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Abstract 

This paper describes a knowledge representa- 
tion and reasoning system that performs a lim- 
ited but interesting class of inferences over a 
restricted class of first-order sentences with op- 
timal eticiency. The proposed system can an- 
swer yes-no as well as w/z-queries in time that 
is only proportional to the Zength of the short- 
est derivation of the query and is independent 
of the size of the knowledge base. This work 
suggests that the expressiveness and the infer- 
ential ability of a representation and reasoning 
systems may be limited in unusual ways to ar- 
rive at extremely efficient yet fairly powerful 
knowledge based systems. 

Introduction 

Research in artificial intelligence has made it abun- 
dantly clear that tremendous computational activity un- 
derlies even the most commonplace intelligent behav- 
ior. For example, language understanding, a task that we 
usually perform so effortlessly and effectively, depends 
upon the agent’s ability to disambiguate word senses, 
recover the phrase structure of input sentences, resolve 
anaphoric references, impose selectional restrictions, rec- 
ognize speaker’s plans, perform numerous predictions, 
and generate explanations. 

Within the knowledge representation and reasoning 
paradigm, most of the above computations are viewed as 
inferences. Such a view, however, leads to the following 
paradox: A generalized notion of inference is intractable, 
yet the human ability to perform cognitive tasks such as 
language understanding in real-time suggests that we are 
capable of performing a wide range of inferences with 
extreme efficiency. 

The success of AI critically depends on resolving the 
above paradox. Fortunately, one is only faced with an 
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apparent paradox because humans are not general pur- 
pose reasoners - we can only perform a limited (but 
perhaps a fairly rich) class of inferences with extreme ef- 
ficiency. This suggests two alternate research strategies 
for addressing the paradox: One may attempt to char- 
acterize the class of inference that people perform with 
great efficiency and try and discover appropriate repre- 
sentations, algorithms, and computational architectures to 
perform these inferences with requisite efficiency. Unfor- 
tunately, a precise characterization of what humans can 
infer with ease does not appear to be in sight. An alter- 
nate strategy would be to develop a complexity theory of 
reasoning by identifying what classes of inference can be 
performed with what degree of efficiency. The work re- 
ported in this paper conforms to this latter strategy. Such 
a strategy has been pursued by several researchers (for 
example, [6, 10, 13, 9, 14, 7]), and their work has cov- 
ered a wide band of the complexity spectrum: Thus we 
have decidability results (e.g., [13]) as well as character- 
izations of simple knowledge representation systems that 
merely perform database retrieval [lo]. 

Most of the above results have been surprisingly neg- 
ative and have shown that even fairly restricted kinds of 
reasoning turns out to be intractable (for example, refer to 
[4, 71). Yet the human ability to understand language in 
real-time clearly suggests that there does exist a fairly rich 
class of reasoning that humans can perform effortlessly 
and within seconds. To appreciate the richness of such 
reasoning, consider the following sentence: “John seems 
to have suicidal tendencies, he has joined the Columbian 
drug enforcement agency”. Even though the reader would 
have understood the above sentence spontaneously, and 
perhaps within a few seconds, a careful analysis would re- 
veal that doing so requires performing a number of fairly 
elaborate inferences. For convenience let us agree to re- 
fer to such spontaneous and fast reasoning as reflexive 
reasoning. l 

lit is as if such reasoning is a rejlex response of our cognitive ap- 
paratus. Clearly, all human reasoning is not reflexive. 
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In evaluating the complexity of reflexive reasoning it 
must be recognized that such reasoning is performed with 
reference to an extremely large body of knowledge. We 
believe that a conservative estimate of the number of 
‘rules’ and ‘facts’ required to encode all relevant aspects 
of the domain of common sense will easily run into sev- 
eral million (perhaps, even more).2 In view of the above 
it appears that the time complexity of an inference algo- 
rithm for reflexive reasoning should at worst be sublinear 
in IKBI - where lK.Bl is the size of the knowledge base 
- and perhaps even be independent of IKBI. 

Reflexive reasoning inhoduces a very strong notion of 
effectiveness, one that seems formidable in view of the 
negative results cited above. In this paper we report an 
encouraging result. We identify a class of inference that 
is computable in time that is not only sublinear in I KB I 
but is also, in a sense, optimal. We describe a knowledge 
representation and reasoning system that can encode a re- 
stricted class of first-order sentences and answer a class 
of queries in time that is only proportional to the length 
of the shortest derivation of the query and is independent 
of I K B I. This work suggests that there exist interesting 
points in the tradeoffcontinuum between computational 
effectiveness and inferential/expressive power. It also 
demonstrates that it is possible to arrive at extremely ef- 
ficient yet fairly powerful knowledge representation sys- 
tems by explicitly recognizing the symbiotic relationship 
that exists between expressiveness, effectiveness of infer- 
ence, the choice of representation (data-structures), and 
the underlying model of computational. 

yes-no question. On the other hand, a query with existen- 
tially quantified variables corresponds to a wh-query and 
answering such a query involves findings variable bind- 
ing(s) for which the query follows from the rules and 
facts encoded in the system. 

It can be shown that the knowledge representation sys- 
ds soundly provided a query satisfies the fol- 

lowing conditions:3 

1. 

2. 

3. 

The number of distinct constants specified in the 
query does not exceed 0, where Q is an implemen- 
tation parameter (see Section 3). 

Any rule that participates in the derivation of the 
query must obey the following constraint: Any vari- 
able occurring in multiple argument positions in the 
antecedent of such a rule must get bound during the 
reasoning process (this, via backward chaining). 

During the processing of the query, each predicate 
may only be instantiated with one set of argument 
bindings. This restriction, however, only applies to 
run-time or ‘dynamic’ instantiations of predicates 
and not to ‘long-term’ facts stored in the system. 
Recently, we have extended the system to allow it 
to represent up to Ic - where k is a system parameter 
- dynamic instant&ions of each predicate during the 
processing of a query [l 11. (This extension is not 
discussed in this paper.) 

Functional Specification 

The knowledge representation system encodes rules and 
facts of the following form: 

VXl, . . . . x, [Pl(...)AP2( . ..)...AP.(...) =s 321, . ..q Q(...)] 

The arguments of Pi’s are elements of {x1, x2, . ..xm}. 

An argument of Q is either an element of {x1, x2, . ..x.), 
or an element of (zl , z2 , . ..z~). or a constant. It is re- 
quired that any variable occurring in multiple argument 
positions in the antecedent of a rule must also appear in 
its consequent. 

If the above conditions are met, the system answers 
yes to all yes-no queries that follow from the encoded 
rules and facts in time proportional to the length of the 
shortest derivation of the query. The system obeys the 
closed world assumption and produces a IU) answer in 
time proportional to d, where d equals the diameter of 
the inferential dependency graph associated with the rule- 
base (see Section 3). wh-queries are also answered in time 
proportional to d. Finally, the space complexity of the 
system is just linear in IKBI. 

Cognitive Significance 

Facts are assumed to be partial or complete instanti- 
ations of predicates. Thus facts are atomic formulae of 
the form P(t1,t2...tk) where ti’s are either constants or 
distinct existentially quantified variables. 

A query has the same form as a fact. A query all of 
whose arguments are bound to constants, corresponds to a 

Reflexive reasoning takes place with reference to a large 
body of knowledge and even though each reasoning 
episode may involve a large number of rules and facts, 
there is considerable psychological evidence to suggest 
that most cognitive tasks performed efficiently without 
props involve only a small number of distinct entities. A 
reasonable estimate of the maximum number of distinct 
entities we can deal with at a time is around seven [12]. 
It must be emphasized that the limit is on the number of 
distinct entities and not on the number of variable (i.e., 

2Thoxpe and Imbert [16] argue that even the number of visually 3The system is incomplete and the above conditions characterize its 
identifiable entities is around a hundred thousand1 incompleteness. 
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role) bindings that these entities participate in during an 
episode of reasoning. We believe that the first condition 
listed in the previous section is consistent with this aspect 
of human reasoning and a psychologically plausible value 
of Q may be around seven. 

We also conjecture that any given episode of reflex- 
ive reasoning does not require the same predicate to be 
dynamically instantiated more than k: times, where a psy- 
chologically plausible value of k may be as low as three 
to five (observe that k greater than 1 allows for bounded 
recursion). Thus the third limitation of the reasoning sys- 
tem is also well motivated. 

In our view, the KB underlying reflexive reasoning pri- 
marily encodes an agent’s long-term and stable knowl- 
edge about the world. Although new rules do get added 
to an agent’s KB, the assimilation of a new rule in a 

form that allows its participation in reflexive reasoning 
takes time - not seconds, but perhaps minutes, days or 
even months. It is in this context that one must evaluate 
the realization of the reasoning system described below. 

Finally, the realization of the reasoning system is also 
biologically plausible in that it strictly adheres to the core 
features of the connectionist model. At the same time, 
there exists neurophysiological evidence to suggest that 
the basic mechanisms used below, namely, the propaga- 
tion of rhythmic patterns of activity, play a role in the 
representation and processing of information in the ani- 
mal brain. For a detailed discussion, refer to [ 13. 

ealization of the Reasoning System 

The representation and reasoning system is realized as a 
massively parallel network of simple processing elements 
(nodes). A major technical problem that must be solved 
in realizing such a ‘connectionist’ reasoning system is the 
run-time (dynamic) creation and propagation of variable 
bindings. The proposed system solves this problem while 
still using extremely simple oscillatory nodes (see next 
section). 

Ballard [2] was the first to propose a massively parallel 
inference system. He however, required that all possible 
variable bindings be explicitly pre-wired into a network. 
This requirement is too severe and unrealistic and greatly 
limits the generality of his system. Touretzky and Hin- 
ton’s DCPS does represent dynamic bindings [17] but its 
ability to do so is very limited. First, DCPS can only deal 
with single variable rules. Second, even though DCPS is 
a parallel system, it allows only one rule to fire at a time, 
and hence, does not satisfy the efficiency requirements of 
reflexive reasoning. A detailed comparison of our sys- 
tem with other massively parallel reasoning systems (for 
example, ROBIN, CONPOSIT, and NETL [8,3,5]) may 
he found in [15]. 

Conceptually, the proposed encoding of the knowledge 
base amounts to creating a directed ir#erential dependency 

Fig. 1 illustrates the encoding of the following facts 
and rules. 

1. 
2. 
3. 
4. 
5. 
6. 

Vx, Y, z [give@, Y, z) * own(y, %)I 
k Y bY(X, Y) 3 own(x, Y)l 
Vx, y [own(x, y) * can-sell(x, y)] 
give( John, Mary, Bookl) 
buy( John, x) 
own( Mary, Balll) 

graph: Each predicate argument is represented by a node 
in this graph and each rule is represented by links from 
nodes denoting the arguments of the consequent predicate 
to nodes denoting the arguments of the corresponding an- 
tecedent predicate. Facts are small networks attached to 
their respective predicates nodes. We describe the encod- 
ing with the help of an example. For simplicity we only 
describe the realization of single antecedent rules with- 
out constants and existentially quantified variables in the 
consequent. 

The encoding makes use of two types of nodes. These 
are p-btu nodes (depicted as circles) and r-and nodes 
(depicted as pentagons). The computational behavior of 
these nodes is as follows: 

A p-btu is a phase-sensitive binary threshold unit. 
When such a node becomes active, it produces an os- 
cillatory output in the form of a pulse train that has a 
period x and pulse width W. The timing (or the phase) 
of the pulse train produced by a p-btu node is precisely 
governed by the phase of the input to the node. A r-and 
node acts like a temporal and node. Such a node also 
oscillates with the same frequency as a p-btu node except 
that it becomes active only if it receives uninterrupted 
activation over a whole period of oscillation. Further- 
more, the width of the pulses produced by a T-and node 
equals ?r. The implementation parameter Q that governs 
the maximum number of distinct entities that may par- 
ticipate in the derivation of a yes-no query equals w/n 
(assume integer divide). 

The output pulse of a node propagates along every link 
emanating from the node. The encoding also makes use 
of inhibitory mod@ers. An inhibitory modifier is a link 
that impinges upon and inhibits another link. Thus a 
pulse propagating along an inhibitory modifier will block 
the propagation of a pulse propagating along the link it 
impinges upon. In Fig. 1, inhibitory modifiers arc shown 
as links ending in dark blobs. 

Each constant in the domain is encoded by a p-node. 
An n-q predicate is encoded by a pair of r-and nodes 
and n p-btu nodes, one for each of the n arguments. One 
of the T-and nodes is referred to as the enabler and the 
other as the collector. As a matter of convention, an en- 
abler always points upwards and is named e:[predicate- 
name]. A collector always points downwards and is 
named c:[predicate-name]. 
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I I John 

0 

Mary 

0 

Book1 

0 
Ball1 

0 

Figure 1: An example encoding of rules and facts 

A rule is encoded by connecting the collector of the 
antecedent predicate to the collector of the consequent 
predicate, the enabler of the consequent predicate to the 
enabler of the antecedent predicate, and by connecting 
the argument nodes of the consequent predicate to the ar- 
gument nodes of the antecedent predicate in accordance 
with the correspondence between these arguments speci- 
fied in the rule (refer to Fig. 1.) 

A fact is encoded using a T-and node that receives an 
input from the enabler of the associated predicate. This 
input is modified by inhibitory modifiers f3om the argu- 
ment nodes of the associated predicate. If an argument is 
bound to a constant in the fact then the modifier from such 
an argument node is in turn modified by an inhibitory 
modi!Yier from the appropriate constant node. The out- 
put of the r-and node is connected to the collector of 
the associated predicate (refer to the encoding of the fact 

give( John, Mary, Bookl) and buy(John, x) in Fig. 1.) 
The number of nodes required to encode a knowledge 

base, (i.e., the space complexity) is only linear in 1 KB I. 
Specifically, the number of nodes required are O(r + f + 
a + c), where T is the number of rules, f is the number 
of facts, a is the total number of predicate arguments 
and c is the number of constants in the domain. The 
number of links required is also only linear in IKBI. 
Specifically, the number of links required is O(r1 + fl), 
where rl is the number of rules weighted by the number 
of predicate arguments occurring in each rule, and fl is 
the number of facts weighted by the number of arguments 
in the predicate associated with each fact. 

Inference Process 

Reasoning in the proposed system is the transient but 
systematic flow of rhythmic patterns of activation, where 
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c:can-sell 

b-obj 

Book1 . 

Input lo e.can-sell 

L:::::~:::::~:::::~:::::~::;:;~:::t:(:::::~:::::~~ 
0 1 2 3 4 5 6 7 8 

time 

Figure 2: Activation trace for the query can-seZl(hZary, Bookl)? 

each phase (or time-slice) in the rhythmic pattern corre- 
sponds to a distinct constant involved in the reasoning 
process and where variable bindings are represented as 
the in-phase (i.e., synchronous) tiring of appropriate ar- 
gument and constant nodes. A fact behaves as a tem- 
poral pattern matcher that becomes ‘active’ when it de- 
tects that the bindings corresponding to it are present in 
system’s pattern of activity. Finally, rules are intercon- 
nection patterns that propagate and transform rhythmic 
patterns of activity. Below we describe the reasoning 
process in greater detail, complete details may be found 
in [15]. 

We first consider yes-no queries. The inference process 
may be thought of as consisting of two overlapping but 
conceptually distinct stages. The first stage corresponds 
to a parallel breadth-first exploration of the potentially 
huge inferential dependency graph. During this stage, all 

the facts that am relevant to the proof of the query become 
active. In the second stage the actual proof is constructed: 
activation from the relevant facts flows downwards along 
collector nodes to produce an answer to the query. A 
yes answer corresponds to the activation of the collector 
node of the query predicate. 

Posing a Query: Specifying Variable Bindings 

Posing a query to the system involves specifying the 
query predicate and the argument bindings specified in 
the query. In the proposed system this is done by simply 
activating the relevant nodes in the manner described be- 
low. In particular, posing a query 20 the system does not 
involve any hidden time or space costs such as rewiring 
of the network, or addition of new nodes and links. 

Let us choose an arbitrary point in time - say, to - 
as our point of reference for initiating the query. We 
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assume that the system is in a quiescent state just prior 
to to. The query predicate is specified by activating the 
enabler of the query predicate, with a pulse train of width 
and periodic&y w starting at time to. 

The argument bindings specified in the query are com- 
municated to the network as follows: 

o Let the argument bindings in the query involve k 
distinct constants: cl, . . ., ck. With each of these k 
constants, associate a delay Si such that no two de- 
lays are within w of one another and the longest 
delay is less than ?r - w. Each of these delays may 
be viewed as a distinct phase within the period to 

and to + ?r. 

a The argument bindings of a constant ci are indicated 
to the system by providing an oscillatory pulse train 
of pulse width w and periodicity P starting at to + 6i 3 
to ci and all arguments to which ci is bound. This is 
done for each constant ci (1 < i < k) and amounts 
to representing argument bindings by the in-phase or 
synchronous activation of the appropriate constant 
and argument nodes. 

An Example 

Once the query is posed, a parallel search for facts that 
are relevant to the proof of the query ensues. We illus- 
trate this process with the help of an example (refer to 
Fig. 1.) Consider the query can-seZZ(Mary,BookI). This 
query is posed by providing inputs to the constants Mary 
and Bookl, the arguments p-seller, cs-obj and the enabler 
e:can-sell as shown in Fig. 2. (In the illustration, R has 
been assumed to be 6.) Mary and p-seller receive in- 
phase activation and so do Bookl and cs-obj. Let us refer 
to the phase of activation of Mary and Book1 as phase- 
1 and phase-2 respectively. As a result of these inputs, 
Mary and p-seller will fire synchronously in phase-l of 
every period of oscillation, while Book1 and cs-obj will 
fire synchronously in phase-2 of every period of oscilla- 
tion. The node e:can-sell will also oscillate and generate 
a pulse train of periodicity and pulse width X. 

The activations from the arguments p-seller and cs- 
obj reach the arguments owner and o-obj of the predicate 
own, and consequently, starting with the second period of 
oscillation, owner and o-obj become active in phase-l and 
phase-2, respectively. At the same time, the activation 
from e:can-sell activates e:own (Refer to Fig. 2). The 
system has essentially, created dynamic bindings for the 
arguments of predicate own. Mary has been bound to 
the argument owner, and Book1 has been bound to the 
argument own-object. These newly created bindings in 
conjunction with the activation of e:own can be thought 
of as encoding the query own(Mary,Bookl) (i.e., ‘Does 
Mary own Bookl?‘)! 

TheT-and node associated with the fact own(Mary, 
Balll) does not match the query and remains inactive. 
Observe that during phase-2, the activation from e:own 
going into the T-and node is blocked by the inhibitory 
activation from the argument owner. 

The activations from owner and o-obj reach the ar- 
guments recip and g-obj of give, and buyer and b- 
obj of buy respectively. Thus beginning with the third 
period of oscillation, arguments recip and buyer be- 
come active in phase-l, while arguments g-obj and b- 
obj become active in phase-2. In essence, the sys- 
tem has created new bindings for the predicates can-sell 
and buy that can be thought of as encoding two new 
queries: give(x,Mary,Bookl) (i.e., ‘Did someone give 
Mary Bookl?‘), and buy(Mary,BookI) (i.e., ‘Did Mary 
buy Bookl?‘). 

The T-and node associated with the fact buy(John, x) 
does not become active because the activation from e:buy 
is blocked by the inhibitory activations from the argu- 
ments buyer and b-obj. The r-and node associated with 
the fact give(John,Mary,BookI) (this is the T-and node 
labeled Fl in Fig. l), however, does become active as 
a result of the uninterrupted activation from e:give. The 
inhibitory inputs from recip and g-obj are blocked by the 
in-phase inputs from Mary and Bookl, respectively. The 
activation from this T-and node causes c:give, the collec- 
tor of give, to become active and the output from c:give in 
turn causes c:own to become active and transmit an output 
to c:can-sell. Consequently, c:can-sell, the collector of 
the query predicate can-sell, becomes active resulting in 
an affirmative answer to the query can-sell(Maqy,Bookl). 
(refer to Fig. 2). 

Encoding Complex Rules 

A rule with conjunctive predicates in the antecedent, i.e., 
a rule of the form P1( . ..) A P2( . ..) A . ..P. (...) * &( . ..). 
is encoded using an additional r-and node that has a 
threshold of m. The outputs of the collector nodes of 
fi , . . . , Pm are connected to this node which in turn is 
connected to the collector of &. This additional node 
becomes active if and only if it receives inputs from the 
collector nodes of all the m antecedent predicates. The 
interconnections between the argument nodes of the an- 
tecedent and consequent predicates remain unchanged. 

The encoding of rules and facts described in the previ- 
ous section assumes that constants or existentially quan- 
tified variables do not appear in the consequent of a rule. 
It also assumes that the same variable does not occur in 
multiple argument positions in the consequent of a rule. 
The encoding of such rules can be carried out by very 
simple mechanisms that involve detecting whether appro- 
priate nodes are tiring in synchrony or not. A complete 
description may be found in 1151. 
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from c, 
from c2 

from Cn 

“ANSWER 
signal 

Figure 3: Augmented encoding of a fact in order to support answer extraction 

Answering 6cWh-99queries 

In this section, we will discuss a way of extending the 
system to answer w/r-queries. Consider the proof of 
the query can-selZ(Mary,x) with respect to the net- 
work shown in Fig. 1. In the process of proving 
this query the two relevant facts own(Mary, Balll) and 
give(John, Mary, Bookl) will become active. The an- 
swer to the whquery ‘What can Mary sell?‘, can be ob- 
tained by simply identifying the constants that are bound 
to the arguments g-obj and b-obj, respectively, of the 
two active facts. This is not a coincidence - notice 
that the arguments g-obj and b-obj are precisely the ar- 
guments that map to the unbound argument cs-obj of 
can-sell via the rules encoded in the system. The sys- 
tem can easily extract this information by making use of 
the same binding propagation mechanism it uses to map 
arguments bound in the query. A straightforward way of 
doing so is f~ posit a separate answer extraction stage 
that is carried out after the yes-no query associated with 
the wh-query has produced a yes answer. For example, 
given the query ‘What can Mary sell?’ the system first 
computes the answer to the yes-no query ‘Can Mary sell 
something?’ and identifies the facts own(Mary, Bdl) 
and give( John, Mary, Bookl) that lead to a yes answer. 
The answer extraction stage follows and picks out the 
constants Bull1 and Book1 as the answers. 

The representation of a fact is augmented as shown 
in Fig. 3. in order to support answer extraction. The 
representation of a fact involving an n-ary predkaU3 is 
modified to include n + 1 additional nodes: for each of 
the n arguments of the associated predicate there exists 
a p-btu node with a threshold of two. For convenience 
we will refer to such a node as a binder node. The other 
node (shown as a filled-in pentagon) is like a binder node, 
except that once active, it remains so - even after the 
inputs are withdrawn. This node, which we will refer to 
as a latch node, receives an Answer input in addition to 
an input from the r-and node of the associated fact. 

At the end of the first stage, the outputs of the T-and 
nodes of all the relevant facts would be active. The out- 
put of these r-and nodes in conjunction with the Answer 
signal will turn on the associated latch nodes and provide 
one of the two inputs to the binder nodes. If the asso- 
ciated yes-no query results in a yes answer, the answer 
extraction stage is initiated. Inputs relating to the tirst 
stage are withdrawn and the relevant unbound argument 
of the query predicate ai is activated in a distinct phase. 
In addition a network wide Answer signal is also propa- 
gated. The activation of unbound query arguments results 
in a phase-sensitive propagation of activation and eventu- 
ally leads to the activation of arguments associated with 
facts relevant to the query. This provides an input to the 
appropriate binder nodes of these facts. As the binder 
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nodes were already receiving an input from a latch node, 
they become active and produce a phase-sensitive output 
that in turn activates the associated constants in-phase 
with Ui. The answer to the w&query will be precisely 
those constants that are active in-phase with ai. The time 
taken by the answer extraction step is bounded by the 
depth of the inferential dependency graph. 

Extensions 

The reasoning and expressive power of the system de- 
scribed in this paper can be enhanced by interfacing it 
with specialized reasoning modules such as a seman- 
tic network or a IS-A hierarchy. Such an interface al- 
lows terms in the rules and facts to be any concept 
(type/instance) in the IS-A hierarchy. Another important 
extension extends the expressiveness and reasoning power 
of the system by allowing a limited use of function terms 
in rules[l]. 

Conclusion 

The paper describes a knowledge representation and rea- 
soning system that performs a limited but interesting class 
of inferences over a restricted class of first-order sen- 
tences with optimal efficiency. This work suggests that 
extremely efficient yet fairly powerful knowledge repre- 
sentation systems can be obtained by limiting the expres- 
siveness and the inferential ability of a representation and 
reasoning systems in unusual ways. 
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