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Abstract 
A connectionist unification algorithm is presented. It 
utilizes the fact that the most general unifier of two 
terms corresponds to a finest valid equivalence rela- 
tion defined on a occurrence-label representation of the 
unification problem. The algorithm exploits the maxi- 
mal parallelism inherent in the computation of such a 
finest valid equivalence relation while using only com- 
putational features of connectionism. It can easily be 
restricted to solve special forms of the unification prob- 
lem such as the word problem, the matching problem, 
or the unification problem over infinite trees. 

Introduction 
Following Leibnitz’s and Frege’s idea to formalize hu- 
man thought Herbrand, Gijdel, and Skolem developed 
predicate logic by 1930. Great efforts were taken to find 
efficient proof procedures which can be used to mech- 
anize human thought . A certain break-through was 
achieved when J. A. Robinson invented the resolution 
principle in 1965. In the meantime several other refu- 
tation techniques have been developed like Kowalski’s 
(1979) connection graphs or Bibel’s (1987) connection 
method. At the heart of all these refutation methods 
is the unification procedure, a version of which can al- 
ready be found in Herbrand’s theses (1930) and which 
was formally introduced by Robinson (1965). 

Despite their success automatic theorem provers and 
logic programming languages are still plagued be sev- 
eral problems like the lack of a clever proof strategy or 
the lack of common sense. The problem being tackled 
in this paper is that most theorem provers do not ex- 
plore the parallelism inherent in logic. They are still 
designed with a von-Neumann computer in mind. The 
sequential characteristics of such a computer is funda- 
mentally different from the characteristics of an animal 
- and presumably a human - brain. In the brain slow 
neural computing elements with a switching time of a 
few milliseconds are heavily interconnected. Neverthe- 
less, the brain is capable of performing complex tasks 
which require millions of operations on a conventional 
computer and this seems to be conclusive evidence that 
massive parallelism must take place in the brain. 
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It is the goal of connectionist theories to utilize the 
understanding of the brain for building systems with in- 
teresting behaviour. The fundamental process in a con- 
nectionist model is the activation of associated units. 
However, Smolensky (1988) has emphasized that such 
a spreading of activation cannot be adequate for com- 
plex tasks such as question answering. And in an earlier 
paper Smolensky (1987) h as argued that connectionist 
systems may well offer an opportunity to escape the brit- 
tleness of symbolic AI systems . . . if we can find ways of 
naturally instantiating the sources of power of symbolic 
computation within fully connectionist systems. Such 
symbolic systems are powerful because they provide a 
combinatorial syntax and semantics and processes are 
structure sensitive (Fodor & Pylyshyn, 1988). 

In his response to (Smolensky, 1988) J. McCarthy ob- 
served that in connectionist models which he has seen 
the basic predicates are all unary a.ld are even applied to 
a fixed object, and a concept is a propositional function 
of these predicates. It is the goal of this paper to show 
a way out of the propositional fixation of connectionist 
models. This is done by demonstrating how the unifi- 
cation computation, which is at the center of inference, 
can be modeled in a connectionist system. 

Informally, the unification problem is the question of 
whether there exists a substitution for two terms s and 
t such that the respective instances of s and t are equal. 
Paterson & Wegman (1978) have shown that this prob- 
lem can be solved sequentially in time linear to the size 
of the problem. Dwork et. al. (1984) have proved that 
unification is logspace-complete and, thus, we should 
not expect that a parallel unification algorithm has a 
significant better time complexity in the worst case un- 
less P C NC. However, we can expect that a parallel 
algorithm improves the time-complexity for the average 
case. As we will show the unification problem can be 
solved in 2 steps if it degenerates to a word or a match- 
ing problem, where a word (matching) problem is the 
question of whether s (an instance of s) is equal to t. 
This significantly improves results by Dwork et al., who 
have shown that the matching problem of size n can be 
solved in log2n parallel time. Such an improvement 
is important for many applications as, for example, a 
study by Citrin (1988) h as shown that up to 50% of 
Prolog’s execution time is consumed by the unification 
process and many of the unifications are easy. 
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Distributed unification algorithms such as the one de- 
veloped by Vitter & Simons (1986) make use of a dug’- 
representation of the unification problem. The paral- 
lelism exploited by these algorithm has its source in the 
decomposability axioms which characterize unification. 
These axioms state that two terms f (si , . . . , sn) and 
f@l,. . . , tn) are unifiable if all corresponding subterms 
s; and ti are unifiable. The unifiability of these sub- 
terms is determined in parallel as far as this is possible. 

Most of the approaches towards a connectionist uni- 
fication algorithm are parts of the design of larger infer- 
ence systems. Let us describe these approaches as far 
as unification is concerned. Ballard (1986) prewires all 
substitutions and selects a substitution which is consis- 
tent with a refutation proof. This is possible because 
terms can only be variables and constants, clauses are 
used at most once and, thus, the set of substitutions is 
finite. Touretzky’s & Hinton’s (1988) DCPS is capable 
of matching a hypothesis of the form (zeb)(xcd) against 
the content of the working memory by searching for a 
minimum energy state, where x is a variable and the 
remaining symbols are constants. While it seems to be 
possible to relax the constraints on the occurrences of 
variables in the hypothesis it is by no means obvious 
how their technique can be applied if n-ary function 
symbols are allowed and if the elements of the work- 
ing memory may also contain variables. Mjolsness et 
al. (1989) match a dag with variables against a dag 
without variables by minimizing an objective function, 
which specifies the mismatch (or distance) between the 
dags. However, it is not obvious that they always find 
the most general solution and it seems to be impossible 
to extend their approach in order to deal with unifica- 
tion problems. Lange & Dyer (1989) and Ajjanagadde 
SC Shastri (1989) assign a unique signature or phase (of a 
phased clock) to constants. Dynamic bindings are cre- 
ated by passing these signatures or phases. However, 
their systems do not guarantee in general that multiple 
occurrences of the same variable are bound to the same 
constant. It is also not easy to see how their propos- 
als can be extended to cope with function embeddings 
which arise during the unification process if n-ary func- 
tion symbols are allowed. 

The connectionist approaches mentioned so far have 
severly shortcomings as far as the unification compu- 
tation is concerned. Only Stolcke (1989) has recently 
investigated unification from a connectionist point of 
view. Stolcke represents terms as dags and - inspired 
by Paterson SC Wegman (1978) - defines an equivalence 
relation on the nodes of a dag. He computes this rela- 
tion via a connectionist network by explicitely coding 
the axioms defining the equivalence relation. However, 
Stolcke’s algorithm will unify the terms x and f(x), 
since it does not check that the equivalence relation is 
acyclic or, in other words, it does not perform an occur 
check. Furthermore, the algorithm does not compute 
the most general unifier d for two terms s and t, but 

‘directed acyclic graph 

the term CS. It is not obvious how the algorithm can 
be changed such that an occur check is performed and 
the most general unifier is returned. 

In this paper we present a connectionist unification 
algorithm. Terms and substitutions are represented as 
sets of occurrence-label pairs. Using Smolensky’s (1987) 
terminology the occurrences are the roles that are filled 
by the labels. This representation allows us to repre- 
sent terms and substitutions in a finite net though the 
set of terms as well as the set of substitutions is infi- 
nite. We define a finest valid equivalence relation on 
this representation, which represents a solvable unifica- 
tion problem, and show how this relation can be com- 
puted using only simple threshold units. Moreover, we 
formally prove that our connectionist model solves the 
unification problem. On this way we solve the variable 
binding problem and, moreover, ensure that multiple 
occurrences of the same variable are consistently bound 
to the same term (see e. g. (Barnden, 1984)). Due to 
lack of space we had to omit some details and all the 
proofs. They can be found in (Holldobler, 1990). As 
far as this paper is concerned we do not address the 
problem how the connectionist net is recruited. We ex- 
pect that the unification algorithm will be built into a 
larger system and that such a system will take care of 
this problem. 

The Unification Problem 
We assume to have a finite alphabet consisting of a set 
F of graded function symbols and a set V of variables. 
Terms and substitutions are defined as usual. Through- 
out the paper a, b, . . . denote function symbols, s, t, . . . 
denote terms, and Z, y, . . . denote variables. 

A unification problem consists of two terms s and t 
and is denoted by (s = t). It is the problem of whether 
there exists a substitution 0 such that crs = at. If such 
a substitution CT exists then c is called unifier of (s = t). 
A substitution c is said to be a most general unifier, or 
mgu, for (s = t) iff for each unifier 0 for (s = t) there 
exists a substitution X such that for each variable x oc- 
curring in (s = t) we find 0x = Xax. It is well-known 
that the unification problem is decidable and that an 
mgu of two terms can effectively be computed when- 
ever the terms are unifiable (Robinson, 1965). Such 
an mgu is unique modulo variable renaming (Fages 9c 
Huet, 1986) and, therefore, is often called the mgu. 

To develop a unification algorithm we need an axiom- 
atization of unification which is suitable for a connec- 
tionist implementation. We will essentially use Pater- 
son’s & Wegman’s (1978) approach, but our algorithm 
is not based on a dag but on an occurrence-label repre- 
sentation of the unification problem. 

The set of occurrences of a term t, O(t), is induc- 
tively defined as A E O(t), and A E O(ti) implies i.7 E 
O(f (tl, -- -9 tit - - . , tn)) for all 1 5 i 5 n2. On occur- 
rences a partial ordering is defined by ~1 2 a:! iff there 

2We omit A and . i f this does not lead to confusion. 
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exists a 7rz such that 11.7ra = x2. Furthermore, 1~1 > 7r2 
iff ~1 2 7r2 and 7ri # 72. 

The set of labels, l(r), for each occurrence 7r in 
the terms of a unification problem (s = t) is the set 
of symbols occurring at 7 in s and t. The set l(n) 
can be split into the disjoint subsets l!(r) and I”(A), 
which contain the function symbols and‘ variables,‘ re- 
spectively. For the unification problem (f (x, x, y) = 
f (9(Y)? 9(9(4), s(4)) we obtain 

In the sequel let (s = t) be a unification problem and 
0 = O(S) U O(t). An equivalence relation N on 0 is 
said to be 
decomposable3ifT Vq, 7~2 E 0 : q - 7r2 E 0 

A 3 : (sl-i, q-i) C 0 * x1-i cv 7r2.i, 
homogeneous iff Vq, 7r2 E 0 : r1 N x2 

singular iff h1,7r2 E 0 : 1,(7r~) n l,(n2) # 0 j xl N x2. 

A decomposable and singular equivalence relation is 
called DSE-relation. We denote a w-equivalence class 
C by [v-, 7r,J whenever { ~1,. . . , 7rn} C C. For N- 
equivalence classes Ci and C2 we define Ci + C2 iff 
there exist al E Ci and 7r2 E C2 such that ~1 > ~2. 
An equivalence relation m is said to be acyclic iff the 
N-equivalence classes are partially ordered by +. A ho- 
mogeneous and acyclic DSE-relation is said to be valid. 

For (f(x, x, Y) = f (9(y), 9(9(4), s(a))) a valid equiv- 
alence relation is defined by the equivalence classes 
[A] + [l, 21 + [ll, 21,3] + [211,31]. For (f(x, y) = 
f MY), g(x))) th ere e.xists a homogeneous DSErelation 
with equivalence classes [1,21] and [11,2]. But this re- 
lation is cyclic. To gain efficiency the check whether 
a DSErelation is acyclic - also called occur check - 
has been omitted in virtually all logic programming 
systems. Colmerauer (1984) corrected this bug by in- 
terpreting logic programs no longer over the Herbrand 
universe or finite trees, but over the domain of infinite 
trees. There, the latter problem is solvable by replacing 
a~ as well as y by the infinite tree g(g(g(. . .))). Propo- 
sition 1 is an immediate consequence of (Paterson SC 
‘CVegman, 1978) and (MacQueen et al., 1984). 

Proposition 1 
1. (s = t) has a solution over the domain of infinite 

trees ifl there is Q homogeneous DSE-relation on 0. 

3 Decomposability is often called correspondence (e.g. 
(Dwork et al., 1984)) and sometimes implies homogeneity 
(e.g. (Kirchner, 1984)). 

2. (s = t) has a solution ifl there is a homogeneous and 
acyclic DSE-relation on 0. 

Moreover, Paterson’s SC Wegman’s have shown that 
the mgu of two terms can be constructed from the finest 
valid equivalence relation on the set of occurrences of 
the unification problem. For our running example we 
will briefly recall this technique. [A] is the largest class4 
(wrt +). But since [A] is not labelled by a variable we 
can discard it. For the next class, [l, 21, we find - by 
inspecting the labels as well as the ordering + - that 
x is bound to g(y) and we generate the binding {x 6 
g(y)). Similarly, for [ll, 21,3] and [211,31] we obtain 
the bindings {y + g(t)) and {z + a}, respectively. 
Combining these bindings yields 

{% c Q, Y + SW, x c s(sb)>L 

which is the mgu of the unification problem. Because 
of this technique and since we regard our connectionist 
unification algorithm as part of a larger inference sys- 
tem utilizing the same representation as the unification 
algorithm itself, we are satisfied if the connectionist uni- 
fication algorithm generates the finest valid equivalence 
relation for a unification problem. 

A Connectionist Unification Algorithm 
In the first step towards a connectionist unification algo- 
rithm we use the fact that a DSErelation can be char- 
acterized by its equivalence classes, which in turn can be 
represented by the union of the labels of its members. 
As we show in the following subsection, these unions 
can be computed by two simple operations derived from 
the axioms of decomposability and singularity. There- 
after we demonstrate how the unification problem can 
be represented and how the finest DSE-relation can be 
computed by a connectionist model. It remains to be 
checked that the finest DSE-relation is homogeneous 
and acyclic. This can be done by a simple extension of 
the connectionist model developed until then. 

Representing a DSE-Relation 
Let w be a DSErelation for a unification problem 
(s = t). For a w-equivalence class C the set of labels, 
l(C), is the union of the set of labels of its elements. As 
before, the set of labels of C can be split into the dis- 
joint subsets Ii(C) and l,,(C) containing the function 
symbols and variables, respectively. As example con- 
sider (f (x, x, Y) = f(9(Y), 9(9(z)), s(4)) and we find 

Since we intend to represent the m-equivalence classes 
by l([x]) we have to generate I([x]). Let A contain the 

‘called root class in (Paterson & Wegman, 1978) 
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axioms of reflexivity, symmetry, transitivity, decompos- 
ability, and singularity. By A l- ~1 - 7~ we denote that 
~1 - 7~ can be derived from A. It can now be shown 
that for ~1 # 7r2 

At- 7r1 N r2 e3?r,~‘L,i~; : 
AI- n; ry ~5 Ax1 = n’,&br2 = +rAZ,([Qr$]) # 0 

holds. This tells us that, if 7~ and 7~ are in the 
same DSE-equivalence class, then either there is a vari- 
able among the labels of [al, 7r2] or we find occurrences 
?r, $, ~5 such that r # A, ~1 = ?ri. P, 7r2 = ni - x, and 
there is a variable among the labels of [tir, ti2]. In other 
words, the finest DSE-relation can be constructed en- 
tirely from occurrences which are labelled with the same 
variable. The key idea of the connectionist unification 
algorithm is to increase the set of labels of each occur- 
rence 7r until Z(7r) = {([xl). When shall the set of labels 
be increased? By the singularity of - we find that 

whenever Z&r) n Zv(7r2) # 0 (ups) 
and by the decomposability of - and the previous result 
we find that 

l(7rl .T) - Z(7rl .n) u Z(n2 4 
whenever I, (~1) n 1, (7r2) # 0 (0~) 

where + denotes assignment and A # A. In the se- 
quel we show that these two operations can easily be 
performed by a connectionist model and that they gen- 
erate indeed the finest DSErelation. 

Representating a Unification Problem 
The unification algorithm is based on Feldman’s 9c Bal- 
lard’s (1982) connectionist model. Units are charcter- 
ized by a potential p, an output value v, and a vec- 
tor of inputs il, . * . .,2n. In particular we use so-called 
threshold units, whose potential and output values are 
determined via the rules 

P- c Wkik, 
v+ifp>othen lelse0, 

where 0 is a constant called threshold and Wk are 
weights on the input values. The unique output value 
is spread along all connections from the unit though 
these connections are not always drawn from the same 
location. For convenience we occasionally use a bidirec- 
tional link + with weight w between two units ~1 and 
T.L~ as an abbreviation for two links with weight w; one 
from ui to 112 and another one from ~2 to ui. 

The sets of labels for a unification problem can be rep- 
resented by threshold units M(n, j) for each occurrence 
a and each symbol j such that M(n, j) is active iff j is 
a label of r. A unification problem is specified by ex- 
ternally activating the units which define the problem. 
This external activation has to be maintained through- 
out the computation since threshold units do not memo- 
rize their potential. For our running example we obtain 
the units depicted in figure l(a) as a matrix. One should 
observe that this representation is not unique. The uni- 
fication problem (f(x, s(s(+, Y) = f(g(& 2, d-4)) 1~ 

afg xyz afg xyz afg xyz 

fl 0~0000 0a0000 0e0000 1 ooe~oo oo~eoo 001) a00 11 0000~0 ooooeo 000 oeo 2 001)QOO ooamoo oom QOO 21 00~000 oo1)ooo 0000ao 211 00000e oooooe 00000a 3 ooeoao oo*ooo 009 000 
31 a00000 00 000 a00 000 

w (4 
Figure 1: The representation of (j(x, Z,U) = 
f(g(y), g(&)), g(a))); (a) initially, (b) after 1 step, and 
(c) after 2 steps, where the most recently activated units 
are half-filled. 

the same representation as the running example. But 
this does not lead to a problem since the finest valid 
equivalence relation is identical for both examples. 

If we update the labels according to the operations 
ops and OpD we obtain figures l(b) and l(c) after 1 
and 2 steps, respectively. For example, since M(11, y), 
q3, !I), and M(3,g) are active in (a), M(ll,g) has 
become active in (b) by ops. Since M(l,x), M(2, z), 
and M(ll, y) are active in (a), M(21,y) has become 
active in (b) by OpD. The final matrix in (c) represents 
precisely the labels of the finest DSErelation and is 
considered as the output of our unification algorithm. 

How must a connectionist network look like in order 
to implement the operations ops and OpD? We pro- 
pose a network consisting of two layers called term and 
unification layer. Let n = IO(s) U O(t)1 be the size 
of (s = t), m be the cardinality of the alphabet, and 
w = imn(n-1) be an integer used to set up thresholds 
and weights. 

The term layer contains the representation for a uni- 
fication problem as an nxm matrix A4 of threshold units 
with threshold w. Each unit is connected via bidirec- 
tional links with n-l units in the unification layer and 
has weight w. The unification layer contains the units 
necessary to implement ops and OpD. For both oper- 
ations the algorithm has to determine whether two oc- 
currences share a common variable and to update sets 
of labels accordingly. This requires that for any two oc- 
currences rri and 7r2 and for any symbol j, M(K~, j) and 
M(n2,j) are connected. Since the unification problem 
has n different occurrences and m different symbols, we 
need in(n- 1) units for each symbol, i.e. altogether w 
units. These units can be represented by a Ln(n-1)xm 
matrix U of threshold units with thresh01 3 w+l. An 
element of this matrix is denoted by U( { ~1,7rz}, j), or 
U(ri, 7r2, j) for shorts, indicating that this unit is con- 
nected with itl(ni, j) and M(az, j). Each unification 
layer unit is also connected to other unification layer 
units with weight 1 such that there is a connection from 

5Note, I/( A~, ~2, j) and U( x2, ~1, i) denote the same unit. 
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for all z E V, j E VU F, j # x, and 
U(rr, x2,2) to U(?rr .x, 1r2’1r, j) for all 7r # A, x E V, 

j E V U F such that {WI SW, 7r2.7r) C O(s) U O(t). 
The threshold of a unification layer unit is chosen such 
that active unification layer units can only activate an- 
other unification layer unit if this unit receives also ac- 
tivation from the term layer. Conversely, a term layer 
unit is activated as soon as a corresponding unification 
layer unit is active. To exemplify the network figure 2 
shows the term layer together with the unification layer 
units and the connections needed to solve our running 
example. All externally activated term layer units are 
represented as full circles. The interested reader is en- 
couraged to verify that the number i in a unit indicates 
that this unit will be activated after i steps. 

a f g X Y z 

Figure 2: The cyclic term layer together with the trian- 
gular unification layer units and the connections needed 
for solving (f(x, 2, y) = f(!J(Y)Y s(sW, g(4)). Recall 
that a unification layer unit U(K~, 7r2, j) is uniquely de- 
termined by its term layer units M(R~, j) and M(.Rz, j). 
Each connection between unification layer units has 
weight 1 and each connections between a unification 
and a term layer unit has weight w. 

Computing the finest DSE-relation 
1Ve are of course interested in whether the connectionist 
model computes the finest DSErelation for any solvable 
unification problem. To answer this question we define 
a function T on the units of the term and unification 
layer. Let N be a set of term and unification layer units 
in T(N) = N U Tl(N) U Tz(N), where 

Tl(N) = {M(s, j) 1%’ : U(r, x’, j) E N} 
G(N) = {U(n,mj) 1 {M(mj),M(mj)) S N 

v [(M(v,j) E N V M(n,j) E N) A D(wI, ~2, N)]} 
D(al, r2, N) = 3x E v : 37r, n;, 7: : Rl I =7r *?r 

A a2 = +iT Au(&a$,& N. 

By the definition of T and the fact that there are only 
finitely many units we find that 

T(N) 2 N, 
T(N) = N implies T’(N) = ,V for all i > 0, and 
3k:Tk+'(N)= Tk(N). 

In fact, we can show that X: is bounded by the number 
n of occurrences in a unification problem. Now let N 
be the set of active term layer units which represent 
a ‘unification problem and let .V* = Tk(N) such that 
T(N*) = N”. The interested reader may check that for 
our running example N* = T6 (,V). We can now answer 
the question raised at the beginning of this subsection. 

Theorem 2 
‘dx~O:Vj~VuF:M(n,j)~N”ej~/([lr]). 

This result ensures that a finest DSE-relation for a 
unification problem is generated by the connectionist 
model. That it is indeed the finest DSErelation fol- 
lows immediately from the fact that each activation 
was forced by either the axiom of singularity or the ax- 
iom of decomposability. The space complexity is bound 
by the square of the size n of the unification problem, 
whereas the time complexity is bound by n, We should 
not be disappointed by these results as Dwork et al. 
(1984) have proved that unification is logspace com- 
plete. But look at a best case scenario. This is the 
case if the unification problem degenerates to a word 
problem, i.e. to the question of whether two terms s 
and t are syntactically equal. If the word problem is 
solvable, then the finest DSE-relation is found after 1 
step. Similarly, we can show that even for a match- 
ing problem, i.e. the problem of whether there exists a 
substitution c for s and t such that 0s = t, the finest 
DSErelation is also found after 1 step. As an example 
consider s = f(x, s(x)) and t = f@(a), g(W)))- Then, 

N = {WA, f>, Wl, 4, -M(l, h), M(W-4, 
M(b), M(21, xc), Au(21, h), Af(211, a)} 

and T(N) as well as T2(N) are equal to 

N u {U(1,21,h), U(11,211,u),U(1,21,x)}. 

Hence, the matching problem is solvable with most gen- 
eral solution { 2 + h(u)}. 

Homogeneous DSE-relations 
A DSErelation need not to be homogeneous. This can 
be seen if we alter our running example by replacing 
the z by a new constant b. The finest DSErelation for 
(f(x, 2, Y) = m(Y)9 g(g(b)), SW) can be computed as 
before and we find that 211 - 31 and 11([211,31]) = 
b-d). H owever , since - is homogeneous iff we find 
for all 7r that I1f([r])l 5 1, we conclude that - is not 
homogenous iff there is a row rr in the term layer and at 
least two function symbols fr and f2 such that M(x, fl) 
and M(x, f2) are active. This condition can be directly 
translated into a connectionist network. For each row 
7r of the term layer we insert an additional threshold 
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unit which receives activation from each unit M(r, f), 
where f is a function symbol, and becomes active as 
soon as it is excited by two term layer units. 

Proposition l( 1) ensures that the algorithm devel- 
oped so far decides a unification problem over infinite 
trees. One should observe, that the matching problem 
is the same regardless whether it is interpreted over 
the domain of finite or infinite trees. Thus, we find 
that whenever T2(N) > T(N) the matching problem is 
unsolvable and, hence, a matching problem can be de- 
cided in 2 steps. This improves a result by Dwork et al. 
(1984), who have shown that the matching problem of 
size n can be solved on a PRAM in Zog2n parallel time. 

Valid Equivalence Relations 

It remains to be checked whether the finest homoge- 
neous DSE-relation is acyclic or, in other words, valid. 
Unfortunately, there is no unit in our connectionist 
model which represents a w-equivalence class. How- 
ever, we know that two different occurrences ~1 and r/1 
are equal under - iff there are a variable x and occur- 
rences 7r2, irk, and 7r such that U(n2, K$, x) is active, 
Kl = r2.7r, and sri = +r. This fact will be exploited in 
order to determine whether - is acyclic in an additional 
layer of our algorithm called occur check layer. This 
layer consists of $z(n - 1) threshold units C( {n, n’)) - 
or C(n, R’) for short - with threshold 1, where 7r # ?r’. 
Let C(B~, n{) > C(Q, &J iff there exist x E { ~1, a{} 
and 7 E (x2, ni} such that I > 7. The units in the 
occur check layer are connected by links with weight 1 
from C(7r1, ai) to C(a2,7r$) iff C(nl, 7r{) > C(7r2,7rr/2). 
Now assume that each element C(n, a’) is initially acti- 
vated if 7r - x’, whereas C(r, a’) is externally inhibited 
if A + r’. This inhibition must’be strong enough such 
that an occur check layer unit cannot be activated by 
other occur check layer units. As a result units rep: 
resenting a cycle will form a stable coalition, whereas 
units which are not part of a cycle will be deactivated 
after some time. 

As an example consider (f(x, y) = f(g(y),g(x))). 
A homogeneous DSE-relation exists and is depicted 
in figure 3(a). Since 1 - 21 and 2 - 11 the units 
C(1,21) and C(2,ll) will initially be active. Fig- 
ure 3(b) shows the occur check layer, where all con- 
nections to and from a self-excitatory unit are not 
drawn. The units C(l,21) and C(2,ll) are mutually 
excitatory and form a stable coalition. Notice that 
C(21,ll) is externally inhibited and,‘thus, cannot be 
activated by C( 1,21) and C(2,ll). For our running 
example (f(x,x, y) = fMY), !l(!l(4), !lW)) the units 
C(l, 2), C( 11,21), C(ll, 3), C(21,3), and C(211,31) are 
initially active, but are all deactivated after 3 steps. 

The behaviour of the occur check layer can be for- 
mally verified. Let C be a set of active occur check 
layer units and S be a transformation on C such that 

S(C)= c\ {C(?rlJ',) 1 GlC(iT&) E c: 
C(Al,k/l) < c(;r2,7r9}6. 

2 el 

21 k3 

(4 w 
Figure 3: (a) the term layer representing the finest DSE- 
relation and (b) the occur check layer for (f(x, y) = 
f(gb), &w 

With this definition we find 

S(C) E c 
S(C) = C 3 Vk 2 0 : Sk(C) = C and 
3k 5 n : Sk+l(C) = Sk(C) 

Now let C = {C(n, x’) 1 ?r - R’} and C” = Sk(C) such 
that S(C*) = C*. In other words, C contains all occur 
check layer units which are initially active. 

Theorem 3 C” = 8 i$ - is acyclic. 

It remains to show how the occur check layer units 
are initially activated. Therefore, assume that all oc- 
cur check layer units are externally inhibited. Such an 
inhibition of a unit C(rl, ~‘1) is blocked and the unit 
is excited iff there is an active unification layer unit of 
the form U(n2, ?r& x) and an occurrence x such that 
Tl = 7r2.7rT, and n{ = R$?T, where x is a variable. Notice 
that a unit has to be excited only once whereas the in- 
hibition has to be blocked for the time the occur check 
layer needs to settle down. 

Discussion 
We have presented a connectionist unification algorithm 
and shown that it is correct and complete. The algo- 
rithm does not propagate potential non-unifiability as 
Stolcke’s (1989) algorithm does. This propagation is 
vital for Stolcke’s approach since his algorithm is ini- 
tialized by activating the unit which represents the fact 
that the unification problem is solvable. We have tried 
to add the propagation of potential non-unifiability to 
our unification algorithm but all examples suggested 
that there will be no considerable speedup. 

Recall that an equivalence relation on a set of oc- 
currences is homogeneous iff each occurrence is labelled 
with at most one Function symbol. Consequently, if the 
equivalence relation is homogeneous, then in each row of 
the term layer there is at most one of the units active 
which represent the function symbols. In this special 
case a coarse coded representation of the function sym- 
bols is possible even without any cross-talk. 

6C \ C’ denote the set C minus the set C’. 
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What is this unification algorithm good for besides 
showing that unification can be implemented in a con- 
nectionist system ? We would like to apply it within 
term rewriting, logic programming, or theorem proving 
in order to tackle the problems mentioned in the in- 
troduction. But there are a lot of open problems. We 
have assumed that all units of our layered architecture 
are prewired. This is all right as long as the application 
requires only a bounded number of clauses. If, however, 
an unbounded number of variants of clauses is needed, 
then the network has to be recruited dynamically. The 
unification problem admits a single solution. Unfortu- 
nately, as soon as we are interested in unification under 
certain equational theories, we have to deal with com- 
plete sets of unifiers. These sets may be even infinite. 
Similarly, a problem posed to a theorem prover may 
admit several solutions. How can we represent multiple 
solutions and how can we deal with potentially infinite 
computations in a connectionist theory? 
Acknowledgement: I would like to thank Jerry Feld- 
man for his guidance and support as well as Andreas 
Stolcke and Heinz Schmidt, whose comments on earlier 
versions of the unification algorithm helped to improve 
it considerably. 
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