
A Structured Connectionist Unification Algorithm
Steffen Hiilldobler*

International Computer Science Institute

1947 Center Street, Suite 600

Berkeley, CA 94704, USA
Ema& steffenQicsi.Berkeley.edu

Abstract
A connectionist unification algorithm is presented. It
utilizes the fact that the most general unifier of two
terms corresponds to a finest valid equivalence rela-
tion defined on a occurrence-label representation of the
unification problem. The algorithm exploits the maxi-
mal parallelism inherent in the computation of such a
finest valid equivalence relation while using only com-
putational features of connectionism. It can easily be
restricted to solve special forms of the unification prob-
lem such as the word problem, the matching problem,
or the unification problem over infinite trees.

Introduction
Following Leibnitz’s and Frege’s idea to formalize hu-
man thought Herbrand, Gijdel, and Skolem developed
predicate logic by 1930. Great efforts were taken to find
efficient proof procedures which can be used to mech-
anize human thought . A certain break-through was
achieved when J. A. Robinson invented the resolution
principle in 1965. In the meantime several other refu-
tation techniques have been developed like Kowalski’s
(1979) connection graphs or Bibel’s (1987) connection
method. At the heart of all these refutation methods
is the unification procedure, a version of which can al-
ready be found in Herbrand’s theses (1930) and which
was formally introduced by Robinson (1965).

Despite their success automatic theorem provers and
logic programming languages are still plagued be sev-
eral problems like the lack of a clever proof strategy or
the lack of common sense. The problem being tackled
in this paper is that most theorem provers do not ex-
plore the parallelism inherent in logic. They are still
designed with a von-Neumann computer in mind. The
sequential characteristics of such a computer is funda-
mentally different from the characteristics of an animal
- and presumably a human - brain. In the brain slow
neural computing elements with a switching time of a
few milliseconds are heavily interconnected. Neverthe-
less, the brain is capable of performing complex tasks
which require millions of operations on a conventional
computer and this seems to be conclusive evidence that
massive parallelism must take place in the brain.

*on leave from FG Intellektik, FB Informatik, TH Darm-
stadt, West-Germany

It is the goal of connectionist theories to utilize the
understanding of the brain for building systems with in-
teresting behaviour. The fundamental process in a con-
nectionist model is the activation of associated units.
However, Smolensky (1988) has emphasized that such
a spreading of activation cannot be adequate for com-
plex tasks such as question answering. And in an earlier
paper Smolensky (1987) h as argued that connectionist
systems may well offer an opportunity to escape the brit-
tleness of symbolic AI systems . . . if we can find ways of
naturally instantiating the sources of power of symbolic
computation within fully connectionist systems. Such
symbolic systems are powerful because they provide a
combinatorial syntax and semantics and processes are
structure sensitive (Fodor & Pylyshyn, 1988).

In his response to (Smolensky, 1988) J. McCarthy ob-
served that in connectionist models which he has seen
the basic predicates are all unary a.ld are even applied to
a fixed object, and a concept is a propositional function
of these predicates. It is the goal of this paper to show
a way out of the propositional fixation of connectionist
models. This is done by demonstrating how the unifi-
cation computation, which is at the center of inference,
can be modeled in a connectionist system.

Informally, the unification problem is the question of
whether there exists a substitution for two terms s and
t such that the respective instances of s and t are equal.
Paterson & Wegman (1978) have shown that this prob-
lem can be solved sequentially in time linear to the size
of the problem. Dwork et. al. (1984) have proved that
unification is logspace-complete and, thus, we should
not expect that a parallel unification algorithm has a
significant better time complexity in the worst case un-
less P C NC. However, we can expect that a parallel
algorithm improves the time-complexity for the average
case. As we will show the unification problem can be
solved in 2 steps if it degenerates to a word or a match-
ing problem, where a word (matching) problem is the
question of whether s (an instance of s) is equal to t.
This significantly improves results by Dwork et al., who
have shown that the matching problem of size n can be
solved in log2n parallel time. Such an improvement
is important for many applications as, for example, a
study by Citrin (1988) h as shown that up to 50% of
Prolog’s execution time is consumed by the unification
process and many of the unifications are easy.

HOLLDOBLER 587

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Distributed unification algorithms such as the one de-
veloped by Vitter & Simons (1986) make use of a dug’-
representation of the unification problem. The paral-
lelism exploited by these algorithm has its source in the
decomposability axioms which characterize unification.
These axioms state that two terms f (si , . . . , sn) and
f@l,. . . , tn) are unifiable if all corresponding subterms
s; and ti are unifiable. The unifiability of these sub-
terms is determined in parallel as far as this is possible.

Most of the approaches towards a connectionist uni-
fication algorithm are parts of the design of larger infer-
ence systems. Let us describe these approaches as far
as unification is concerned. Ballard (1986) prewires all
substitutions and selects a substitution which is consis-
tent with a refutation proof. This is possible because
terms can only be variables and constants, clauses are
used at most once and, thus, the set of substitutions is
finite. Touretzky’s & Hinton’s (1988) DCPS is capable
of matching a hypothesis of the form (zeb)(xcd) against
the content of the working memory by searching for a
minimum energy state, where x is a variable and the
remaining symbols are constants. While it seems to be
possible to relax the constraints on the occurrences of
variables in the hypothesis it is by no means obvious
how their technique can be applied if n-ary function
symbols are allowed and if the elements of the work-
ing memory may also contain variables. Mjolsness et
al. (1989) match a dag with variables against a dag
without variables by minimizing an objective function,
which specifies the mismatch (or distance) between the
dags. However, it is not obvious that they always find
the most general solution and it seems to be impossible
to extend their approach in order to deal with unifica-
tion problems. Lange & Dyer (1989) and Ajjanagadde
SC Shastri (1989) assign a unique signature or phase (of a
phased clock) to constants. Dynamic bindings are cre-
ated by passing these signatures or phases. However,
their systems do not guarantee in general that multiple
occurrences of the same variable are bound to the same
constant. It is also not easy to see how their propos-
als can be extended to cope with function embeddings
which arise during the unification process if n-ary func-
tion symbols are allowed.

The connectionist approaches mentioned so far have
severly shortcomings as far as the unification compu-
tation is concerned. Only Stolcke (1989) has recently
investigated unification from a connectionist point of
view. Stolcke represents terms as dags and - inspired
by Paterson SC Wegman (1978) - defines an equivalence
relation on the nodes of a dag. He computes this rela-
tion via a connectionist network by explicitely coding
the axioms defining the equivalence relation. However,
Stolcke’s algorithm will unify the terms x and f(x),
since it does not check that the equivalence relation is
acyclic or, in other words, it does not perform an occur
check. Furthermore, the algorithm does not compute
the most general unifier d for two terms s and t, but

‘directed acyclic graph

the term CS. It is not obvious how the algorithm can
be changed such that an occur check is performed and
the most general unifier is returned.

In this paper we present a connectionist unification
algorithm. Terms and substitutions are represented as
sets of occurrence-label pairs. Using Smolensky’s (1987)
terminology the occurrences are the roles that are filled
by the labels. This representation allows us to repre-
sent terms and substitutions in a finite net though the
set of terms as well as the set of substitutions is infi-
nite. We define a finest valid equivalence relation on
this representation, which represents a solvable unifica-
tion problem, and show how this relation can be com-
puted using only simple threshold units. Moreover, we
formally prove that our connectionist model solves the
unification problem. On this way we solve the variable
binding problem and, moreover, ensure that multiple
occurrences of the same variable are consistently bound
to the same term (see e. g. (Barnden, 1984)). Due to
lack of space we had to omit some details and all the
proofs. They can be found in (Holldobler, 1990). As
far as this paper is concerned we do not address the
problem how the connectionist net is recruited. We ex-
pect that the unification algorithm will be built into a
larger system and that such a system will take care of
this problem.

The Unification Problem
We assume to have a finite alphabet consisting of a set
F of graded function symbols and a set V of variables.
Terms and substitutions are defined as usual. Through-
out the paper a, b, . . . denote function symbols, s, t, . . .
denote terms, and Z, y, . . . denote variables.

A unification problem consists of two terms s and t
and is denoted by (s = t). It is the problem of whether
there exists a substitution 0 such that crs = at. If such
a substitution CT exists then c is called unifier of (s = t).
A substitution c is said to be a most general unifier, or
mgu, for (s = t) iff for each unifier 0 for (s = t) there
exists a substitution X such that for each variable x oc-
curring in (s = t) we find 0x = Xax. It is well-known
that the unification problem is decidable and that an
mgu of two terms can effectively be computed when-
ever the terms are unifiable (Robinson, 1965). Such
an mgu is unique modulo variable renaming (Fages 9c
Huet, 1986) and, therefore, is often called the mgu.

To develop a unification algorithm we need an axiom-
atization of unification which is suitable for a connec-
tionist implementation. We will essentially use Pater-
son’s & Wegman’s (1978) approach, but our algorithm
is not based on a dag but on an occurrence-label repre-
sentation of the unification problem.

The set of occurrences of a term t, O(t), is induc-
tively defined as A E O(t), and A E O(ti) implies i.7 E
O(f (tl, -- -9 tit - - . , tn)) for all 1 5 i 5 n2. On occur-
rences a partial ordering is defined by ~1 2 a:! iff there

2We omit A and . i f this does not lead to confusion.

588 KNOWLEDGEREPRESENTATION

exists a 7rz such that 11.7ra = x2. Furthermore, 1~1 > 7r2
iff ~1 2 7r2 and 7ri # 72.

The set of labels, l(r), for each occurrence 7r in
the terms of a unification problem (s = t) is the set
of symbols occurring at 7 in s and t. The set l(n)
can be split into the disjoint subsets l!(r) and I”(A),
which contain the function symbols and‘ variables,‘ re-
spectively. For the unification problem (f (x, x, y) =
f (9(Y)? 9(9(4), s(4)) we obtain

In the sequel let (s = t) be a unification problem and
0 = O(S) U O(t). An equivalence relation N on 0 is
said to be
decomposable3ifT Vq, 7~2 E 0 : q - 7r2 E 0

A 3 : (sl-i, q-i) C 0 * x1-i cv 7r2.i,
homogeneous iff Vq, 7r2 E 0 : r1 N x2

singular iff h1,7r2 E 0 : 1,(7r~) n l,(n2) # 0 j xl N x2.

A decomposable and singular equivalence relation is
called DSE-relation. We denote a w-equivalence class
C by [v-, 7r,J whenever { ~1,. . . , 7rn} C C. For N-
equivalence classes Ci and C2 we define Ci + C2 iff
there exist al E Ci and 7r2 E C2 such that ~1 > ~2.
An equivalence relation m is said to be acyclic iff the
N-equivalence classes are partially ordered by +. A ho-
mogeneous and acyclic DSE-relation is said to be valid.

For (f(x, x, Y) = f (9(y), 9(9(4), s(a))) a valid equiv-
alence relation is defined by the equivalence classes
[A] + [l, 21 + [ll, 21,3] + [211,31]. For (f(x, y) =
f MY), g(x))) th ere e.xists a homogeneous DSErelation
with equivalence classes [1,21] and [11,2]. But this re-
lation is cyclic. To gain efficiency the check whether
a DSErelation is acyclic - also called occur check -
has been omitted in virtually all logic programming
systems. Colmerauer (1984) corrected this bug by in-
terpreting logic programs no longer over the Herbrand
universe or finite trees, but over the domain of infinite
trees. There, the latter problem is solvable by replacing
a~ as well as y by the infinite tree g(g(g(. . .))). Propo-
sition 1 is an immediate consequence of (Paterson SC
‘CVegman, 1978) and (MacQueen et al., 1984).

Proposition 1
1. (s = t) has a solution over the domain of infinite

trees ifl there is Q homogeneous DSE-relation on 0.

3 Decomposability is often called correspondence (e.g.
(Dwork et al., 1984)) and sometimes implies homogeneity
(e.g. (Kirchner, 1984)).

2. (s = t) has a solution ifl there is a homogeneous and
acyclic DSE-relation on 0.

Moreover, Paterson’s SC Wegman’s have shown that
the mgu of two terms can be constructed from the finest
valid equivalence relation on the set of occurrences of
the unification problem. For our running example we
will briefly recall this technique. [A] is the largest class4
(wrt +). But since [A] is not labelled by a variable we
can discard it. For the next class, [l, 21, we find - by
inspecting the labels as well as the ordering + - that
x is bound to g(y) and we generate the binding {x 6
g(y)). Similarly, for [ll, 21,3] and [211,31] we obtain
the bindings {y + g(t)) and {z + a}, respectively.
Combining these bindings yields

{% c Q, Y + SW, x c s(sb)>L

which is the mgu of the unification problem. Because
of this technique and since we regard our connectionist
unification algorithm as part of a larger inference sys-
tem utilizing the same representation as the unification
algorithm itself, we are satisfied if the connectionist uni-
fication algorithm generates the finest valid equivalence
relation for a unification problem.

A Connectionist Unification Algorithm
In the first step towards a connectionist unification algo-
rithm we use the fact that a DSErelation can be char-
acterized by its equivalence classes, which in turn can be
represented by the union of the labels of its members.
As we show in the following subsection, these unions
can be computed by two simple operations derived from
the axioms of decomposability and singularity. There-
after we demonstrate how the unification problem can
be represented and how the finest DSE-relation can be
computed by a connectionist model. It remains to be
checked that the finest DSE-relation is homogeneous
and acyclic. This can be done by a simple extension of
the connectionist model developed until then.

Representing a DSE-Relation
Let w be a DSErelation for a unification problem
(s = t). For a w-equivalence class C the set of labels,
l(C), is the union of the set of labels of its elements. As
before, the set of labels of C can be split into the dis-
joint subsets Ii(C) and l,,(C) containing the function
symbols and variables, respectively. As example con-
sider (f (x, x, Y) = f(9(Y), 9(9(z)), s(4)) and we find

Since we intend to represent the m-equivalence classes
by l([x]) we have to generate I([x]). Let A contain the

‘called root class in (Paterson & Wegman, 1978)

H~LLDOBLER 589

axioms of reflexivity, symmetry, transitivity, decompos-
ability, and singularity. By A l- ~1 - 7~ we denote that
~1 - 7~ can be derived from A. It can now be shown
that for ~1 # 7r2

At- 7r1 N r2 e3?r,~‘L,i~; :
AI- n; ry ~5 Ax1 = n’,&br2 = +rAZ,([Qr$]) # 0

holds. This tells us that, if 7~ and 7~ are in the
same DSE-equivalence class, then either there is a vari-
able among the labels of [al, 7r2] or we find occurrences
?r, $, ~5 such that r # A, ~1 = ?ri. P, 7r2 = ni - x, and
there is a variable among the labels of [tir, ti2]. In other
words, the finest DSE-relation can be constructed en-
tirely from occurrences which are labelled with the same
variable. The key idea of the connectionist unification
algorithm is to increase the set of labels of each occur-
rence 7r until Z(7r) = {([xl). When shall the set of labels
be increased? By the singularity of - we find that

whenever Z&r) n Zv(7r2) # 0 (ups)
and by the decomposability of - and the previous result
we find that

l(7rl .T) - Z(7rl .n) u Z(n2 4
whenever I, (~1) n 1, (7r2) # 0 (0~)

where + denotes assignment and A # A. In the se-
quel we show that these two operations can easily be
performed by a connectionist model and that they gen-
erate indeed the finest DSErelation.

Representating a Unification Problem
The unification algorithm is based on Feldman’s 9c Bal-
lard’s (1982) connectionist model. Units are charcter-
ized by a potential p, an output value v, and a vec-
tor of inputs il, . * . .,2n. In particular we use so-called
threshold units, whose potential and output values are
determined via the rules

P- c Wkik,
v+ifp>othen lelse0,

where 0 is a constant called threshold and Wk are
weights on the input values. The unique output value
is spread along all connections from the unit though
these connections are not always drawn from the same
location. For convenience we occasionally use a bidirec-
tional link + with weight w between two units ~1 and
T.L~ as an abbreviation for two links with weight w; one
from ui to 112 and another one from ~2 to ui.

The sets of labels for a unification problem can be rep-
resented by threshold units M(n, j) for each occurrence
a and each symbol j such that M(n, j) is active iff j is
a label of r. A unification problem is specified by ex-
ternally activating the units which define the problem.
This external activation has to be maintained through-
out the computation since threshold units do not memo-
rize their potential. For our running example we obtain
the units depicted in figure l(a) as a matrix. One should
observe that this representation is not unique. The uni-
fication problem (f(x, s(s(+, Y) = f(g(& 2, d-4)) 1~

afg xyz afg xyz afg xyz

fl 0~0000 0a0000 0e0000 1 ooe~oo oo~eoo 001) a00 11 0000~0 ooooeo 000 oeo 2 001)QOO ooamoo oom QOO 21 00~000 oo1)ooo 0000ao 211 00000e oooooe 00000a 3 ooeoao oo*ooo 009 000
31 a00000 00 000 a00 000

w (4
Figure 1: The representation of (j(x, Z,U) =
f(g(y), g(&)), g(a))); (a) initially, (b) after 1 step, and
(c) after 2 steps, where the most recently activated units
are half-filled.

the same representation as the running example. But
this does not lead to a problem since the finest valid
equivalence relation is identical for both examples.

If we update the labels according to the operations
ops and OpD we obtain figures l(b) and l(c) after 1
and 2 steps, respectively. For example, since M(11, y),
q3, !I), and M(3,g) are active in (a), M(ll,g) has
become active in (b) by ops. Since M(l,x), M(2, z),
and M(ll, y) are active in (a), M(21,y) has become
active in (b) by OpD. The final matrix in (c) represents
precisely the labels of the finest DSErelation and is
considered as the output of our unification algorithm.

How must a connectionist network look like in order
to implement the operations ops and OpD? We pro-
pose a network consisting of two layers called term and
unification layer. Let n = IO(s) U O(t)1 be the size
of (s = t), m be the cardinality of the alphabet, and
w = imn(n-1) be an integer used to set up thresholds
and weights.

The term layer contains the representation for a uni-
fication problem as an nxm matrix A4 of threshold units
with threshold w. Each unit is connected via bidirec-
tional links with n-l units in the unification layer and
has weight w. The unification layer contains the units
necessary to implement ops and OpD. For both oper-
ations the algorithm has to determine whether two oc-
currences share a common variable and to update sets
of labels accordingly. This requires that for any two oc-
currences rri and 7r2 and for any symbol j, M(K~, j) and
M(n2,j) are connected. Since the unification problem
has n different occurrences and m different symbols, we
need in(n- 1) units for each symbol, i.e. altogether w
units. These units can be represented by a Ln(n-1)xm
matrix U of threshold units with thresh01 3 w+l. An
element of this matrix is denoted by U({ ~1,7rz}, j), or
U(ri, 7r2, j) for shorts, indicating that this unit is con-
nected with itl(ni, j) and M(az, j). Each unification
layer unit is also connected to other unification layer
units with weight 1 such that there is a connection from

5Note, I/(A~, ~2, j) and U(x2, ~1, i) denote the same unit.

590 KNOWLEDGEREP~SE~ATION

for all z E V, j E VU F, j # x, and
U(rr, x2,2) to U(?rr .x, 1r2’1r, j) for all 7r # A, x E V,

j E V U F such that {WI SW, 7r2.7r) C O(s) U O(t).
The threshold of a unification layer unit is chosen such
that active unification layer units can only activate an-
other unification layer unit if this unit receives also ac-
tivation from the term layer. Conversely, a term layer
unit is activated as soon as a corresponding unification
layer unit is active. To exemplify the network figure 2
shows the term layer together with the unification layer
units and the connections needed to solve our running
example. All externally activated term layer units are
represented as full circles. The interested reader is en-
couraged to verify that the number i in a unit indicates
that this unit will be activated after i steps.

a f g X Y z

Figure 2: The cyclic term layer together with the trian-
gular unification layer units and the connections needed
for solving (f(x, 2, y) = f(!J(Y)Y s(sW, g(4)). Recall
that a unification layer unit U(K~, 7r2, j) is uniquely de-
termined by its term layer units M(R~, j) and M(.Rz, j).
Each connection between unification layer units has
weight 1 and each connections between a unification
and a term layer unit has weight w.

Computing the finest DSE-relation
1Ve are of course interested in whether the connectionist
model computes the finest DSErelation for any solvable
unification problem. To answer this question we define
a function T on the units of the term and unification
layer. Let N be a set of term and unification layer units
in T(N) = N U Tl(N) U Tz(N), where

Tl(N) = {M(s, j) 1%’ : U(r, x’, j) E N}
G(N) = {U(n,mj) 1 {M(mj),M(mj)) S N

v [(M(v,j) E N V M(n,j) E N) A D(wI, ~2, N)]}
D(al, r2, N) = 3x E v : 37r, n;, 7: : Rl I =7r *?r

A a2 = +iT Au(&a$,& N.

By the definition of T and the fact that there are only
finitely many units we find that

T(N) 2 N,
T(N) = N implies T’(N) = ,V for all i > 0, and
3k:Tk+'(N)= Tk(N).

In fact, we can show that X: is bounded by the number
n of occurrences in a unification problem. Now let N
be the set of active term layer units which represent
a ‘unification problem and let .V* = Tk(N) such that
T(N*) = N”. The interested reader may check that for
our running example N* = T6 (,V). We can now answer
the question raised at the beginning of this subsection.

Theorem 2
‘dx~O:Vj~VuF:M(n,j)~N”ej~/([lr]).

This result ensures that a finest DSE-relation for a
unification problem is generated by the connectionist
model. That it is indeed the finest DSErelation fol-
lows immediately from the fact that each activation
was forced by either the axiom of singularity or the ax-
iom of decomposability. The space complexity is bound
by the square of the size n of the unification problem,
whereas the time complexity is bound by n, We should
not be disappointed by these results as Dwork et al.
(1984) have proved that unification is logspace com-
plete. But look at a best case scenario. This is the
case if the unification problem degenerates to a word
problem, i.e. to the question of whether two terms s
and t are syntactically equal. If the word problem is
solvable, then the finest DSE-relation is found after 1
step. Similarly, we can show that even for a match-
ing problem, i.e. the problem of whether there exists a
substitution c for s and t such that 0s = t, the finest
DSErelation is also found after 1 step. As an example
consider s = f(x, s(x)) and t = f@(a), g(W)))- Then,

N = {WA, f>, Wl, 4, -M(l, h), M(W-4,
M(b), M(21, xc), Au(21, h), Af(211, a)}

and T(N) as well as T2(N) are equal to

N u {U(1,21,h), U(11,211,u),U(1,21,x)}.

Hence, the matching problem is solvable with most gen-
eral solution { 2 + h(u)}.

Homogeneous DSE-relations
A DSErelation need not to be homogeneous. This can
be seen if we alter our running example by replacing
the z by a new constant b. The finest DSErelation for
(f(x, 2, Y) = m(Y)9 g(g(b)), SW) can be computed as
before and we find that 211 - 31 and 11([211,31]) =
b-d). H owever , since - is homogeneous iff we find
for all 7r that I1f([r])l 5 1, we conclude that - is not
homogenous iff there is a row rr in the term layer and at
least two function symbols fr and f2 such that M(x, fl)
and M(x, f2) are active. This condition can be directly
translated into a connectionist network. For each row
7r of the term layer we insert an additional threshold

HOLLDOBLER 591

unit which receives activation from each unit M(r, f),
where f is a function symbol, and becomes active as
soon as it is excited by two term layer units.

Proposition l(1) ensures that the algorithm devel-
oped so far decides a unification problem over infinite
trees. One should observe, that the matching problem
is the same regardless whether it is interpreted over
the domain of finite or infinite trees. Thus, we find
that whenever T2(N) > T(N) the matching problem is
unsolvable and, hence, a matching problem can be de-
cided in 2 steps. This improves a result by Dwork et al.
(1984), who have shown that the matching problem of
size n can be solved on a PRAM in Zog2n parallel time.

Valid Equivalence Relations

It remains to be checked whether the finest homoge-
neous DSE-relation is acyclic or, in other words, valid.
Unfortunately, there is no unit in our connectionist
model which represents a w-equivalence class. How-
ever, we know that two different occurrences ~1 and r/1
are equal under - iff there are a variable x and occur-
rences 7r2, irk, and 7r such that U(n2, K$, x) is active,
Kl = r2.7r, and sri = +r. This fact will be exploited in
order to determine whether - is acyclic in an additional
layer of our algorithm called occur check layer. This
layer consists of $z(n - 1) threshold units C({n, n’)) -
or C(n, R’) for short - with threshold 1, where 7r # ?r’.
Let C(B~, n{) > C(Q, &J iff there exist x E { ~1, a{}
and 7 E (x2, ni} such that I > 7. The units in the
occur check layer are connected by links with weight 1
from C(7r1, ai) to C(a2,7r$) iff C(nl, 7r{) > C(7r2,7rr/2).
Now assume that each element C(n, a’) is initially acti-
vated if 7r - x’, whereas C(r, a’) is externally inhibited
if A + r’. This inhibition must’be strong enough such
that an occur check layer unit cannot be activated by
other occur check layer units. As a result units rep:
resenting a cycle will form a stable coalition, whereas
units which are not part of a cycle will be deactivated
after some time.

As an example consider (f(x, y) = f(g(y),g(x))).
A homogeneous DSE-relation exists and is depicted
in figure 3(a). Since 1 - 21 and 2 - 11 the units
C(1,21) and C(2,ll) will initially be active. Fig-
ure 3(b) shows the occur check layer, where all con-
nections to and from a self-excitatory unit are not
drawn. The units C(l,21) and C(2,ll) are mutually
excitatory and form a stable coalition. Notice that
C(21,ll) is externally inhibited and,‘thus, cannot be
activated by C(1,21) and C(2,ll). For our running
example (f(x,x, y) = fMY), !l(!l(4), !lW)) the units
C(l, 2), C(11,21), C(ll, 3), C(21,3), and C(211,31) are
initially active, but are all deactivated after 3 steps.

The behaviour of the occur check layer can be for-
mally verified. Let C be a set of active occur check
layer units and S be a transformation on C such that

S(C)= c\ {C(?rlJ',) 1 GlC(iT&) E c:
C(Al,k/l) < c(;r2,7r9}6.

2 el

21 k3

(4 w
Figure 3: (a) the term layer representing the finest DSE-
relation and (b) the occur check layer for (f(x, y) =
f(gb), &w

With this definition we find

S(C) E c
S(C) = C 3 Vk 2 0 : Sk(C) = C and
3k 5 n : Sk+l(C) = Sk(C)

Now let C = {C(n, x’) 1 ?r - R’} and C” = Sk(C) such
that S(C*) = C*. In other words, C contains all occur
check layer units which are initially active.

Theorem 3 C” = 8 i$ - is acyclic.

It remains to show how the occur check layer units
are initially activated. Therefore, assume that all oc-
cur check layer units are externally inhibited. Such an
inhibition of a unit C(rl, ~‘1) is blocked and the unit
is excited iff there is an active unification layer unit of
the form U(n2, ?r& x) and an occurrence x such that
Tl = 7r2.7rT, and n{ = R$?T, where x is a variable. Notice
that a unit has to be excited only once whereas the in-
hibition has to be blocked for the time the occur check
layer needs to settle down.

Discussion
We have presented a connectionist unification algorithm
and shown that it is correct and complete. The algo-
rithm does not propagate potential non-unifiability as
Stolcke’s (1989) algorithm does. This propagation is
vital for Stolcke’s approach since his algorithm is ini-
tialized by activating the unit which represents the fact
that the unification problem is solvable. We have tried
to add the propagation of potential non-unifiability to
our unification algorithm but all examples suggested
that there will be no considerable speedup.

Recall that an equivalence relation on a set of oc-
currences is homogeneous iff each occurrence is labelled
with at most one Function symbol. Consequently, if the
equivalence relation is homogeneous, then in each row of
the term layer there is at most one of the units active
which represent the function symbols. In this special
case a coarse coded representation of the function sym-
bols is possible even without any cross-talk.

6C \ C’ denote the set C minus the set C’.

592 KNOWLEDGEREPRESENTATION

What is this unification algorithm good for besides
showing that unification can be implemented in a con-
nectionist system ? We would like to apply it within
term rewriting, logic programming, or theorem proving
in order to tackle the problems mentioned in the in-
troduction. But there are a lot of open problems. We
have assumed that all units of our layered architecture
are prewired. This is all right as long as the application
requires only a bounded number of clauses. If, however,
an unbounded number of variants of clauses is needed,
then the network has to be recruited dynamically. The
unification problem admits a single solution. Unfortu-
nately, as soon as we are interested in unification under
certain equational theories, we have to deal with com-
plete sets of unifiers. These sets may be even infinite.
Similarly, a problem posed to a theorem prover may
admit several solutions. How can we represent multiple
solutions and how can we deal with potentially infinite
computations in a connectionist theory?
Acknowledgement: I would like to thank Jerry Feld-
man for his guidance and support as well as Andreas
Stolcke and Heinz Schmidt, whose comments on earlier
versions of the unification algorithm helped to improve
it considerably.

References
Ajjanagadde, V. & Shastri, L. (1989). Efficient Infer-

ence with Multi-Place Predicates and Variables in
a Connectionist System. In Proceedings of 2he An-
nual Conference of the Cognitive Science Society,
pp. 396-403.

Ballard, D. H. (1986). P arallel Logic Inference and En-
ergy Minimization. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pp.
203 - 208.

Barnden, J. A. (1984). On Short Term Information
Processing in Connectionist Theories. Cognition
and Brain Theory, 7:25-59.

Bibel, W. (1987). A t u omated Theorem Proving. Vieweg
Verlag, Braunschweig, second edition.

Citrin, W. V. (1988). Parallel Unification Scheduling
in Prolog. Technical Report UCB/CSD 88/415,
University of California, Berkeley.

Colmerauer, A. (1984). Equations and Inequations on
Finite and Infinite Trees. In Proceedings of the In-
ternational Conference on Fifth Generation Com-
puter Systems, pp. 85-99.

Dwork, C., Kannelakis, P. C., SC Mitchell, J. C. (1984).
On the Sequential Nature of Unification. Journal
of Logic Programming, 1:35-50.

Fages, F. & Huet, G. (1986). Complete Sets of Unifiers
and Matchers in Equational Theories. Journal of
Theoretical Computer Science, 43:189-200.

Feldman, J. A. SC Ballard, D. 1~. (1982). Connectionist
Models and Their Properties. Cognitive Science,
6(3):205-254.

Fodor, J. A. SC Pylyshyn, Z. W. (1988). Connectionism
and Cognitive Architecture: A Critical Analysis. In
Pinker &z Mehler, eds., Connections and Symbols,
pp. 3-71. MIT Press.

Herbrand, J. (1930). Sur la Theorie de la Demonstra-
tion. In Goldfarb, ed., Logical Writings (1971).
Cambridge.

HSlldobler, S. (1990). A C onnectionist Unification Al-
gorithm. Technical Report TR-90-012, Interna-
tional Computer Science Institute, Berkeley, Cal-
ifornia.

Kirchner, C. (1984). A New Equational Unification
Method: A Generalisation of Martelli-Montanari’s
Algorithm. In Proceedings of the Conference on
Automated Deduction, pp. 224-247.

Kowalski, R. (1979). Logic for Problem Solving, vol. 7
of Artificial Intelligence. North Holland, New
York/Oxford.

Lange, T. E. & Dyer, M. G. (1989). Frame Selection
in a Connectionist Model of High-Level Inferenc-
ing. In Proceedings of the Annual Conference of
the Cognitive Science Society, pp. 706-713.

MacQueen, D., Plotkin, G. D., & Sethi, R. (1984). An
Ideal Model for Recursive Polymorphic Types. In
Proceedings of the ACM Symposium on Principles
of Programming Languages.

Mjolsness, E., Gindi, G., St Anandan, P. (1989). Opti-
mization in Model Matching and Perceptual Orga-
nization. Neural Computation, 1:218-229.

Paterson, M. S. SC Wegman, M. N. (1978). Linear Unifi-
cation. Journal of Computer and System Sciences,
16:158-167.

Robinson, J. A. (1965). A machine-oriented logic based
on the resolution principle. Journal of the ACM,
12:23-41.

Smolensky, P. (1987). On Variable Binding and the
Representation of Symbolic Structures in Connec-
tionist Systems. Technical Report CU-CS-355-87,
Department of Computer Science 9c Institute of
Cognitive Science, University of Colorado.

Smolensky, P. (1988). On the Proper Treatment of Con-
nectionism. Behavioral and Brain Sciences, 1 l:l-
74.

Stolcke, A. (1989). Unification as Constraint Satisfac-
tion in Structured Connectionist Networks. Neural
Computation, 1(4):559 - 567.

Touretzky, D. S. St Hinton, G. E. (1988). A Distributed
Connectionist Production System. Cognitive Sci-
ence, 12:423 - 466.

Vitter, J. S. & Simons, R. A. (1986). New Classes for
Parallel Complexity: A Study of Unification and
other complete Problems for P. IEEE Transactions
on Computers, pp. 403-418.

H~LLDOBLER 593

