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Abstract 

Closed world reasoning is a common nonmono- 
tonic technique that allows for dealing with neg- 
ative information in knowledge and data bases. 
We present a detailed analysis of the compu- 
tational complexity of the different forms of 
closed world reasoning for various fragments 
of propositional logic. The analysis allows us 
to draw a complete picture of the tractabil- 
ity/intractability frontier for such a form of non- 
monotonic reasoning. We also discuss how to 
use our results in order to characterize the com- 
putational complexity of other problems related 
to nonmonotonic inheritance, diagnosis, and de- 
fault reasoning. 

1 Introduction 

Closed World Reasoning (CWR) is a common nonmono- 
tonic technique that allows for dealing with negative in- 
formation in knowledge and data bases. 

The simplest form of closed world reasoning is the 
(simple) closed world assumption (CWA), introduced by 
Reiter [13], which states that a negative ground fact of the 
form -p is inferred from a knowledge base T just in case 
the corresponding positive fact p cannot be deduced from 
T. This represents the idea that every positive fact that is 
not known to be true, should be considered false. A se- 
mantic characterization of the CWA can be given in terms 
of minimal Herbrand models: reasoning with the CWA is 
equivalent to assuming that every ground fact which is not 
included in the intersection of all the Herbrand models of 
T is false. 

Starting from the consideration that the simple CWA 
may lead to inconsistency when the knowledge base 
contains disjunctive positive assertions, such as (a V 
b), Minker [lo] proposed a new form of closed world 
reasoning, called generalized closed world assumption 
(GCWA), which states that the negative facts to be in- 
ferred from a knowledge base T, should be those which 
do not appear in any of the minimal models of T. This 

. 

principle takes into account that a (non-Horn) theory may 
have, in general, more than one minimal model, and every 
such model should be considered in closed world infer- 
ence. 

Gelfond and Przymusinska [4] extend the work of 
Minker, by allowing the generalized closed world assump- 
tion to be applied to a specified set P of (not necessarily 
all) predicates of the knowledge base. The resulting form 
of closed world reasoning, called careful closed world 
assumption (CCWA), is shown to be more expressive 
than the original generalized closed world assumption. In 
particular, it allows the derivation of new positive facts, 
which is impossible in both the CWA and the GCWA. 

Gelfond, Przymusinska, and Rrzymusinski [5] deal 
with an extension of the CCWA, proposing the so-called 
extended closed world assumption (ECWA), which is 
shown to be the most powerful formalization of closed 
world reasoning. In particular, they prove the equivalence 
(at least for propositional theories) between ECWA and 
circumscription [9]. 

Although the importance of the above forms of CWR 
has often been stressed both from a theoretical and a prac- 
tical point of view, a complete analysis of the computa- 
tional complexity of CWR is missing. Notice that, on 
the contrary, such an analysis has been provided for other 
forms of nonmonotonic reasoning, such as default reason- 
ing [6], abduction [2], and path-based inheritance [ 171. 

The aim of this paper is to present a detailed analysis 
of the computational complexity of closed world reason- 
ing. In particular, we are interested in exploring the trade- 
off between the tractability of the inference problem and 
the expressive power of the representation language. To 
this purpose, we concentrate our attention on propositional 
logic (although our results can be generalized in several 
ways, as mentioned in Section 4). which provides a rep- 
resentation language which is decidable, and, at least in 
some case, tractable, and we consider different subclasses 
of propositional formulae, each one characterized by some 
syntactic restriction. 

In the analysis, we shall refer to the results concem- 
ing the computational complexity of CWR which have 
appeared in the literature since now, namely [1,7,8,16]. 
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The paper is organized as follows. In Section 2 we 
provide some definitions and results which will be used 
in the subsequent sections. In Section 3 we present the 
complexity analysis: the analysis is performed along two 
directions, one concerning the expressive power of the 
language, and one concerning the form of CWR. Finally, 
in Section 4 we discuss possible applications of our results 
to other reasoning problems. 

2 

We always refer to propositional formulae in conjunctive 
normal form, called CNF formulae or simply formulae. 
The set of propositional letters appearing in a formula is 
called its alphabet. A CNF formula is a conjunction of 
clauses, where a clause is a disjunction of literals, and a 
literal is either a propositional letter or its negation. 

A closed world reasoning rule (CWR-rule) is a rule 
specifying a set of clauses to be conjoined to a formula 
T in order to obtain the closure of T according to some 
closed world resoning criterion. Some CWR-rule requires 
the alphabet of the formula to be partitioned into three sets, 
denoted P, Q, 2 respectively. P contains the letters to be 
minimized, 2 contains the letters whose truth value can 
vary when minimizing the letters in P, and Q contains all 
the remaining letters. Given a set of letters R, we denote 
by R+ (resp. R-) the set of all positive (resp. negative) 
literals from R. 

All the forms of CWR we consider in this paper can be 
abstractly characterized as follows. 

Definition I. Let T be a propositional formula, and 
(P; Q; 2) be a partition of the letters of its alphabet. 
We define the closure of T with respect to the CWR- 
rule a as follows: 

a@‘; P; Q; 2) = T U {TIC 11-C is free for negation in T 
with respect to cu} 

where K is a formula whose form depends on Q. 

As a notational convenience, we say that the formula 
I< is a-ffn to mean that it is free for negation with respect 
to the CWR-rule Q in (T; P; Q; 2). In order to precisely 
characterize the different forms of CWR, we now consider 
every CWR-rule a, specifying what it means for a formula 
to be a-ffn. 

e The CWA-rule corresponds to the (simple) closed 
world assumption [13]. IC is CWA-ffn if K is a posi- 
tive literal and T F K. 

e The GCWA-rule corresponds to the generalized closed 
world assumption [lo]. K is GCWA-ffn if K is a positive 
literal and, for each positive clause B such that T p B, 
it holds that T If: BV K. 

8 The EGCWA-rule corresponds to the extended gener- 
alized closed world assumption [ 181. K is EGCWA-ffn if 
I< is a conjunction of positive literals and, for each posi- 
tive clause B such that T k B, it holds that T k B V K. 

The CCWA-rule corresponds to the careful closed 
world assumption [4]. The letters of T are partitioned 
into (P; Q; 2). Ii’ is CCWA-ffn if II is a positive literal 
from P and, for each positive clause B whose literals 
belong to P+ U Q+ U Q- such that T /#= B, it holds that 
T /# BVK. 

The ECWA-rule corresponds to the extended closed 
world assumption [S]. The letters of T are partitioned into 
(P; Q; 2). Ii’ is ECWA-ffn if I< is an arbitrary formula 
not involving literals from 2 and, for each positive clause 
B whose literals belong to P+ U Q+ U Q- such that T k 
B, it holds that T /$ B V I<. 

Notice that in the CWA, GCWA, EGCWA rules, there 
is no need to partition the letters into P, Q, 2, and there- 
fore, we can simplify the notation and write CWA( T) 
GCWA(T), and EGCWA(T). 

The CWR-rules can also be given a semantical charac- 
terization, which is based on the notion of minimal model. 
A model of a formula T is a truth assignment that satisfies 
T. For any two models i’kf, N of T, we write M 5 N if 
the set of letters of T which are assigned true by M is a 
subset of the analogous set for N. Moreover, if (P; Q; 2) 
is a partition of the letters of T, we write M L(P;z) N 
if M and N assign the same truth value to the letters in 
Q, and the set of letters of P which are assigned true by 
M is a subset of the analogous set for N. We say that a 
model M is minimal for T if there exists no model N of 
T such that N 5 M and M $ N. Analogously, we say 
that a model M is (P; Z)-minimal for T if there exists no 
model N of T such that N L(p;z) M and M $p;z) N. 
Notice that (P; Z)-minimality reduces to minimality when 
Q=Z=0. 

The semantical characterization of freeness for negation 
is now given by the following properties. 

o K is CWA-ffn in T iff there exists a model M of T 
such that M &c: K. 

e I< is GCWA-ffn in T iff for each minimal model M 
of T it holds that M p K. 

e I< is EGCWA-ffn in T iff for each minimal model 
M of T it holds that M F K. 

e I< is CCWA-ffn in (T; P; Q; 2) iff for each (P; Z)- 
minimal model M of T it holds that M k K. 

o li is ECWA-ffn in (T; P; Q; 2) iff for each (P; Z)- 
minimal model M of T it holds that M k K. 

From the above properties, one can easily show that 
for any formula F, EGCWA(T) j= F iff for each 
minimal model M of T it holds that M j= F, and 
ECWA(T; P; Q; 2) + F iff for each (P; Z)-minimal 
model M of T it holds that M b F. More- 
over, it is shown in [5] that for any formula F, 
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ECWA(T; P; Q; 2) b F iff CIRC(T; P; Q; 2) j= F, 
where CIRC(T; P; Q; 2’) denotes the circumscription 
of P in T with variables 2. In other words, the ECWA 
is equivalent to circumscription, at least for propositional 
formulae. 

The different forms of CWR are not independent from 
each other. In the rest of this paper we shall make use of 
the following facts relating the various CWR-rules. 

Fact 1: for each formula F, if T is Horn, i.e. 
is constituted by clauses with at most one positive lit- 
eral, then CWA(T) j= F B GCWA(T) b F iff 
EGCWA(T) b F iff ECWA(T; P;@; 0) j= F iff 
CCWA(T; P; 8; 0) b F. 

Fact 2: for each formula F, EGCWA(T) j= F iff 
ECWA(T; P;&@) k F. 

Fact 3: for each formula F, GCWA(T) b F iff 
CCWA(T; P; 8; 0) j= F. 

Fact 4: for each literal L belonging to P+ U P- , 
CCWA(T; P; Q; 2) + L iff ECWA(T; P; Q; 2) + F. 

As we said in the introduction, in this paper we are 
concerned with CWR in the context of propositional logic 
(although our results can be generalized in several ways, 
see Section 4). Since we are interested in the tractability 
frontier for CWR, we focus our attention on those classes 
of formulae for which monotonic inference is a polyno- 
mial task. The results reported in [15] show that this holds 
for three classes of formulae, namely, Horn, dual-Horn, 
and Krom. 

In the rest of the paper, we shall refer to various subsets 
of such classes. A complete classification of all the classes 
of propositional formulae that we consider is as follows: 

o Horn: at most one positive literal per clause 

e dual-Horn: at most one negative literal per clause 

0 Krom: 
or negative 

at most tW0 literals per clause - either positive 

o Definite: exactly one positive literal per clause 

ID HomKrom: Horn and Krom 

e dual-HomKrom: dual-Horn and Krom 

e HomKrom-: HomKrom with no negative clauses 
having 2 literals 

e 2-positive-Krom: exactly 
negative literal, per clause. 

two positive literals, and no 

The complexity analysis presented in the next section, 
will be performed along two directions, concerning the 
expressiveness of the language, and the form of CWR, 
respectively. For those CWR-rules requiring the letters of 
a formula T to be partitioned into the three sets P, Q, 2 
(e.g. CCWA and ECWA), we will consider two special 
cases, namely Q = 0 or 2 = 0. 

3 Complexity Analysis 

In this section we consider the different forms of closed 
world reasoning, and, for each form, we analyze the 
various classes of formulae, providing lower complexity 
bounds for the deduction problem (for the sake of brevity, 
most of the proofs are omitted). 

With regard to the upper complexity bounds, we notice 
that, from the analysis of Schlipf [16] it follows that per- 
forming deduction under the CCWA in propositional logic 
is both an NP-hard and a coNP-hard problem. Hence it 
is unlikely that the problem is either in NP or in coNP. 
Obviously, by Fact 4, this applies to the ECWA as well. 
In fact, we can go one step further, and prove that the 
deduction problem under the ECWA is in PSPACE, and 
in particular in the class II; of the polynomial hierarchy, 
although we do not know whether the problem is complete 
for such a class. A simple intuition supporting this fact 
is that, determining if ECWA(T; P; Q; 2) j= y can be 
done by checking if y is satisfied in all the truth assign- 
ments of T which are (P; Z)-minimal models of T, and 
the problem of checking if a truth assignment M of T is a 
(P; Z)-minimal model is in the class of coNP (it suffices 
to compare M with all the other truth assignments of T). 
A more detailed analysis of the upper complexity bounds 
for several classes of propositional formulae is described 
in [3]. 

3.1 CWA 
The results reported in [13] show that the application of 
the CWA to Krom and dual-Horn formulae may lead to 
inconsistency. Moreover, Minker [lo] shows that, when 
the CWA is consistent, it is equivalent to GCWA (see 
Subsection 3.2). 

In [ 11, it is shown that the deduction problem under 
CWA for Definite formulae is solvable in polynomial time. 
Since negative clauses do not contribute to the deduction 
(see [13]), this property extends to Horn formulae. By 
Fact 1, one can conclude that, for Horn formulae, the de- 
duction problem under both the GCWA and the EGCWA 
is polynomial too. 

3.2 GC 
In [7], it is shown that the problem of determining whether 
GCWA(T) b L, where T is a dual-Horn formula and L 
is a literal, is cow-hard. By Facts 1,2, and 3, this holds 
also for EGCWA, CCWA and ECWA. 

The deduction problem under the GCWA for Krom for- 
mulae is polynomial; this derives from Fact 3 and from a 
stronger result which will be presented in Subsection 3.4. 

Recently, Rajasekar, Lobo and Minker [ 121 have pro- 
posed a weak form of GCWA, called Weak GCWA 
(WGCWA), which applies to disjunctive logic programs 
(i.e. logic programs whose rules have any number of pos- 
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itive literals in the head) and is defined in such a way that 
every deduction under such a form reduces polinomially 
to deduction under the CWA on definite logic programs. 
It is easy to see that the WGCWA yields polynomial time 
deduction algorithms in the propositional case. 

3.3 EGCWA 
We already mentioned that the deduction problem under 
the EGCWA is polynomial for Horn formulae. The fol- 
lowing theorem shows that this is the only tractable case. 

Theorem 1 Let T be a 2-positive-lr’rom formula, and 
y any clause. Then determining if EGCWA(T) b y 
is a coNP-hard problem. 

PROOF (sketch): We reduce the unsatisfiability problem 
to our problem by exhibiting a mapping from any CNF 
formula 71‘ to a 2-positive-Krom formula 7r” and a clause 
C such that 7r is unsatisfiable iff EGCWA(r”) + C. 

Let 7r be a CNF formula on the alphabet L. Let L’ 
be the alphabet L U {Ti 1 a E L) . We define n’ on L’ 
as follows: 1. for each letter a of L, there is a clause 
wV+iin d; 2. for each clause 1~11 V - - s V -on V 

~n+lV’~‘V%+rn in K, there is a clause 7i7iV.. Wul,V 
w~+~ V . . . V w~+~ in 7r’. Obviously, r’ is satisfiable 
iff 7r is satisfiable. Let L” be the alphabet obtained from 
L’ by adding a new letter gi for each clause yi in x. 
We define ?y” on L” as follows: 1. for each letter a of 
L, there is a clause a V TX in K”; 2. for each clause 
“li = lull v . 

...V~W,VW~+~V...VW,+, mn, there 
are n+m clauses giVl?Ti,. . . ,giVU)n,giVw,+l,. . . ,giV 
w~+~ in 7r”. Notice that the above mapping from 7r to 
7r” is clearly polynomial, and 7r” is a 2-positive-Krom 
formula. Moreover, given a model M of 7r’, we can build 
a disjunction B such that 7r” b B V Ii and &’ k B, and, 
conversely, given a disjunction B such that ?Y” b B V I< 
and T” k B, we can build a model M of 7r’. Therefore, 
the conjunction ri’ = g1 A- - -Agh, where gr, . . . , gh are all 
the letters of L” corresponding to the clauses in 7r, is not 
EGCWA-ffn in 7r” iff X’ is satifiable. Taking into account 
that +< is a disjunction, and EGCWA(n”) + TIC iff 
K is EGCWA-ffn in K”, it follows that EGC WA( &‘) b 
1K iff ;rr is unsatisfiable. 0 

Taking into account Fact 2, we can conclude that the 
above result applies to the ECWA too. 

3.4 CCWA 
In [S] a detailed analysis of CCWA is presented. In partic- 
ular it is shown that determining if CCWA(T; P; Q; 8) b 
L, where L is a literal, is coNP-hard for Horn formulae. 
Moreover, two different problems are shown to be polyno- 
mial: CCWA(T; P; Q; 2) b y, where y is an arbitrary 
clause and T is HomKrom, and CCWA(T; P; 8; 2) b y, 
where y is an arbitrary clause and T is Krom. We com- 
plete the analysis of [8] by providing the following result: 

Theorem 2 Let T be a Krom formula, and y be 
a clause. Then the problem of determining if 
CCWA(T; P; Q; Z) + y is polynomial (see [3] for an 
O( lT12) algorithm). 

Notice that, by Fact 3, the above result on Krom for- 
mulae can be extended to the GCWA. 

3.5 ECWA 
We first present two 
HomKrom and Definite 

intractability results concerning 
formulae, respectively. 

Theorem 3 Let T be a HornKrom formula, y be a 
clause and L be a literal. Then both determining if 
ECWA(T; P; Q; 8) j= y and if ECWA(T; P; Q; 2) j= 
L are coNP-hard problems. 

Theorem 4 Let T be a Definite formula, and y 
be a clause. Then the problem of determining if 
ECWA(T; P; Q; 8) b y is coNP-hard. 

The above theorems can be proven similarly to theorem 
1. Moreover, we can strengthen the result of theorem 
1, by showing that, as far as 2-positive-Krom formulae 
are concerned, the problem of deducing literals under the 
ECWA is a coNP-hard problem, even if Q = 8. 

Theorem 5 Let T be a 2-positive-Krom formula, and 
L be a literal. Then the problem of determining if 
ECWA(T; P;& Z) b L is coNP-hard. 

The above theorem, together with theorem 2 and Fact 
4, allows us to conclude that determining whether a given 
literal L logically follows from ECWA(T; P; 8; 2) can 
be characterized as follows: the problem is polynomial for 
L E P+ U P-, whereas is coNP-hard for L E Z+ U Z-. 
Notice that the same holds for the case when Q # 8 (see 
[31). 

In the rest of this subsection, we discuss two tractable 
cases, concerning Horn and HornKrom-, respectively. 

Theorem 6 Let T be a Horn formula, and y 
be a clause. Then ECWA(T; P;O; Z) b y $7 
CCWA(T; P;0; Z) b y. Hence determining if 
ECWA(T; P; 0; 2) + y is a polynomial problem (see 
[8] for a polynomial algorithm). 

Theorem 7 Let T be a HornKrom- formula, and 
y be a clause. Then the problem of determining if 
ECWA(T; P; Q; Z) b y is polynomial. 

In [3], we present an algorithm that, given a 
HomKrom- formula T, and a clause y, determines if 
ECWA(T; P; Q; Z) b y. The algorithm uses a graph 
representation for T, and runs in O(T2) time. 

The above theorem is probably the first tractability re- 
sult concerning parallel circumscription. For example, it 
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Table 1: Sun-n-nary of the complexity analysis 

can be easily shown that the algorithm in [l l] for comput- 
ing circumscription is exponential even for HornKrom- 
formulae. This fact shows that in order to develop efficient 
methods for computing circumscription, it is necessary to 
look for structural properties of the ECWA-ffn formulae 
which are relevant to the deduction. 

All the complexity results about closed world reason- 
ing for the different classes of propositional formulae are 
summarized in Table 1, where P means “polynomial time”, 
coNP means coNP-hardness, and symbol “-” means non- 
applicable. Each entry referring to a result previously 
known, is marked with the appropriate reference. Entries 
without references refer to results presented in this paper. 

4 Applications 
In this section we briefly discuss some possible appli- 
cations of the complexity analysis developed in Section 
3. In general, our results can be used to characterize 
the complexity of any reasoning problem which can be 
formalized in terms of CWR on propositional formulae. 
We concentrate our attention to three of such problems, 
namely nonmonotonic inheritance, default reasoning, and 
diagnosis. 

As a first observation, notice that we can directly ap- 
ply all the above results to the problem of performing 
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CWR on a particular class of first order monadic theo- 
ries, called Inheritance Networks [8]. Moreover, it can 
be seen that the problem of reasoning under circumscrip- 
tion on an Inheritance Network N can be reduced to the 
one of performing deduction under the ECWA on a suit- 
able propositional formula obtained from N by means of 
a polynomial transformation. By virtue of this fact, some 
of the results presented in Section 3 can be used to give 
lower bounds to the complexity of performing deduction 
on circumscriptive Inheritance Networks, i.e. Inheritance 
Networks with defeasible rules, where the meaning of de- 
feasible rules is formalized in terms of minimization of 
abnormalities. 

With regard to diagnosis, in [14] a general method- 
ology for solving the problem of diagnosing a malfunc- 
tioning system is given. The system is described by 
means of a logical formula SD in which the distinguished 
unary predicate symbol ABNORMAL is used to model 
the malfunctioning of a component. Observations about 
the system behaviour are represented by a further for- 
mula OBS. A diagnosis is then defined as a minimal 
set A C COMPONENTS such that SD U OBS U 
{~ABNORMAL(c) 1 c E COMPONENTS\A} is 
consistent, where COA4 PON ENTS is the set of con- 
stant symbols of SD representing the system components. 

Reiter shows that there is a natural correspon- 



dence between the diagnoses of SD U 0 BS and 
the extensions of the default theory whose first-order 
part is SD U OBS, and whose default rules are 
C ~ABNORMAL(c)/~ABNORMAL(c) 1 c E 
COMPONENTS). It is easy to prove that, when 
SD U OBS can be expressed as a propositional for- 
mula, for example when the system is a digital circuit, 
the diagnosis problem can also be formulated as a de- 
duction problem under ECWA. This allows us to apply 
some of our results to the diagnosis problem. For ex- 
ample, consider a very simple digital circuit made up 
by only two kinds of components: the wire and the 
inverter. A way to model (unidirectionally) the be- 
haviour of these components is by means of the clauses 
oninput(wirei) A lab(wirei) > onoutput(wirei) and 
oninput(inverteri) A xb(inverteri) > 
lonoutput(inverteri). Now, based on the result stated 
in theorem 1, it can be shown that determining whether a 
given fact is true in all the diagnoses of a system of the 
above form is coNP-hard. 

Finally, we observe that our analysis can be used to 
obtain complexity results in the context of default logic. 
The basic observation is that skeptical reasoning in de- 
fault theories (i.e. validity in all the extensions of a de- 
fault theory-see [6]) can be reduced to ECWA, at least for 
some propositional default theories where defaults are of 
the form : la/la. In [6] it is shown that for a superclass 
of this class (namely Normal Unary default theories) skep- 
tical reasoning is polynomial if the first-order part of the 
theory is a conjunction of literals. By exploiting the re- 
sults of this paper, it is possible to prove that the problem 
is coNP-hard for a slight enhancement of the expressive 
power of the language, namely if the first-order part of 
the theory is a 2-positive-Krom propositional formula. 
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