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Abstract 

At present, the prevailing Connectionist methodology 
for representing rules is to implicitly embody rules in 
“neurally-wired” networks. That is, the methodology 
adopts the stance that rules must either be hard-wired or 
“trained into” neural structures, rather than represented 
via explicit symbolic structures. Even recent attempts to 
implement production systems within connectionist 
networks have assumed that condition-action rules (or 
rule schema) are to be embodied in the structure of 
individual networks. Such networks must be grown or 
trained over a significant span of time. However, 
arguments are presented herein that humans sometimes 
follow rules which are very rapidly assigned explicit 
internal representations, and that humans possess 
general mechanisms capable of interpreting and 
following such rules. In particular, arguments are 
presented that the speed with which humans are able to 
follow rules of novel structure demonstrates the 
existence of general-purpose rule following 
mechanisms. It is further argued that the existence of 
general-purpose rule following mechanisms strongly 
indicates that explicit rule following is not an isolated 
phenomenon, but may well be a pervasive aspect of 
cognition. The arguments presented here are pragmatic 
in nature, and are contrasted with the kind of arguments 
developed by Fodor and Pylyshyn in their recent, 
influential paper. 

1. Introduction 

In a recent and influential paper, Fodor and Pylyshyn 
present principled arguments to the effect that widespread 
methods of representation in connectionist networks are 
incapable of manifesting certain properties which occur as 
essential aspects of human cognition. These include 
compositionality, generalizability, and systematicity, all 
of which are prevalent in human thought and language. 
The kernel of Fodor’s and Pylyshyn’s position is that 
these crucial properties presuppose the existence of 
structure-sensitive operations which, of necessity, occur at 
a higher level of abstraction than that which is typically 
associated with connectionist processing. Moreover, the 
required structure-sensitive operations presuppose 
structured representations which do not exist at the level 

of the local and distributed representation schemes 
prevalent in the connectionist literature (or so it is 
argued). Now, although some connectionists remain 
skeptical about Fodor and Pylyshyn’s ultimate 
conclusions, many concede that compositionality, 
generalizability, and systematicity are indeed central 
aspects of human cognition which connectionism, as a 
general enterprise, must address. 

Recently, Elman (1989) and St. John & McClelland 
(1989) have devised connectionist networks (hereafter, c- 
nets) which exhibit these crucial properties, while 
remaining faithful to conventional (distributed) methods 
of connectionist representation. Several intriguing issues 
are raised by these results, which I shall touch upon only 
obliquely. My primary concern shall be to describe 
certain human cognitive abilities which challenge the 
connectionist thesis on grounds different from those put 
forth by Fodor and Pylyshyn. In particular, I describe 
cognitive abilities which involve (virtually) instantaneous 
rule learning and application of these rules to data which 
are retained in short term memory. Such abilities cast 
doubt upon the widespread connectionist practice of 
modelling the acquisition of ah’ general rules by the 
training (or hard-wiring) of c-nets. While I do not 
question whether c-nets could eventually be trained to 
display the relevant cognitive behavior, I argue that the 
speed with which humans are able to acquire and follow 
rules of novel structure demonstrates both that humans 
sometimes represent rules in an explicit fashion (in a 
sense of ‘explicit’ defined below), and that they possess 
general-purpose mechanisms for applying such rules. 
Moreover, one of the examples presented here involves 
such conscious and explicit rule following and symbol 
manipulation that if essentially connectionist mechanisms 
are involved, we seem forced to conclude that sometimes, 
at least, c-nets merely provide the architectural foundation 
for conventional, structure-sensitive, symbol 
manipulation. 
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2.(Nearly) Instantaneous Rule Acquisition 

In this section we examine a methodological principle 
that is frequently assumed (and sometimes fervently 
believed) by connectionists, namely, that cognitive 
processes which are ostensibly rule-governed ought to be 
modelled on the assumption that individual rules are 
embedded in the structure or weight distribution of 
particular c-nets, and should not be modelled as symbolic 
code which is applied to data sets on different occasions. 
Against this approach, I shall argue that if all (human) 
higher-level cognitive processes can be modelled by a 
system of c-nets, then we must suppose that at least some 
of these c-nets function as general purpose rule- 
interpreters which can apply rules to arbitrary sets of 
input. In particular, I argue that some rule-like behavior 
cannot be the product of “neurally-wired” rules whose 
structure is embedded in particular networks, for the 
simple reason that humans can often apply rules (with 
considerable accuracy) as soon as they are told the rules.’ 
The following example will help to illustrate this. 
Consider the phrase: 

Example I : “love ever keeps trying”. 

While holding this phrase in mind, try applying the rule 
described in the footnote indicated at this point.2 If you 
succeeded in remembering the given phrase while you 
applied the indicated rule (which is italicized), then you 
discovered that this rule, applied to this datum, yields the 
word ‘over’. (Otherwise, you were no doubt distracted by 
having to read the surrounding instructions, jumping to 
footnotes, etc.) Most people have no difficulty finding 
the correct answer when the experiment is verbally 
described, face to face. 

Now, the immediate thing to note about this 
experiment is that we can promptly and correctly apply 
the rule to a mentally retained datum, even though we 
have never encountered the rule or the datum before. The 
fact that we can comprehend novel rules and phrases 
argues for the compositionality and systematicity of 
thought, but that is not my point here. (In any case, 

?he phrase you have in mind contains four words. Proceedingfiom 
leji to right, mentally extract the second letter from each word, and 
concatenate these letters in sequence. If the resulting string forms an 
English word, make a note of it. 

recent work by St. John & McClelland, 1989, 
demonstrates that, at least in some experimental 
conditions, c-nets can develop and represent “semantic 
interpretations” of novel sentences.) Rather, the point is 
that we have never been trained to respond either to this 
particular rule, or to this datum, or to their joint 
occurrence. Nevertheless, we are not only able to 
comprehend the rule, but to act in accordance with it. 
Given that we are able to follow the rule immediately, it 
would be wild to suppose that, in the short time available, 
the rule. is somehow transformed into an appropriately 
trained network, which (implicitly) implements this 
particular rule. (Bear in mind that our example rule is 
general, in the sense that it may be applied to many 
distinct inputs. Widespread experience has established 
that rules of this degree of generality can be trained into 
c-nets only via gradual tuning of weights, involving many 
small incremental changes.) It appears, therefore, that we 
can safely rule out the possibility that our brains contain a 
c-net which implicitly embodies this specific rule (via, 
hard-wiring or a distributed set of weights, as the 
conventional connectionist paradigm would suggest). 

The question remains, then, how could this novel rule 
be rapidly executed by a system of one or more c-nets? 
Well, if the rule is being executed by c-net(s), and no 
c-net is specifically trained for the rule, we can only 
suppose that once the rule has been processed as sensory 
input (and perhaps been assigned an in tern al 
representation (local or distributed)), the rule functions as 
data which causes some fairly general purpose c-net(s) to 
do just what the rule tells us to do. The c-net(s) which 
“react” to the rule being input must, in some sense, be 

fairZy general, because we have already seen the 
implausibility of postulating c-nets which are specific to 
each novel rule that we can execute. However, in saying 
the c-nets are “fairly general”, I do not preclude the 
possibility that very different kinds of c-nets might be 
required to process radically different kinds of rules. At 
this point, the degree of generality of c-nets which 
function as rule-interpreters and executors must be left 
partially indeterminate. It seems likely, however, that we 
could invent a whole family of rules of the same type as 
the one we have considered, and that each of these rules 
would be processed by the same set of c-nets (up to a 
point, at least. Ultimately, individual words, say ‘two’ vs. 
‘three’, would presumably involve different subnets.) 

Now, at this point the following objection may arise: 
Well, yes, given that we sometimes interpret and 

appZy novel rules, and given that these rules cannot 
plausibly be supposed to be (innately, or by training) 
neurally-wired in our brains, then we must suppose 
that the brain contains sets of c-nets which function as 
(moderately) general rule interpreters, provided the 
brain is a collection sf c-nets. But, note that the 
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example you describe is a-typical, and does not 
establish that rule interpretation and application are 
important or common processes in human cognition. 

Before replying to the above objection, it will be 
helpful to introduce some terminology. Hereafter, we 
shall say that an explicit rule has been followed, if and 
only if a rule has been followed, but the rule is not 
embedded in the structure or weight distribution of some 
c-net. (I am here using ‘explicit’ as a technical term. No 
claim is made that this technical usage corresponds 
closely to common usage. Admittedly, the natural 
language distinction between ‘implicit’ and ‘explicit’ is 
slippery and difficult to unravel. However, our present 
concern is to distinguish rules which are embedded in the 
structure or weight-distribution of c-nets from those 
which are not.) Also, it is important to realize that 
example (1) establishes not only that we sometimes 
follow rules which are explicit in the sense just defined, 
but that some of these explicit rules are internally 
represented when we follow them. To see this, consider 
that in example (1) an explicit (non-embedded) internal 
representation of the rule must be posited to explain the 
fact that subjects are able to follow the rule for several 
minutes after it is spoken, even when other, extraneous 
utterances intervene.3 

Now, to reply, first note that even if the interpretation 
and application of non-embedded (explicit) rules are 
uncommon cognitive events, they do occur, and their 
explanation seems to require a departure from the 
methodological principle described at the beginning of 
section 2. In addition, the example establishes that it is 
not only a theoretical possibility that neural structures 
could support the general application of explicit rules, but 
this is sometimes a reality. It is important that 
connectionists bear in mind that at least some of our 
neural structures are organized in ways that permit the use 
of rules that have not been trained (or grown) into a net. 
Moreover, we need to consider how it happens, if explicit 
rule use is such an a-typical cognitive phenomena, that we 
possess an assembly of c-nets capable of performing such 
feats. There appear to be only two possibilities: either 
the c-net(s) primarily responsible for the rapid 
interpretation and application of rules are innately present 

3The objection may arise that we need not suppose that a 
representation of the rule is stored beyond the first few seconds, for it is 
logically possible that a c-net will rapidly be trained to implicitly 
embody the rule once the rule has been applied to the first input set. 
However, this objection presumes the existence of biological 
mechanisms which are able, very rapidly, to train up a network to 
perform a genera2 task which has only once been comprehended and 
performed. Apart from the questionable existence of such biological 
mechanisms, the objection ignores the fact that c-nets can only be 
trained to acquire general rules by a gradual iterative process. 

in the brain (with the appropriate weights pre-set), or they 
are not. Let us consider these possibilities in turn. 

Suppose the relevant set of c-nets to be innately hard- 
wired. Now, it is no doubt a very difficult problem to 
distinguish the relevant set of innately hard-wired c-nets 
(if they do exist) from other c-nets involved in language 
understanding (which must be trained during language 
acquisition), but fortunately we may sidestep that 
problem. For the point is that if these innate c-nets are 
primarily responsible for our general ability to rapidly 
apply novel rules, then the need for such general capacity 
c-nets must arise rather often. Otherwise, (a) it is unlikely 
that the relevant c-nets would have evolved in the first 
place, and (b) even supposing that these c-nets had not 
evolved specifically to handle rule application, it is not 
plausible that they should integrate so rapidly and 
accurately with our general language comprehension 
mechanisms that we would be able to apply novel rules 
with the facility that we exhibit. I conclude that if the 
relevant c-nets are innately hard-wired, this strongly 
suggests that explicit rule application is not a rare event, 
but is an important (and probably common) aspect of our 
cognitive life. 

On the other hand, suppose the relevant c-nets are not 
innately given (with pre-sets weights). In this case we 
must suppose the relevant c-nets are either specifically 
trained to perform the general task of rule application, or 
the c-nets possess these abilities as a side-effect of other 
abilities. In the former case we cannot suppose the c-nets 
in question would receive the required specialized 
training, unless the general task of applying rules to 
representations was frequently encountered. So, in this 
case the ability to apply explicit rules can hardly be 
regarded as an isolated phenomenon, as the objector 
implies. Let us consider, therefore, the latter case, in 
which the ability to apply novel rules arises as a 
side-effect of other abilities. 

We should note at the outset that the ability to apply 
novel rules may often, and perhaps always, involve a 
series of sub-skills which have been acquired through 
slow learning. For example, the rule I presented earlier 
may involve the sub-skills of retrieving the spelling of a 
word, of selecting the n-th element in a list (in this case a 
list of letters), and of concatenating letters to form a word. 
For argument sake, I concede that each of these skills may 
have been acquired by slow, iterative training of c-nets. 
However, the mere presence of these separate skills does 
not explain how we should be able, as a side-efect of 
these abilities, to create a coherent sequence of 
operations, in which each skill is invoked at the proper 
time, and applied to the proper object. By analogy, the 
mere presence of a set of primitive operations in a 
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programming language does not cause a program to be 
written, assembled, or executed. In short, the existence of 
primitive, slowly learned skills in a neural system may be 
a necessary condition for the application of novel rules, 
but it is not a sufficient condition. If we are to preserve 
the “side-effect hypothesis”, then the relevant side-effects 
must arise from c-nets other than (or in addition to) those 
responsible for executing the sub-skills involved. 

Now, while I know of no way to disprove this 
possibility, it does seem odd that such a complex ability 
as explicit rule following would arise as a mere side- 
effect of other neural processes. In any case, there is a 
deeper point to be made here. For, even if the side-effect 
hypothesis is correct, connectionism has not provided us 
with any reason for supposing that side-effects of this 
kind are limited in their scope. On the contrary, if side- 
effects of collections of c-nets are capable of supporting 
rapid application of completely novel rules, why should 
we not suppose that much, or even most higher-level 
cognition also involves the explicit application of rules 
which are acquired through direct observation or through 
explicit teaching? Why should we not suppose that many 
rules are stored in non-embedded form, and are 
interpreted as the need arises? Such a hypothesis would 
not exclude the further conjecture that when a rule enters 
long-term memory, some c-net will be trained to 
implicitly represent the rule by means of acquired 
weights. However, since neural mechanisms are clearly 
capable of applying explicit rules, we should await clear 
empirical evidence before judging the pervasiveness of 
this form of rule following. In sections 4 and 5, I present 
two examples which suggest that explicit rule following is 
more pervasive than a connectionist might suppose, but 
before passing to these examples, let’s consider what 
more we can learn from the present example. 

3. Symbolic Manipulation 

Recall that in example (1) the subject is asked to keep a 
phrase in mind, in this case “love ever keeps trying”. This 
phrase must be retained (presumably, in short term 
memory, or some other buffer region) while the subject 
listens to a rule. After hearing the rule the subject 
somehow retrieves the individual words of the given 
phrase, in sequence, in order to select the second letter 
from each word. At least, this is how it appears to us 
introspectively. However, from a purely logical 
standpoint, we need not suppose that individual words (or 
representations of words) are being reviewed in sequence. 
We may choose to ignore introspective evidence (though 
such evidence seems to require some explanation), and 
suppose that the input phrase is assigned an internal 

representation which is not sputiuZZy composite.4 In what 
immediately follows, we will accept this supposition, 
since it appears to represent the “worst case” for what I 
wish to demonstrate, viz., that example (1) involves 
explicit (mental) symbol manipulation. 

Now, if our mental representation of the example 
phrase is not spatially composite, then we have two 
possibilities. Either the phrase is internally represented 
by a single node (i.e., it is assigned a ZocaZ representation) 
or it is assigned a distributed representation whose spatial 
parts are not themselves meaningful representations. For 
simplicity sake, and for reasons given by Fodor and 
Rylyshyn (1988) we shall not consider the localist 
approach? So, we assume that the input phrase is 
assigned a distributed representation. (An account of how 
phrases and sentences may be assigned distributed 
meaning representations is given in St. John & 
McClelland, 1989). 

Now, although spatial sub-regions of this distributed 
representation are assumed not to be representations of 
any kind, it is still conceivable that some c-net exists 
which, given this distributed representation, and primed 
with the rule in question, could simply output a 
representation for the word ‘over’, i.e., the answer word. 
But while this is conceivable, it seems rather doubtful. 
For, since subjects receive no training at the particular 
task in question, it is not reasonable to suppose that any 
c-net contains information (tacit, or otherwise) about the 
specific letters occurring at specific positions in the 
particular phrase or sentence being represented. 
Moreover, the general task of retrieving letters from 
entire phrases at specified positions is not one that people 
are commonly trained for. By contrast, the task of 
retrieving the spelling of individual words is one that we 
are trained for, as is the task of finding the n-th element in 
a series of objects (e.g., a series of letters). It is entirely 
plausible, therefore, that we should have c-nets capable of 
performing these sub-tasks. Now, given the complexity 
of the task of going from an arbitrary phrase 
representation to the spelling of the answer word, it would 
be strange indeed if the c-nets comprising the general rule 
interpreter (which we have already seen to be necessary) 
did not arrange for the relevant subtasks to be performed 
by c-nets which have already been specifically trained for 

4We will say that a representation is spatially composite if some of its 
spatial parts are themselves meaningful representations (just as the 
words of this sentence are meaningful spatial parts of the entire 
sentence). For more on this, see (van Gelder, 1989). 

‘As Fodor and Pylyshyn stress, we cannot suppose that each phrase is 
represented by a unique neuron, because the number of phrases we can 
comprehend exceeds the number of neurons available. 
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those sub-tasks. Moreover, if we adopt this hypothesis -- 
that a series of sub-tasks are performed by c-nets specific 
to those tasks -- we need not abandon the idea that the 
input phrase receives a spatially non-composite 
distributed representation. For, it is plausible that we 
possess c-nets capable of taking this spatially non- 
composite representation as input, and yielding a sputiarly 
(or temporally) sequenced series of representations of the 
individual words in the sentence. In fact, c-nets which 
performed this transformation would simply embody a 
partial inverse of the process which produced the internal 
representation from the original input phrase. 

The kind of transformation just described illustrates 
one way of achieving functional compositional&y (as 
opposed to spatially concatenative compositionality) in 
connectionist architectures. Both Smolensky (1987) and 
van Gelder (1989) have explored the feasibility of 
incorporating functional compositionality in connectionist 
networks. Van Gelder, in particular, argues that the 
potential for including this form of compositionality in 
c-nets removes a barrier to the thesis that c-nets can 
exhibit the kind of systematicity which Fodor and 
Pylyshyn persuasively argue to be necessary. He argues 
further that, if connectionists are to avoid the kind of 
high-level control algorithms associated with classical AI, 
they will need to develop connectionist mechanisms for 
exploiting functional compositionality. While I do not 
dispute this conclusion, I contend that the present 
example shows that the classical paradigm of symbol 
manipulation is the most appropriate for some cognitive 
processes. For, in the absence of any plausible, direct 
c-net transformation from our example phrase to the 
correct answer, I submit that we should conclude the 
following: at some stage in the solution of our exercise 
the spellings of individual words are retrieved, and letters 
in the second position of each spelling are identified (and 
in some sense selected). 

If the above conclusion is accepted, we seem 
committed to a process which is at least strongly 
analogous to classical symbol manipulation. For, 
consider the possibilities. Although the spellings of each 
of the four individual words need not be simultaneously 
present (in some buffer, say) still each of the four 
spellings must either be “consulted” in sequence or in 
parallel. In either case, the spellings must be examined to 
obtain the second letter of the given word. Now, the 
(representations of) letters of a given spelling must either 
be examined sequentially until the second element is 
located, or the letters are present all at once and the 
second letter is identified (perhaps by parallel processing). 
In all of the above cases we either have a (spatially) 
concatenated series (of letters within words) or a 

temporally concatenated series? In either case, we have a 
concatenated series of representations, which taken 
collectively represent higher-level objects (words), and 
which are being processed to obtain the n-th element of 
the series. Moreover, once the n-th (2nd, in our case) 
element of each series is identified, it must somehow be 
marked, copied, or otherwise remembered, and its 
sequential position (relative to the original string of 
words) must be implicitly or explicitly remembered. 
Ultimately, these separate elements must be combined (or 
at least treated) as a concatenated series to obtain the 
representation of the external symbol ‘over’. 

Now, the foregoing description involves several 
operations which are typical of classical symbol 
manipulation (e.g., searching a list, marking or copying, 
selection, concatenation), but it could be argued that in 
one respect this description departs from classical 
processing. That is, I have allowed that the symbolic 
elements of a representation may be temporally rather 
than spatially concatenated. This might happen, for 
example, if the c-net which functionally decomposes a 
representation into its parts does so by producing those 
parts in a temporal sequence. But, even this kind of 
processing does not violate the spirit of classical symbol 
manipulation. Indeed, temporal concatenation seems only 
a minor modification (if at all) of the classical symbol 
manipulation paradigm. (Recall, after all, that a computer 
sends its symbolic output to the printer character by 
character.) To be sure, I have not shown that the 
sequentially ordered letters which comprise the final 
answer are literally spatially concatenated to produce this 
answer, but we should not expect the micro-details of how 
the foregoing operations are performed to resemble the 
micro-details of a digital simulation of these operations. 
For, as Pylyshyn would put it, the operations we have 
been considering are classical symbol manipulations at 
the cognitive level of description. There is a literal 
isomorphism between the series of sub-tasks performed 
by the c-nets involved and the moderately high-level sub- 
tasks involved in a computer simulation of this example. 
Moreover, the kinds of arguments produced earlier (to the 
effect that cognitive mechanisms which support explicit 
rule manipulation are not likely to be isolated aberrations) 
also apply here. We are not yet in a position to say how 
pervasive classical symbol manipulation is within higher- 

% might be argued that a third possibility exists -- that the spelling of 
each word is neither spatially nor temporally concatenated, but is an 
arbitrary (local or distributed) representation. It is conceivable that a 
c-net exists which takes such representations, and a parameter such as 
“position 2”. and returns representations of individual letters. However, 
as we previously argued, since we rarely have training for tasks as 
specific as “give me the second letter of the word ‘ever”‘, it is not 
plausible that such a specialized c-net would exist. 
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level cognition. However, the following sections may 
shed light upon this issue. 

4. Condition-Action Rules 

Consider the following simple rule: 

Example 2. If I pause and say a word which ends with 
‘ly’, then you repeat that word. 

Humans are able to learn simple novel rules of this 
kind as soon as they are spoken. Such rules are not 
remembered for long (without special motivation), but 
they are easily retained for 15 minutes, and can be applied 
immediately.7 Now, as in our previous example, we are 
confronted with a rule which can be immediately 
retained, interpreted, and applied. For reasons previously 
stated, we must suppose this novel rule is interpreted and 
applied by (at least) moderately general-purpose c-nets. 
Moreover, it is reasonable to believe that these c-nets 
receive a representation of the rule as input. (As in 
example (l), an internal representation must be posited to 
explain the fact that subjects can, for many minutes, 
reapply the rule to new data without being reminded of 
the rule.) 

Now, unlike our previous example, the present rule has 
the same general form as other rules which we do learn 
by training. For example, “If the light turns green, then 
you can go” also has this general form. It is possible 
therefore, that the particular c-nets responsible for 
applying rule (2) have been trained just to recognize if- 
then, condition-action rules. Note, however, that 
condition-action rules (which usually lack truth values) 
structurally resemble propositional if-then rules (which 
have truth values). In light of this structural similarity, it 
would not be surprising if the same c-nets were 
responsible for interpreting and applying both 
condition-action rules (such as (2)) and for executing 
modus ponens in the presence of if-then propositions. In 
any case, it appears that the existence of some general 
c-nets, capable of recognizing and applying a variety of 
novel condition-action rules, should be conceded. 

These c-nets may or may not be specific only to 
condition-action rules, but once their existence is 
conceded the possibility certainly arises that these c-nets 
are involved in widespread condition-action (or 
production system) reasoning. Recognition of this fact 

‘I’ve tested rules of this type on different occasions in graduate 
courses. Although no controlled experiment was conducted, the results 
were so unambiguous as to leave little doubt. People are able to follow 
the rule for some time after hearing it, even when ordinary conversation 
intervenes between “testing moments”. 

may well have motivated two recent connectionist 
attempts to model production systems (cf. Touretzky & 
Hinton, 1988; Ajjanagadde & Shastri, 1989). Although 
both these systems lack the full generality of AI-type 
production systems, each represents an attempt to 
incorporate structure-sensitive rule firing mechanisms in a 
connectionist framework. It is also worth noting that each 
of these systems represent if-then rules as structured, 
spatially composite objects, where the antecedents and 
consequents of individual rules are spatially separate 
clusters. Although these implementations do not employ 
classical symbol manipulation techniques at the micro- 
level, there is a clear and appropriate level of description 
at which they are performing quantifier instantiation and 
modus ponens. Unfortunately, it is doubtful whether 
either implementation can account for the immediate 
application of novel if-then rules, since in both systems, 
distinct conditionals are represented by distinct 
neurally-wired networks. It is not possible that such 
networks could be “instantly grown” to represent a rule 
which has just been understood. Barnden (1988) 
describes a method by which constants (which replace 
variables in rule schemata) could be rapidly represented in 
connectionist matrices, but his approach also requires the 
hard-wiring of each rule schema, and no indication is 
given of how this could be accomplished “on the fly”. 

5. Rules of Arbitrary Structure. 

As we have noted, the previous rule (2) shares a 
general form with other rules we typically encounter. For 
this reason it is at least plausible that rules having this 
form are applied by c-net(s) which respond only to rules 
of this form. However, the following rule, like the rule in 
example (l), does not share a syntactic structure with 
rules we normally encounter. The background context for 
the following rule is this: The subject is told that she/he 
will be presented with a series of at most five integers, 
where the value of each integer is less than five, and the 
subject is to apply the rule (below) once the series is 
presented. 

Example 3. Regard the second integer in the series as 
an exponent. Take the last integer in the series and raise 
it to the power indicated by the exponent you identified. 

Now, college students have no difficulty understanding 
and applying this rule to series of integers which are 
presented to them. (At least the students in my sample 
had no difficulty. In any case, we only need a few 
successes to make the point.) Also, because the rule is 
novel, moderately complex, and unusual in structure we 
must suppose, as we did in example (l), that initial 
applications of the rule involve (at least) moderately 
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general c-nets, capable of interpreting and applying a 
considerable range of possible rules. Moreover, as in the 
preceding examples, we must assume that (temporarily at 
least) the rule is stored as a representation, for the rule can 
be repeatedly applied without being re-presented to the 
subject. We have, then, a rule which embodies a 
moderately complex arithmetic procedure, and which is 
stored in explicit representational form before being 
applied. Now, given that humans are clearly capable of 
internally representing explicit, complex arithmetic rules 
before applying them, the question naturally arises 
whether children commonly learn algorithms such as long 
multiplication and division by storing explicit 
representations of these algorithms. 

While I have no conclusive answer to this question, the 
following considerations arc suggestive: (i) Before 
children are taught long multiplication, they are 
intensively trained in simpler sub-skills, such as adding a 
column of digits, “carrying” a value to the next column, 
and multiplying pairs of single digits. (ii) When taught 
skills such as long multiplication, children are in fact told 
explicit rules (e.g., “after multiplying the entire number 
by the rightmost digit, move one digit to the left and 
multiply through again. But this time write down the 
answer on a new line. But start writing one place to the 
left . . . I’). Of course, these explicit rules are not instantly 
remembered, and examples are required, but students of 
average intelligence learn long multiplication after 
hearing the rules several times and practicing on perhaps 
20 or 30 problems. Given the comparatively small 
number of examples and “practice trials” required to train 
most children in long multiplication, it is difficult to 
believe that having the relevant sub-skills, and being 
given explicit instructions do not have a dramatic effect 
on the learning of arithmetic algorithms. (Certainly, 
possessing the relevant sub-skills is crucial to our ability 
to apply, so rapidly, the rule in example (3).) This 
becomes more apparent when we compare human 
learning to recent connectionist attempts to teach c-nets 
relatively simple arithmetic algorithms. For example, 
recent work by Cottrell $ Tsung (1989) on the addition of 
3-digit numbers required on the order of 3000 distinct 
training examples, and several thousand iterations, to 
achieve a reasonable degree of generalization (even 
though back propagation of error was employed, and the 
numerals were restricted to base four). 

In light of the examples we have considered thus far 
(each of which underscores the power of explicitly 
invoking prior sub-skills), it seems incumbent upon 
connectionists to address the issues implicit in points (i) 
and (ii) above, and to devise methods for rapidly 
controlling the sequence of sub-skills which are applied to 
a moderately complex problem. To date, scarcely any 

(published) connectionist research openly addresses these 
problems. I suggest that the reasons for this include: (a) 
connectionists are reluctant TV integrate the classical 
paradigm (of having explicit representations control tie 
sequencing of lower-level functions) into the existing 
connectionist paradigm, which treats all rules as implicit. 
(b) This reluctance arises (in part) because of the 
complexity of the task. It is very difficult to imagine how 
c-nets can support higher-level, representational control 
processes without resorting to more conventional (though 
possibly parallel) architectures. I submit, however, that 
examples (1) and (3) establish the following: if 
connectionism is to provide a model for all cognitive 
phenomena, it must include mechanisms for explicit rule 
representation and application. These mechanisms must 
be general enough to accommodate rules of novel 
structure. If connectionists can accept and meet the 
challenge of devising these mechanisms, they will have 
gone a long way towards integrating the prevailing 
classical and connectionist paradigms. 

6. Summary 

We have examined three examples of rule following in 
which the immediate representation, and application of 
rules appears to require the presence of general rule 
application mechanisms. Two of these examples involve 
rules of novel structure, which argues for a high degree of 
flexibility in these application mechanisms. Although the 
remaining example belongs to the more syntactically 
regular class of condition-action rules, it should be 
remembered that one prominent cognitive theory attempts 
to model most higher-level cognition in terms of 
(condition-action based) production systems (Anderson, 
1976). Moreover, as I have argued, the existence of the 
kinds of general rule-application mechanisms considered 
here strongly suggests that explicit rule representation and 
rule following are not isolated exceptions, but are 
important features of human cognition. Furthermore, I 
have argued that at least some explicit rule following is 
best modelled by the paradigm of classical symbol 
manipulation. Admittedly, it is uncertain whether most 
high-level processes, such as planning and abstract 
reasoning, involve explicit rule following and/or symbolic 
manipulations, but, in light of the fact that neural 
mechanisms do in fact sometimes support these classical 
processes, we must regard it as a serious open question 
whether most higher-level cognition involves these 
classical processes. Of course, nothing I have said here 
would suggest that all rule following ought to be 
modelled on the classical paradigm. Indeed, I have 
suggested elsewhere (Hadley, 1989) that semantic 
grounding rules are best modelled by connectionist 
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methods. However, I believe the arguments presented 
here seriously challenge the prevailing connectionist 
methodology of modelling all rules by means of implicit, 
neurally-wired networks. Moreover, our conclusions 
present the connectionist with a formidable scientific 
challenge, which is, to show how general purpose rule 
following mechanisms may be implemented in a 
connectionist architecture. 
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