple circurnscriptive 
theory which allows us to draw explanatory conclusions 
by minimizing causes. 

In order to minimize causes, we will reify causal in- 
formation by using the predicate causes(P, Q). The 
intended meaning of causes(P, Q) is that P causes 
Q to hold. We will also use the predicates holds(P) 
and holds,acausadly( Q) , meaning that P is true and 
that Q is true without any cause being known, respec- 
tively. Let the causal theory be divided into two parts, 
7 =< R,F >. R consists of instances of the causes 
predicate together with the following axiom: 
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Vx.holds(x) - 
[jy.causes( y, x) A holds( y)] V holds,acausally(x) (1) 

F consists of instances of the holds predicate’. 
Given a two-part background theory < R, F >, 

we will circumscribe it by minimizing causes and 
holds&causally with causes given higher priority. 
causes is given higher priority because we would like 
to say that something holds acausally only when we 
cannot find a cause for it from all we know. That is, 
we are justified in saying that an event holds acausally 
only when we do not have any information about its 
cause. 

Example 2 
Let our background theory be as follows: 

R : (causes(Rain, WetGrass), 
causes(Rain, SlipperyRoad), 
causes(Sprinkler, WetGrass)) with Axiom (1) 

F : (holds(WetGrass)) 

If we circumscribe the background theory in 
this example, we can conclude holds(Rain) V 
hoZds( Sprinkler). Consider all the minimal models 
that satisfy the result of circumscription. In all min- 
imal models, nothing holds acausally. By the ax- 
iom (l), we know that hoZds(WetGrass) is true if 
and only if any of its causes holds. In this exam- 
ple, the only causes for WetGrass are Rain and 
Sprinkler. Hence holds(Rain) V holds(Sprinkler) is 
true in all minimal models. However, we will not have 
holdstRain) /\ holds(SprinkIer). 

Using the circumscribed background theory, we will 
define the notion of support in the following section. 

5 Supports 
As we saw in the previous section, circumscription al- 
lows us to draw explanatory conclusions without any 
unintuitive behavior, and that without the burden 
of specifying propositional labels initially. However, 
the notion of causal/evidential support may be useful 
for certain problems. For instance, we may want to 
know how one event causally/evidentially affects an- 
other even if this event does not logically follow from 
the other. 

As a logical abstraction of probabilistic analysis, we 
will use a justification-bused notion of support. First, 
we will define what a justification is. Then we will 
define causal and evidential support in terms of justifi- 

‘How to axiomatize causality is an important problem 
in and of itself, but it is not what we are interested in. 
We are interested in how to obtain the proper interaction 
between causal and evidential support. We believe that the 
results in the following sections apply independently of the 
axiomatization used for a causal theory. 

cation change and compare our notion of support with 
the propositional labels in Pearl’s C - E system. 

5.1 Justification 

Informally, a justification for a certain proposition is a 
reason to believe that proposition. Let 7 be our back- 
ground theory. We will define Jr to be a mapping 
from a well-formed formula to a well-formed formula. 
If Jo = /?, then Q will be true whenever p (a jus- 
tification for (w) is true in the models of the theory 7. 
That is, 7 U (p} b LY. A formal definition for a justi- 
fication follows. 

Definition 5.1.1 (Justification): 
Given a set of first-order sentences ‘7 and a well-formed 
formula (Y, JI(CV) = /3 if and only if 

for each /3j such that 
(1) 7 U {@j} is satisfiable; 
(2) 7 U {Pj) I= a; and 
(3) pi is a conjunction of literals. 

Our definition of justification is closely connected 
with the definition of minimal support in the Clause 
Maintenance System (CMS) by Reiter and deKleer 
[Reiter and de Kleer, 19871. They define support as a 
set of literals which satisfies the conditions (1) and (2) 
in Definition 5.1 .l, and minimal support as a minimal 
such set. Here we obtain minimality of justification by 
taking a disjunction of all &‘s rather than requiring 
each ,L$ to be minimal. That is, we would like to think 
of justification as a well-formed formula in disjunctive 
normal form. Viewing justification as a formula allows 
us to handle disjunctive explanation easily, thus giving 
us much more flexibility in defining support. 

The third condition deserves some attention. Let 
us see what happens if we don’t have this condition. 
Given an empty background theory, the justification 
for P will be P itself. That is, it can only be self- 
justified because we do not know anything about P. 
Once we add Q, which may have nothing to do with 
P, justification for P will change to 1Q V P. This 
is equivalent to Q > P. This is undesirable because 
Q can be a random proposition which may have no 
relevance to P. If we don’t have the condition (3), 
T Z) o will be a valid /3i for justification of cy for any r 
in 7. 

The addition of condition (3) creates another inter- 
esting effect. Suppose our initial background theory 
was R z (1Q v P), i.e., we explicitly name Q > P as 
R. Now JT(P) = R A Q. Simply giving a name for 
Q > P causes it to become a part of justification for P. 
At first glance, it looks rather strange, but in a sense 
we gave a possibility of using certain literals, in this 
example R and Q, to express justifications by men- 
tioning them in the background theory. Once we note 
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this feature, we can use it as a guide for characterizing 
the terms in which we should express justifications. 

Now we will define a partial order on justifications 
in terms of entailment. 

Definition 5.1.2 (Ordering on Justifications): 
Given two well-formed formulas ,& and ,&, 

(I) Pi < P2 if and only if & k &, and 
(2) PI < P2 if and only if ,h < ,& and ,4 $ PI. 

Given two different justifications for a, PI and &, 
we will say that p2 is better than ,& if ,@I < p2, that is, 
we will say that a semantically weaker justification is 
better. Essentially a justification for cy is a formula we 
have to add to the background theory so that we can 
deduce CY. If one justification is semantically weaker 
than others, it means that what we must have in addi- 
tion to the background theory is weaker. That’s why 
we like a semantically weaker justification better. 

We will say that a proposition CY is supported when 
its justification gets better due to the addition of some 
other proposition ,8 2. In the next, section, we will 
define support in terms of an increase in justification, 
and see how our notion of support is different from 
Pearl’s propositional labels. 

5.2 Causal and Evidential Supports 

Now we will define causal and evidential supports. In 
the following, circumscription minimizes causes and 
holds&causally with causes given higher priority. 

Definition 5.2.1 (Evidential Support): 
A proposition cy is evidentially supported with respect 
to a background theory 7 =< R, F > if and only if 
there is a formula p such that 

(1) 7 I= P; 
t2) JR(a) f JR”{/3}(f$ 

(3) bRC(R”F--(P))(Q) < &IRC(R”F)(+ 

Definition 5.2.1 says that /3 evidentially supports cr 
when there is no causal relation between ,B and a (the 
second clause), but, rather there is evidential relation 
between them so that the justification for a! increases 
due to circumscription, but not due to the initial back- 
ground theory. 

Definition 5.2.2 (Causal Support): 
A proposition O! is causally supported with respect to 
a background theory 7 =< R, F > if and only if there 
is a formula /3 such that 

2 We were insp ired by Gardenfors’ work on explanation 
[Gardenfors, 19881 in that we require an increase in justi- 
fication, hence a decrease in surprise, for a proposition to 
be supported. 

(1) p is supported (either evidentially or causally) 
01: F I= P; 

(2) JR(~)< JRU{/+); 

(3) P &t cY* 

p causally supports o when /3 itself is supported and 
there is a causal relation between ,8 and CY. The third 
clause is to prevent a circular definition of support. 
Without it, cy may be causally supported if it is either 
evidentially or causally supported. 

Let us work through some examples. Let our back- 
ground theory have the same R as in Example 2. When 
F is (holds(SlipperyRoad)), holds(Rain) is eviden- 
tially supported. In order to see this, we have to com- 
pare the justifications for hoZds(Rain) with and with- 
out hoZds(SlipperyRoad), given a circumscribed back- 
ground theory. The following relation holds between 
two different justifications: 

JcIRc(R"F-(holds(slippergrRoad)3)(holdS(in)) 
< Jcmc(RuF) (hOlds( Rain)) 

Without holds(SZipperyRoad) in the background 
theory, the justification for holds(Ruin) with re- 
spect to the circumscribed theory is unknown3. 
With hoZds(SZipperyRoad) in the background the- 
ory, the result of circumscription makes the jus- 
tification for holds(Rain) True. Hence we can 
say that holds(SlipperyRoad) makes the justifica- 
tion for hoZds(Ruin) increase. Also with this back- 
ground theory, hoZds( WetGrass) is causally supported 
because holds( Ruin) is evidentially supported and 
causes(Rain, WetGrass). Here two consequences of 
a common cause holds(Ruin) support each other. 

When F is (holds(Rain)), holds(Sprinkler) is not 
evidentially supported because its justification does 
not increase but, rather decreases. Justifications for 
hoZds(Sprinkler) with respect to the circumscribed 
background theory with and without hoZds(Ruin) are 
as follows: 

JCrRc(RuF-{holas(Raan)))(hOldS(sPrinkler)) 
- holds( WetGrass) A lholds( Rain) 

JcIRc(i”F)(holds(Sprinkler)) = unknown 

This situation arises because if we apply cir- 
cumscription to the background theory without 
holds( Rain), we can infer holds(WetGrass) > 
holds( Rain) V holds(Sprinkler). With holds(Rain) 
in the background theory, however, the justification 
for hoZds(Sprinkler) becomes unknown. Hence, the 
justification for hoZds(Sprinkber) decreases due to the 
addition of holds(Ruin) to the background theory. In 
this case, two causes of an observation do not support 

3When a proposition can only be 
refer to its justification as unknown. 

self-justified, we will 
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each other but rather compete with each other. 
Our definition of support is different from Pearl’s 

propositional labels in two ways. The first difference 
is in its partiality. That is, when a conjunction of 
multiple events El, E2, and E3 causes another event 
E4, any combination of El, E2, E3 will causally sup- 
port E4; this differs from Pearl’s system, in which all 
three events must happen in order to causally sup- 
port E4. As for evidential support, Pearl’s system 
is already partial but there still is a subtle differ- 
ence. To illustrate this, let R be as in Example 2 
and F be (holds(WetGrass), holds(SlipperyRoad)). 
According to definition 5.2.1, hoZds(Rain) is eviden- 
tially supported, but hoZds(SprinkZer) is not. In 
Pearl’s system E(SprinkZer) will follow if WetGrass 
and SlipperyRoad are evidentially supported. We be- 
lieve that this is another aspect of causal reasoning 
that a logical framework should capture (i.e., when 
a certain cause must hold in order to explain mul- 
tiple evidence, it explains away others). There is 
one more difference in the way we define support for 
events in F. For instance, when our background the- 
ory has R : (causes(P,Q)}, F : {holds(Q)}, holds(P) 
is evidentially supported and holds(Q) is causally sup- 
ported. However, in Pearl’s system, neither E(P) nor 
C(Q) follows from the theory, {P -+c Q, Q} . This 
again shows the advantage of our approach. 

6 Conclusion 
We have presented a very simple circumscriptive the- 
ory to draw explanatory conclusions from a causal 
background theory. We have also showed that we can 
define the notion of causal/evidential support using cir- 
cumscription and changes in justification. Not only 
does our approach avoid certain counterintuitive re- 
sults, but it also serves as a better logical abstraction 
of the probabilistic account of causality in the sense 
that various desirable interactions between causal and 
evidential supports fall out naturally from their seman- 
tic definitions. Our approach provides a notion of both 
acceptance and support of a proposition. It also al- 
lows us to define support without any initial labeling of 
propositions in the background theory. Finally, it han- 
dles the phenomenon of causal asymmetry in a more 
sophisticated way in that one cause explains away oth- 
ers not only when it is directly known, but also when 
it can be inferred indirectly from some other proposi- 
tions. Our approach is not as detailed as a probabilistic 
analysis, but it is an improvement over Pearl’s system. 
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