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Abstract 
We investigate the computational complexity of member- 
ship problems in a number of propositional default logics. 
We introduce a hierarchy of classes of propositional de- 
fault rules that extends that described in [Kautz and Selman 
19891, and characterize the complexity of membership 
problems in these classes under various simplifying as- 
sumptions about the underlying propositional theory. Our 
work significantly extends both that presented in [Kautz 
and Selman 19891 and in [Stillman 199Oal. 

Introduction 
One of the central concerns of artificial intelligence re- 
search involves developing useful models of how one 
might emulate on computers the ‘common-sense’ reason- 
ing in the presence of incomplete information that people 
do as a matter of course. Traditional predicate logics, de- 
veloped for reasoning about mathematics, are inadequate 
as a formal framework for such research in that they are 
inherently monotonic: if one can derive a conclusion from 
a set of formulae then that same conclusion can also be 
derived from every superset of those formulae. It is ar- 
gued that people simply don’t reason this way: we are 
constantly making assumptions about the world and re- 
vising those assumptions as we obtain more information 
(see [McCarthy 19771 or [Minsky 19751, for instance). 
Many researchers have proposed modifications of tradi- 
tional logic to model the ability to revise conclusions in 
the presence of additional information (see, for instance, 
[McCarthy 19861, [Moore 19831, [Poole 19861). Such log- 
its are called nonmonotonic. Informally, the common idea 
in all these approaches is that one may want to be able 
to “jump to conclusions” that might have to be retracted 
later. While a detailed discussion of nonmonotonic logics 
is outside the scope of this paper, a good introduction to 
the topic can be found in [Etherington 19881, and a num- 
ber of the most important papers in the field have been 
collected in [Ginsberg 19871. 

One of the most prominent of the formal approaches 
to nonmonotonic reasoning, developed by Reiter ([Reiter 
19801), is based on default rules, which are used to model 
decisions made in prototypical situations when specific or 
complete information is lacking. Reiter’s default logic is 

an extension of first order logic that allows the speciti- 
cation of default rules, which we will summarize shortly. 
Unfortunately, the decision problem for Reiter’s default 
logic is highly intractable in that it relies heavily on con- 
sistency checking for processing default rules, and is thus 
not even semi-decidable (this is not a weakness of Reiter’s 
logic alone; it is common to most nonmonotonic logics). 
This precludes the practical use of Reiter’s default logic 
in most situations. 

The motivation for searching for computationally 
tractable inference mechanisms for subclasses of propo- 
sitional default reasoning is based on the need to reason 
about relatively large propositional knowledge bases in 
which the default structures may be quite simple. Recent 
research involving inheritance networks with exceptions is 
particularly relevant, and is explored in depth in [Touret- 
zky 19861 and in Chapter 4 of [Etherington 19881, where 
the close relationship between default logic and inheritance 
networks with exceptions is explored. 

In order to gain computational tractability of reasoning 
in default logic, one must restrict the expressiveness con- 
siderably. Simply restricting the logic to reasoning about 
arbitrary propositions results in decision problems that are 
at least as hard as deciding standard propositional logic, 
regardless of restrictions on the types of default rules al- 
lowed. Since the satisfiability problem is intractable for 
propositional logic, one must consider further restrictions. 
Recently, Kautz and Selman [Kautz and Selman 19891 and 
S tillman [Stillman 199Oal have investigated default logics 
defined over subsets of propositional calculus with various 
restrictions on the syntactic form of default rules allowed. 
A partial order of such restrictions is described in [Kautz 
and Selman 19891, together with discussion of the com- 
plexity of several problems over this partial order when 
the propositional theory is restricted to consisting of a set 
of literals. Several of these restrictions were shown to re- 
sult in polynomial-time tests for determining whether cer- 
tain properties hold given such a restricted propositional 
theory. In particular, it was shown that one can decide 
in polynomial time whether there exists an extension that 
contains a given literal when the default rules are restricted 
to a class they called Horn default rules. They suggested 
that the ability to combine such default theories with non- 
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default propositional Horn theories would be particularly 
useful, but left open the question of whether the mem- 
bership problem (i.e., determining whether there exists an 
extension of a given default theory containing a specified 
literal) for such a combination of theories is tractable. In 
WiIlman 199Oa1, we showed that a restriction of this prob- 
lem is NP-complete, and presented several related results. 

The remainder of this paper is organized as follows: 
we begin with a brief description of Reiter’s default logic, 
followed by a short overview of NP-completeness, and 
a presentation of the restrictions considered by Kautz and 
Selman. Following this we introduce a hierarchy of classes 
of propositional default rules that significantly extends that 
presented in CKautz and Selman 19891. Next, we charac- 
terize the complexity of the membership problem for these 
classes. Finally, we summarize the results presented in this 
paper, and discuss related results and future work. 

Preliminaries 
Reiter’s Default Logic 
For a detailed discussion of Reiter’s default logic the in- 
terested reader is referred to [Reiter 19801. In this section 
we will simply review some of the immediately pertinent 
ideas. A default theory is a pair (D, W), where W is a 
set of closed well-formed formulae (wffs) in a first order 
language and D is a set of default rules. A default rule 
consists of a triple < a, p, y > : a is a formula called 
the prerequisite, /3 is a set of formulae called the justijka- 
tions, and y is a formula called the conclusion. Informally, 
a default rule denotes the statement “if the prerequisite is 
true, and the justifications are consistent with what is be- 
lieved, then one may infer the ConcZusion.” Default rules 
are written 

Cl!:0 
Y 

If the conclusion of a default rule occurs in the justifi- 
cations, the default rule is said to be semi-normal; if the 
conclusion is identical to the justifications the rule is said 
to be normal. A default rule is closed if it does not have 
any free occurrences of variables, and a default theory is 
closed if all of its rules are closed. 

The maximally consistent sets that can follow from a 
default theory are called extensions. An extension can be 
thought of informally as one way of “filling in the gaps 
about the world.” Formally, an extension E of a closed 
set of wffs T is defined as the fixpoint of an operator I’, 
where I’(T) is the smallest set satisfying: 

e W C W9, 
o T(T) is deductively closed, 
e for each default d E D, if the prerequisite is in T(T), 

and T does not contain the negations of any of the 
justifications, then the conclusion is in T(T). 

Since the operator I’ is not necessarily monotonic, a default 
theory may not have any extensions. Normal default the- 
ories do not suffer from this, however (see [Reiter 19801), 
and always have at least one extension. 

There are several important properties that may hold for 
a default theory. Given a default theory (D, W), perhaps 
together with a literal Q, one might want to determine the 
following about its extensions: 

Existence Does there exist any extension of (D, W)? 
Membership Does there exist an extension of (D , W) that 

contains q? (This is called goal-directed reasoning by 
Kautz and Selman.) 

Entailment Does every extension of (D, W) contain 4 ? 
(This is closely related to skeptical reasoning, where 
a literal is believed if and only if it is included in all 
extensions.) 

NP-complete Problems 
NP is defined to be the class of languages accepted by a 
nondeterministic Turing machine in time polynomial in the 
size of the input string. The “hardest” languages’ in NP 
are called NP-complete: all such languages share the prop- 
erty that all languages in NP can be transformed into them 
via some polynomial time transformation. To show that 
a problem in NP is NP-complete one must demonstrate a 
polynomial-time transformation of an instance of a known 
NP-complete problem to an instance of the problem under 
consideration in such a way that a solution to one indicates 
a solution to the other. For a thorough discussion of the 
topic the interested reader is referred to [Garey and John- 
son 19791. The fastest known deterministic algorithms for 
NP-complete problems take time exponential in the prob- 
lem size. It is not known whether this is necessary: one of 
the central open problems in computer science is whether 
P = NP. Most researchers believe that P $ NP, and that 
NP-complete problems really do need exponential time to 
solve. Thus these problems are considered intractable, 
since if P j NP, we cannot hope to solve arbitrary in- 
stances of them with inputs of nontrivial size. 

Restricted Default Theories 
If practical reasoning systems are to be developed, one 
cannot ignore computational complexity. Each of the 
questions mentioned above is at least as hard as deciding 
the underlying theory W. Thus, if W consists of arbitrary 
first-order formulae, none of these questions is even semi- 
decidable, and a practical system must consider stronger 
restrictions. If W is restricted to arbitrary propositional 
formulae, each of the questions require deterministic time 
proportional to that needed to determine propositional sat- 
isfiability (approximately 2” where n is the number of 
atoms occurring in W, using the best algorithms currently 
known). It is unlikely that algorithms that perform sig- 
nificantly better will be developed in the future, under 
the assumption that P j NP. Thus, a necessary condition 
that must be satisfied to guarantee efficient answers to the 
questions posed above is that we limit ourselves to even 

‘NP-completeness is often discussed in terms of deci- 
sion problem rather than languages, although the two are 
interchangeable. 
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stronger restrictions on W. The propositional 
will consider are described below. 

theories we that potentially 
not occur. 

unresolvable circular dependencies can- 

Propositional literals: W consists of propositional atoms 
and their negations. In [Kautz and Selman 19891, this 
restriction is assumed throughout. 

Horn clauses: W consists of a conjunction of proposi- 
tional clauses, each of which contains at most one pos- 
itive literal. 

24iteral clauses: W consists of a conjunction of proposi- 
tional clauses, each of which contains at most 2 literals. 
This restriction is assumed in network defauh theories, 
an important class of default theories described in detail 
in [Etherington 19881. 

Each of these restricted propositional theories is known 
to be decidable in linear time. The first case is trivial. 
For the second and third, see [Dowling & Gallier 19841 
and [Apsvall, Plass, & Tarjan 19791, respectively. These 
theories provide us with a good starting point for building 
simple default theories. Note that while the first restriction 
forms a subset of each of the others, the second and third 
are incomparable with respect to the formulae they contain. 
In subsequent sections we will examine the complexity of 
reasoning in a number of restricted default theories. We 
will consider default theories for which W falls into one 
of the three subclasses of propositional formulae presented 
above. For each of these, we will consider a number of 
restrictions on what classes of default rules are allowed. 
These restrictions are discussed below. 

Prior Work on Restricted Default Theories 
In [Kautz and Selman 19891, Kautz and Selman presented 
a taxonomy of propositional default theories. They re- 
stricted W to contain only propositional literals, and re- 
stricted default rules to be semi-normal, with the precon- 
dition, justifications, and conclusions of each default rule 
consisted of conjunctions of literals (this restriction makes 
consistency checking a simple task). They also consid- 
ered the following further restrictions on the default rules 
allowed. 

Unary The prerequisite of each default must be a posi- 
tive literal, and the conclusion must be a literal. If the 
consequence is positive, the justification must be the 
conjunction of the consequence and a single negative 
literal; otherwise, the justification must be the conse- 
quence. 

Disjunction-Free Ordered The interested reader is re- 
ferred to [Etherington 19871 for a formal definition of 
ordered default theories, which we omit here. Intu- 
itively, in an or&red semi-normal default theory the 
literals can be ordered in such a way that potentially 
unresolvable circular dependencies cannot occur. The 
interested reader is referred to Etherington 19871 for a 
formal definition of ordered default theories, which we 
omit here. Intuitively, in an ordered semi-normal de- 
fault theory the literals can be ordered in such a way 

Ordered Unary These combine the restrictions of the 
first two theories described above. Kautz and Selman 
remark that these theories appear to be the simplest nec- 
essary to represent inheritance hierarchies with excep- 
tions (see [Touretzky 1986; Etherington 19881). 

Disjunction-Free Normal These are disjunction-free or- 
dered theories in which the consequence of each default 
rule is identical to the justification. 

orn The prerequisite literals in these default rules must 
each be positive, and the justification and consequence 
are each a single literal. 

Normal Wary The prerequisite in each of these default 
rules consists of a single positive literal, the conclusion 
must be a literal, and the justification must be identical 
to the consequence. These form the most simple class 
of default rule that is considered in [Kautz and Selman 
19891. 

These restricted theories are related in a partial order as 
shown in Figure 1 below. Kautz and Selman examined the 
extension existence, membership, and entailment questions 
for these theories in [Kautz and Selman 19891. 

. . . 

w 
A 

DF-Ordered Unary 

Normal Unary 

Figure 1: Kautz and Selman’s hierarchy of restricted de- 
fault theories. 

Prompted by a gap in the characterization of restricted 
default theories, we showed recently in [Stillman 199Oal 
that the following problem is NP-complete. 

Morn Clauses with Normal Unary Default Rules (HC- 
NW 
Instance: A finite set H of propositional Horn clauses, to- 
gether with a finite set D of normal, unary, propositional 
default rules, and a distinguished literal 4. 
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Question: Does 
contains 4 ? 

there exist an extension of (D, H) that These restricted theories are related in a partial order. The 
hierarchy is shown in Figure 2. 

This result subsumed an open question cited in [Kautz 
and Selman 19891: Kautz and Selman were interested in 
whether one could add Horn default rules to Horn proposi- 
tional theories without introducing intractability. Unfortu- 
nately, our result answers this question negatively. Among 
other related results, we showed that the entailment prob- 
lem is co-NE-complete for these default theories. 

We subsequently examined even stronger restrictions on 
the classes of default rules allowed, hoping to find a class 
of rules that could be combined with Horn clauses while 
retaining the tractability of propositional Horn clause rea- 
soning. We also examined the complexity of restricted 
default reasoning under other restrictions on the proposi- 
tional theories allowed, as described above. In the follow- 
ing sections, we report on the results of this work. 

Expanding the Horizons 
Our investigation suggested a richer hierarchy of default 
rules, most of which result from disallowing any prerequi- 
sites in rules. This corresponds to introducing a “context- 
free” element to the reasoning, and seems to constitute 
the most simple type of default rule that is not completely 
trivial. In this section, we explore the complexity of mem- 
bership problems in default theories in which W belongs 
to one of the classes of formulae listed above, and in which 
D belongs either to one of the classes of default rules dis- 
cussed above or to one of the following: 

Prerequisite-Free Disjunction-free default rules with no 
prerequisites. 

Prerequisite-Free Unary The prerequisite of each rule is 
empty, and the conclusion must be a literal. If the con- 
sequence is positive, the justification must be the con- 
junction of the consequence and a single negative literal; 
otherwise, the justification must be the consequence. 

Prerequisite-Free Ordered Again, the reader is referred 
to [Etherington 19881 for a formal definition of or- 
dered theories; A prerequisite-free ordered theories is 
a disjunction-free ordered theory in which the prerequi- 
site is empty. 

Prerequisite-Free Ordered Unary These combine the 
restrictions of the first two theories described above. 

Prerequisite-Free Normal These are prerequisite-free or- 
dered theories in which the consequence of each default 
rule is identical to the justification. 

Prerequisite-Free Normal Unary The prerequisite in 
each of these default rules is empty, the conclusion must 
be a literal, and the justification must be identical to the 
consequence. 

Prerequisite-Free Positive Normal Wary The prereq- 
uisite in each of these default rules is empty, the con- 
clusion must be a positive literal, and the justification 
must be identical to the consequence. 

Worn Clause Theories 
After showing that the problem HC-N?J was NE-complete, 
we looked for even tighter restrictions on the default rules 
allowed that would provide us with tractable default rea- 
soning where the propositional theory consisted of Horn 
clauses. The results reported here were somewhat surpris- 
ing. Unfortunately, they are also largely negative. The 
membership problem remains intractable under very tight 
restrictions. In particular, for the following problem 

Horn Clauses with Prerequisite-Free Positive Normal 
Unary Default Rules (HC-2) 
Instance: A finite set H of propositional Horn clauses, 
together with a finite set D of prerequisite-free positive 
normal, unary, propositional default rules, and a distin- 
guished literal 4. 
Question: Does there exist an extension of (D, H) that 
contains 4 ? 
we prove: 
Theorem 1 He-2 is NP-complete. 
Proof: It is not difficult to demonstrate membership in 
NP: although the extension may be too large to describe 
explicitly, it suffices to provide the original set of Horn 
clauses, together with those default rules that were ap- 
plied, and verify that the default rules form a maximal set 
and can actually be applied consistently. Since these are 
disjunction-free, this can be done efficiently. 

To demonstrate NE-hardness we transform an instance 
of NOT-ALL-EQUAL SATISFIABILITY to one of HC- 
2. NOT-ALL-EQUAL SATISFIABILII’Y can be stated as 
follows. 

Given sets Sl,S2,... , S, , each having 3 members, 
can the members be colored with two colors so that 
no set is all one color? 

In IShaefer 19781 it is shown that NOT-ALL-EQUAL 
SATISFIABILITY is NE-complete. Given an instance 1 
of NOT-ALL-EQUAL SATISFIABILITY, let I: be the set 
of all elements appearing in any S,. For each such element 
0, introduce the a new propositional atom u, and add the 
following default rule to D: 

:a 
T 

Next, for each set Si = {oil, ui2, ui,} in I introduce a new 
propositional atom Si, and add the following clauses to 
w: 

( TT’il v -ui2 v -cq3) 
( TT& v S;) 
( -uiz v Si) 
(-ui, v m 

Finally, introduce a new propositional atom Q and add the 
following clause to W: 

(-271 v -s2 v . . . v -s, v q). 
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PF Positive Normal Unary 

Figure 2: An expanded hierarchy of default rules. 

This completes the transformation, which results in only 
a linear increase in the size of the problem. It is a simple 
matter to verify that the transformed instance satisfies the 
restrictions on W and D, i.e., the clauses are Horn and the 
default rules are prerequisite-free positive normal unary. 
We now show that there exists an extension of (D, W) 
that contains q if and only if the original instance I of 
NOT-ALL-EQUAL SATISFIABILITY is satisfiable. 
(+). Suppose I is satisfiable. Then the elements of C must 
be two-colorable in such a way that none of the sets Si has 
all its elements the same color. Let us assume that the two 
colors correspond to the truth values true and false. There 
must exist a satisfying assignment to the elements of ZZ in 
which a maximal number of the elements of I; are colored 
true. We must show that we can, given such a maximal 
satisfying assignment LY for I, construct an extension of 
(D, W) that contains q. 

We proceed as follows. Each of the sets in S must have 
had at least one of its elements assigned the value -true. 
For each such element, assign the corresponding atom in 
the instance of HC-2 the value true. This can be done 
using the default rules that were added for each of the 
set elements. It is not hard to see that this can always 
be done consistently: the three element clauses introduced 
into W will not be contradicted since they correspond to 
at least one of the elements of each set being assigned the 
value false. We know that this can be done because we 
are given a solution to I. Since the assignment in I is 
maximal as described above, no other set elements can be 
made true without forcing at least one of the sets to have 
all its elements take the same value. Thus, none of the 
remaining default rules can be applied. Since each set has 
at least one of its members assigned the value true, each 

of the propositional atoms Si are true in the extension we 
are constructing. Thus, due to the clause 

(1271 v 7s2 v . . . v -sm v q) 

in W, the extension must contain the literal q. At this point 
it is easy to see that an extension containing q exists. 
(t). Suppose there exists an extension of (D, W) that 
contains q. We note that since it only contains non-unit 
Nom clauses, W is easily seen to be consistent. Thus 
(D, W) has only coherent extensions. It follows that each 
of the literals of the form Si : 1 5 i 5 m must be true 
(this is the only way to force q to be true). Furthermore, 
it follows that for each such literal, Si, at least one of the 
literals in the set { ui, , uiz, uiJ} must be true. The clause 
in W of the form 

( -uil v -ui2 v ‘Ui3) 

forces at least one of these to be fake as well. This pro- 
vides us with at least one element of each set Si : 1 5 i 2 
m that is true, and at least one that is false. Given this, 
it is easy to construct a satisfying assignment for for the 
instance I of NOT-ALL-EQUAL-SATISFIABILITY. 0 

The implications of this result on the hierarchy above 
are summarized in Figure 3 below. 

2-Literal Clauses 
A second interesting subclass of propositional formulae is 
2-literal clauses. The classes formed by combining theo- 
ries consisting of 2-literal clauses with restricted default 
theories is assumed in network default theories, described 
in [Etherington 19881. We have investigated the complex- 
ity of membership problems for this class given the above 
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Figure 3: The complexity of membership problems with Horn theories. 

hierarchy of restrictions on D shown above. For the prob- 
lem 

2-Literal Prerequisite-Free Normal 
Instance: A finite set W of propositional 2-literal clauses, 
together with a finite set D of prerequisite-free normal 
propositional default rules, and a distinguished literal 4. 
Question: Does there exist an extension of (D, W) that 
contains 4 ? 

we have the following theorem: 

Theorem 2 a-literal Prerequisite-Free Normal can be 
solved in polynomial time. 

We present an O(n3) algorithm deciding the membership 
problem for this class in [Stillman 199Obl. The basic idea 
is to exploit the structural property of 2-literal clauses that 
they resemble binary relations. As a result, we can effec- 
tively compute an implicational “closure” of the underly- 
ing propositional theory. Once this is done, it is relatively 
easy to determine whether there is a default rule that can 
be used to force q to be included in the extension. For the 
problem 

2-Literal Normal Unary 
Instance: A finite set W of propositional 2-literal clauses, 
together with a finite set D of normal unary propositional 
default rules, and a distinguished literal 4. 
Question: Does there exist an extension of (D, W) that 
contains 4 ? 

we prove the following: 

Theorem 3 2-Literal Normal Unary is NP-complete. 
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The proof is complex, and space restrictions do not al- 
low its inclusion herein. A complete proof is available in 
E%illman 199Obl. For the problem 

2-Literal Prerequisite-Free Ordered Unary 
Instance: A finite set W of propositional 2-literal clauses, 
together with a finite set D of prerequisite-free ordered 
unary propositional default rules, and a distinguished lit- 
eral q. 
Question: Does there exist an extension of (D, W) that 
contains 4 ? 

we have 

Theorem 4 a-literal Prerequisite-Free Ordered Unary is 
NP-complete. 

This follows from the proof of Theorem 5 below. The 
proof is complex and thus omitted. These results are sum- 
marized in Figure 4 below. 

Single Literal Theories 

As mentioned above, this is the class that was investigated 
in [Kautz and Selman 19891. The complexity of reasoning 
in the theories they considered is described in [Kautz and 
Selman 19891; their results, together with ours, are illus- 
trated in Figure 5. Since these theories are contained in 
both of those considered above, problems easy for them 
are also easy for these. The new result we present for 
these theories is given below: 



Figure 4: The complexity of membership problems with 2-literal theories. 

Figure 5: The complexity of membership problems with single literal theories. 
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Single Literal Prerequisite-Free Ordered Unary 
Instance: A finite set W of propositional single literal 
clauses, together with a finite set D of prerequisite-free or- 
dered unary propositional default rules, and a distinguished 
literal 4. 
Question: Does there exist an extension of (D, W) that 
contains 4 ? 

Theorem 5 Single Literal Prerequisite-Free Ordered 
Unary is NP-complete. 

The complete proof appears in the full version of this pa- 
per. These results are summarized in Figure 5 below. 

Conclusions and Future Research 
We have presented a number of results that characterize 
the complexity of the membership problem for restricted 
default theories. This work significantly extends that pre- 
sented in [Kautz and Selman 19891 and [Stillman 199Oal. 
Our work considers very tight restrictions on the expres- 
siveness of default rules as well as the underlying propo- 
sitional theory. Unfortunately, our results show that even 
under these restrictions, membership problems almost in- 
variably remain intractable. This suggests that if practi- 
cal default reasoning systems are desired, one must ei- 
ther consider extremely restricted expressiveness or work 
to identify subcases of otherwise intractable classes that 
yield feasible complexity. 

A number of related results pertaining to the complexity 
of extension existence and entailment over the classes we 
have considered can be answered easily given minor mod- 
ifications of the proofs of the complexities membership 
problems. These results are presented in the full version 
of this paper ([Stillman 199Obl). 
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