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Abstract 
In this paper we present a purely semantic view on 
non-monotonic reasoning. We follow the direction 
pointed in [16] and claim that any non-monotonic 
logic can be viewed as a result of transforming some 
base standard logic by a selection strategy defined on 
models. The generalized theory of model preference 
is shortly outlined here together with its use in mod- 
eling non-monotonic beliefs. 

Introduction 
One of the most serious and, at the same time, 

common problems encountered in implementing 
knowledge-based systems is that it is usually unfea- 
sible to provide complete knowledge on which the sys- 
tem is supposed to operate. The ability to fill up 
the gaps in incomplete information is one of the fac- 
tors characterizing common sense reasoning. This is 
common sense, which, in many circumstances, enables 
people to “jump to conclusions” and solve problems 
that could never be solved by a perfect, but purely 
deductively reasoning agent. Deductive reasoning is 
monotonic, because with a larger set of premises it 
is possible to conclude more facts. Common sense 
reasoning is non-monotonic - new facts may cause 
previously derived beliefs to be withdrawn. 

There have been proposed many formalizations of 
non-monotonic reasoning: non-monotonic logic, au- 
toepistemic logic, default logic, circumscription, and 
many others. The landmark papers in the discipline 
of non-monotonic reasoning can be found in [6]. 

Any non-monotonic logic can be viewed as a result of 
transforming some base standard logic by a selection 
strategy defined on models. The selection strategy is 
supposed to choose those models that, possibly, best 
explain a theory described in the base logic. In other 
words, it selects models that are, in some sense, more 
“preferred” than others. The selection strategy can 
be defined in terms of a binary relation P defined on 
interpretations of the base logic. 

It is generally assumed that P is an ordering rela- 

tion, either a strict partial order [16] or a quasi-order 
[3]. In the case of a strict partial order P, the intuitive 
meaning of (Ml, M2) E P is that A42 is more preferred 
than A4’r or it is better than Ml. If P is a quasi-order, 
then (Ml, M2) E P is read that M2 is at least as good 
as Ml. The selection strategy simply picks up the 
maximal (which here means “the best”) elements of 
P, if such elements exist, that is, those models M* for 
which there is no model M such that (M*, M) E P. 

We claim that in many circumstances P does not 
need to be an ordering relation in order to be able 
to capture the idea of preference. In the next section 
we will examine one example and show that a pref- 
erence relation which is not assumed to be transitive 
and hence, which is not an ordering relation, may still 
make sense. 

Motivations 
Our example will be related to temporal reasoning. 

We will present a variation of the famous case of tem- 
poral projection discussed in [7] and commonly known 
as the Yule shooting problem. However, it seems that 
the problem we are going to present here is very gen- 
eral and does not characterize only the domains mak- 
ing reference to temporal information. 

The temporal projection problem arises whenever, 
given an initial description of the world, a reasoning 
agent tries to determine which facts are true and which 
are false after some sequence of events has occurred. 

To describe the problem we we will adopt situa- 
tional calculus [12], which was chosen in [7]. There 
are three types of objects that we will be considering: 
situations, facts (also called propositional jluents) and 
events. A situation is meant to denote an interval of 
time when none of the facts changes its truth value. 
Events (or actions) may change the world assigning 
new values to fluents. We will write HoZds( f, s), if a 
fact f is true in a situation s, and resuZt(e, s) to de- 
note the new situation that results from an event e 
taking place in a situation s. In order to be able to 
effectively represent an “inertia” of the world, and get 
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rid of the frame problem [12], we will use a technique 
proposed in [13]. W e introduce a special abnormality 
predicate a b that, for a given triple (f, e, s), will be 
satisfied if and only if an event e occurring in a sit- 
uation s changes the value of a fact f; in this case a 
fact f is said to be abnormal with respect to an event 
e in a situation s. We also accept a non-monotonic 
inference rule which allows to conclude that a given 
fact is not abnormal unless its abnormality can be 
deduced (monotonically) from the currently available 
data. With these assumptions the single frame axiom 

Vf, e, s. HoZds( f, s) A lab(f, e, s) > 

HoZds(f, result(e, s)) (1) 

will suffice to express what otherwise would usually 
require a great many of axioms. 

The Yale shooting scenario, only slightly modified, 
is as follows. First, in the initial situation So, some- 
one loads the gun aimed at Fred (a LOAD event). 
This brings about the situation S1. Subsequently, 
after a sequence of WAIT events, where nothing in- 
teresting happens, in a situation S,-1 the gun is 
fired (a SHOOT event), which yields the new situ- 
ation S,. Suppose that in the situation So Fred is 
alive (ALIVE), loading a gun causes it to be loaded 
(LOADED), and firing a loaded gun at someone 
causes that person to become dead (DEAD). The 
knowledge about our domain can be characterized in 
a natural way by the following set of axioms [7]: 

HoZds(ALIVE, So), (2) 
Vs. HoZds(LOADED, resuZt(LOAD, s)), (3) 

Vs. Holds(LOADED, s) > 

ab(ALIVE, SHOOT, s) A 

HoZds(DEAD, resuN(SHOOT, s)). (4) 

The question is whether the non-monotonic mecha- 
nism described above allows us to conclude from (l)- 
(4) that in the situation S, Fred is dead. Surprisingly, 
the answer to this question is negative. Let us recall 
that our non-monotonic inference rule tries to mini- 
mize the interpretation of the abnormality predicate. 
The answer that Fred is dead after shooting can be 
obtained if we chronologically minimize the abnormal- 
ity predicate. The LOAD event causes the gun to be 
loaded in Sr (3), and, since waiting has no particular 
effect, the gun remains loaded in the situation ,$-I. 
Hence, by (4), Fred becomes dead in S, , which agrees 
with our intuition. But it is possible that first we 
have applied the rule of minimization in the situation 
S n- 1 assuming lab(ALIVE, SHOOT, .!?,-I), which, 
together with (l), supports that Fred is alive in S,. 
However, we know from (4) that the loaded gun causes 

the predicate ALIVE to be abnormal with respect to 
the SHOOT event in any situation. The only explana- 
tion of Fred being alive in S,, is that the gun somehow 
has become unloaded as a result of the WAIT event. 
We must, therefore, assume ab(LOADED, WAIT, Si) 
for some situation Si , where 0 < i < n - 1. 

There appeared great many of solutions to the Yale 
shooting problem [1,2,5,8,9,10,11,14,16, and many 
others]. They either reformulate the domain de- 
scription so that the intended prioritization of mod- 
els can be captured by the properties of some well 
known standard non-monotonic mechanisms, or they 
live the description unchanged introducing new for- 
malisms with some other preference criteria. 

Our non-monotonic mechanism, which was unable 
to deal properly with the problem of temporal pro- 
jection, imposed certain ordering on models of the 
domain description. We expected to find a correct 
answer to our example by picking up the maximal el- 
ements of this ordering, namely, the models that min- 
imized the extension of the abnormality predicate. In 
all of the above solutions there are also used certain 
model ordering methods to fix the most preferred in- 
terpretations. However, it is not difficult to imagine 
a situation in which there is not enough information 
provided to construct a reasonable ordering of mod- 
els, except, perhaps, the one that would make every 
model the most preferred interpretation. 

Let us suppose that there is some process going on 
which may cause the effect of the gun being unloaded 
(without actually unloading it). For example, it might 
be continuous corrosion of the metal parts of the gun, 
or graceful degradation of the explosive material in the 
cartridge, etc. If we had no idea when, more or less, 
this process has started and/or how fast it is progress- 
ing, then the conclusion that Fred remains alive in S, 
would seem to be equally justified as the one postulat- 
ing his death after shooting. Suppose we know that 
besides the process which eventually might prevent 
killing Fred, nothing unexpected can happen between 
So and S,, that is, no action is performed in parallel 
with those that we have already mentioned. It might 
be the case that our restricted knowledge about the 
process allows us to think that if it is possible to kill 
Fred in a situation Si, then it can be believed that this 
would also be possible in Si+k, provided that the time 
elapsed between Si and Si+n: is not too long. For ex- 
ample, one can safely assume that if it is known that 
in the situation Ss it is possible to shoot Fred, then af- 
ter five waiting events, each of which lasting a second, 
in the situation Sis shooting will also be successful. 

Translating these intuitions into a preference rela- 
tion on models it means that at any moment we prefer 
those models which allow the effects of the process to 
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appear as late as it is only possible within certain lim- 
its. Considering the time interval corresponding to a 
situation Si we may prefer the effects of the process to 
appear no sooner than in the time interval correspond- 
ing to a situation Si+k+i. (Here, the silent, simplify- 
ing assumption has been made that the time intervals 
corresponding to situations are of equal length.) 

In accordance with the above observations, the pref- 
erence relation P can be defined in the following way. 
Let us take that (Ml, M2) E P if and only if P satisfies 
the following condition. The extension of the abnor- 
mality predicate for the events WAIT and LOAD in 
M2 is a subset of such an extension in Ml. Otherwise, 
if these extensions are equal, then for every i and j 
such that i < j 5 i+L, Mr E M(ti) and M2 E M(tj), 
where M(t) d enotes the class of models that satisfy 
the effects of the process in the time interval t, and ti 
and tj denote the time intervals corresponding to sit- 
uations si and sj, respectively. It is easy to see that 
such defined preference relation is not transitive, al- 
though it is locally transitive within the limits set by 
the constant Ic. 

We may wonder whether the preference relation de- 
fined above can be expressed using any of the existing 
non-monotonic formalisms such as circumscription or 
default logic. It seems that the answer to this question 
is negative. 

All versions of circumscription limit the instances 
which satisfy a selected predicate (or a set of predi- 
cates) in a given theory only to those that are neces- 
sary in light of this theory. The preference criterion 
is therefore defined by the set inclusion relation so as 
to minimize the extensions of the chosen set of predi- 
cates. 

Inference mechanism in default logic can be ex- 
plained in a similar way-l Suppose A = (T, D) is 
a default theory. A default rule [cy : ,0/r] E D, in- 
formally speaking, allows us to assume that the con- 
clusion y is true, if the prerequisite o is assumed to 
be true, and the justification p is consistent with all 
facts that have already been assumed.2 Applying any 
default Si = [cu : P/r] E D whose conclusion does not 
follow directly from T causes the class Ml) of all mod- 
els of T to be narrowed to the class M{a,) of models 
of T that satisfy p and y. If we further apply another 
default rule S2 E D, the class M{a,} will be narrowed 
to the class M{~,,s~} which contains the models that 

1 A detailed discussion on these issues can be found in 1161. 
2 Actually we should talk about some instances of CY, p and y, 

if these formulae contain free variables. We may, however, make 
a simplyfying assumption that every default of D is closed, that 
is, it does not contain a formula with free variables. General- 
ization to the case where defaults are allowed to contain free 
variables is obvious. 

additionally satisfy the justification and the conclu- 
sion of f52. And so on. The preference criterion is, 
again, defined in terms of the set inclusion relation. 
We have: M{) r> Mpl) I> M{~,,J,} > . . . . This, 
however, is a strict partial ordering relation on mod- 
els. Since the preference relation we defined for the 
modified version of the Yale shooting problem is not 
even transitive, the existing schemes of non-monotonic 
reasoning cannot express it. 

In [4] it is claimed that permitting a preference rela- 
tion to be intransitive implies irrationality and “wreak 
havoc on the semantics of the resulting non-monotonic 
logic”. It seems, however, that it is not the case. Sup- 
pose that an agent is willing to admit that M2 is better 
than Ml and M3 is better than M2, and considering 
M3 to be the most preferred of these three models 
only when some new information which is not a non- 
monotonic conclusion is provided falsifying Ml, but 
still satisfying M2 and M3. Such behavior does not 
suggest irrationality of the a.gent, althouhg the pref- 
erence criteria are intransitive. 

General approach to non-monotonic 
reasoning3 

Given some base standard logic fZ, we can use a pref- 
erence relation P to modify the notions of logical sat- 
isfiability, validity and entailment in C, defining in this 
way a new logic Cp. The semantics of Lp we are go- 
ing to establish is very similar (actually, is inspired 
by) the one proposed in [16] and then generalized in 
[3]. The main departure from the above mentioned 
formalism is that a preference relation is not assumed 
to have any particular property and that it heavily de- 
pends on some consistent theory written in the base 
logic ,!Z, and can be understood only in the context of 
this theory. 

First-order predicate calculus is assumed as a stan- 
dard logic in the following definitions. However, this 
choice is not crucial. It is easy to adopt these defi- 
nitions to other formalisms such as modal or higher- 
order logics. 
DEFINITION 1. Let T be a theory and PT a binary 
relation defined over the set of models of T. We say, 
then, that PT is a preference relation depending on T. 

We will usually drop the index denoting a theory 
on which a preference relation depends when it is not 
confusing. 
DEFINITION 2. Let P be a preference relation depend- 
ing on a theory T. Any non-empty (possibly infinite) 
sequence s = (Ml, M2, . . .) of models of T is called a 
P-sequence over T if and only if for every Mi and Mj, 

3Tlle proofs of all cited theorems can be found in [15]. 
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where i < j, (Mi, Mj) E P, and there is no model 
A4 4 s of T such that for every Mk: E s, (Mk, M) E P. 
A P-sequence s is bounded, if, additionally, there is a 
model M* E s such that for every A4’k E a, Mk = M* 
or (Mk, M*) E P. In this case we say that M* is an 
upper bound of s. A P-sequence with no upper bound 
is unbounded. 

DEFINITION 3. Let P be a preference relation de- 
pending on a theory T. A model M of T P-satisfies 
a formula (Y, written M +p o, if and only if there is 
a P-sequence over T such that M is its upper bound 
and M /= Q. In this case we say that M is a P-model 
ofa. 

If M is a P-model, then, of course, A1 is a model of a 
theory T on which the preference relation P depends. 
However, M is an upper bound of some P-sequence 
over T. Hence, M is also a P-model of T. 

DEFINITION 4. Let P be a preference relation de- 
pending on a theory T. We say that a formula cy is 
P-satisfiable if and only if there is a P-model of cr. 

Clearly, P-satisfiable formulae are also satisfiable. 
The converse might not be true. If a formula is satis- 
fiable, it does not automatically mean that it has to 
be satisfied by some of the models of the theory T 
and, in particular, by some P-model of T (if such a 
P-model exists at all). 

Our modified definition of satisfiability, unlike the 
Shoham’s definition of preferential sutisfiubility [16], 
makes an explicit reference to some theory T. Shoham 
considers an interpretation M as a preferred model of 
some formula (Y if and only if there is no other model 
M’ of CY that would be strictly better than M in the 
sense determined by an ordering relation P defined 
over the set of all interpretations of some given logical 
language. Let P{,l be a restriction of P only to the 
models of o. With this assumption, A4 is a preferred 
model of CY if and only if M is a Pi,)-model of o. In 
other words, a formula CY is PT-satisfiable if and only 
if there is preferential model of T U {a}. The notion 
of preferential satisfiability is a special case of the sat- 
isfiability introduced in Definition 3 and Definition 4. 
DEFINITION 5. Let P be a preference relation depend- 
ing on a theory T. We say that a formula a is P-valid, 
written bp cy, if and only if T has a P-model and CY 
is satisfied by every P-model of T. 

Shoham defines his notion of preferential validity in 
a roundabout way. He considers a formula Q to be 
preferentially valid if and only if a formula la is not 
preferentially satisfiable. This makes possible situa- 
tions in which a formula o is preferentially valid al- 
though it is not even preferentially satisfiable, and Q 
and 1~ are both preferentially valid. Our notion of 
P-validity does not suffer from this drawback, since 

we can talk about P-validity only if the preference re- 
lation distinguishes at least one model of the theory 
on which it depends as the most preferred, that is, 
a P-model of this theory. This approach has a very 
simple and intuitive explanation. If the relation P is 
not sufficient to express the preferences accordingly to 
which formulae should be assigned truth values, con- 
sidering the formulae that are satisfied by all preferred 
models does not make much sense. 
PROPOSITION 1. If a formula Q is P-valid, then lo is 
not P-satisfiable. 

Unfortunately, the converse is not true. It may hap- 
pen that every P-sequence is unbounded. In this case, 
both Q and lo are not P-satisfiable. It is clear that 
a P-valid formula need not be valid, because it has 
to be satisfied only by models that are upper bounds 
of P-sequences. If there is no bounded P-sequences, 
a valid formula is not P-valid, although it is satisfied 
by all interpretations. With the additional restriction 
of a preference relation P, which says that there must 
exist at least one bounded P-sequence, the following 
propositions hold. 
PROPOSITION 2. Let P be a preference relation de- 
pending on a theory T, and there be a bounded P- 
sequence over T. Then a formula Q is P-valid if and 
only if icy is not P-satisfiable. 
PROPOSITION 3. Let P be a preference relation de- 
pending on a theory T, and there be a bounded P- 
sequence over T. Then a formula o is P-valid if cy is 

. . - 
valid. 
DEFINITION 6. Let P be a preference relation depend- 
ing on a theory T. We say that P is complete, if for 
every formula cy consistent with T, every model of a 
is in some bounded P-sequence over T whose upper 
bound satisfies CX. 

Completeness is a very strong notion. Together with 
the emptiness of a theory on which a preference rela- 
tion P depends, it implies that the resulting logic ,Cp 
is monotonic. 
PROPOSITION 4. Let T be an empty theory, and P a 
complete preference relation depending on T. Then a 
formula Q is satisfiable if and only if o is P-satisfiable. 

PROPOSITION 5. Let T be an empty theory, and P a 
complete preference relation depending on T. Then a 
formula (Y is valid if and only if CY is P-valid. 
DEFINITION 7. Let P be a preference relation depend- 
ing on a theory T. We say that a P-entuils /3, written 
cx bp p, if and only if every P-model of o is also a 
P-model of p. 

The above definition corresponds 
definition of preferential entailment, 

to the Shoham’s 
which says that cy 
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greferentiully entails /3 if and only if every preferential 
model of CV. is also a model of p. He does not require IY 
to be preferentially satisfied by preferential models of 
cy. We can also substitute the requirement that every 
P-model of a is a P-model of 0 by the requirement 
that every P-model of Q is a model of p. Let us note, 
however, that this substitution does not change the 
notion of P-entailment. If ,f3 has a model A4 and this 
model is a P-model of cy, then M is a P-model of 
p. In fact, the notion of preferential entailment is a 
special case of the P-entailment. If P is an ordering 
relation defined over the set of all interpretations of 
some given logical language and P{,l its restriction to 
the models of CY, then cy preferentially entails p (in the 
sense determined by P) if and only if (Y Pj,l-entails 
P- 

Not surprisingly P-entailment, just as preferential 
entailment introduced by Shoham, satisfies the follow- 
ing propositions: 

PROPOSITION 6. Let ,Cp be a P-logic, and (Y, ,0 and 
y three formulae in it. Then, if 0 A /? /==p y, then also 
d=PP>Y. 
PROPOSITION 7. If Cp is a P-logic, then L:p is mono- 
tonic if and only if for all formulae Q, p, y E Cp, if 
cubcpP>r, thenalsocuApbpy. 

Writing down the axioms of some theory, we usually 
have in mind one particular (real or imaginary) world 
that we want to formalize. This world is the intended 
model of the theory. Of course, our theory, if it is only 
consistent, has also other models (actually, infinitely 
many of them). All the models that agree with the 
intended model on how every formula is assigned a 
truth value are considered the most preferred. In fact, 
we will be recognizing a model as the most preferred, 
if it only agrees with the intended model on a fixed 
subset of formulae that we think is important for some 
reasons. 

The preference relation must, therefore, be defined 
with respect to some partial interpretation. Any two 
models will be compared accordingly to how well they 
match the requirements about the valuation of the 
formulae determined by this partial interpretation. 
These requirements can be viewed as a function, which 
we will call a preference rule, that for a given formula 
and a valuation of variables states which logical value 
is preferred. Since it would be much easier to com- 
pare models if they had the same domains, we will be 
comparing them through the corresponding Herbrund 
interpretations. 4 

4A Herbrand interpretation is any interpretation with a Her- the skolema’zed axioms of T. If there is no constant symbol,, 
brand universe as its domain. A Herbrand universe HT of a 
theory T is the set of all well-formed expressions that can be 

one such symbol is introduced. We say that two interpretations 

built using the function and constant symbols that appear in 
correspond to each other if and only if every formula is assigned 
the same truth value in these interpretations. 

DEFINITION 8. Let A be a set of formulae and As(liT) 
a set of valuations of variables over the IIerbrand uni- 
verse of some theory T. A preference rule for A over 
T is any function 7r : A x As(HT) * {true, false). 

DEFINITION 9. Let Ml and M2 be models of a the- 
ory T, and HI and Hz Herbrand interpretations of 
T corresponding to Ml and M2, respectively. Ml is 
preferred over Mz with respect to a preference rule 
r : Ax As(HT) - {true, false} if and only if for ev- 
ery formula Q E A and every valuation v E As(HT), 
if Vu&, (~2) = W(LY, v), then also VU~&~ (cry) = W(Q, v). 
Ml is strictly preferredover M2 with respect to I if ad- 
ditionally there are ,0 f A and v E As(HT) such that 
v4f1 (P) = Q, v) and vq&z(P) # @, 4. v+(Q) 

stands for the value of a formula cy in an interpretation 
M and a valuation v. 

DEFINITION 10. Ml is strongly preferred over Al, with 
respect to a set II of preference rules if and only if for 
every K E II, Ml is preferred over Mz with respect to 
7r. 
DEFINITION 11. Ml is weakly preferred over AI2 with 
respect to a set II of preference rules if and only if 
there is a subset X C Il such that Ml is strongly 
preferred over M2 with respect to X. 

The notion of weak preference enables us to define 
a preference relation which is not transitive. 

Let us return to the Yale shooting example. The 
preference relation for this example can be defined us- 
ing the notion of weak preference. First, however, let 
us rewrite the axiom (4) to reflect changes in our do- 
main description. 

V’s, t. Holds(LOADED, s) A 

time(s) = t A Noeflects(t) > 

ub(ALIVE, SHOOT, s) A 

Holds( DEA D, resu/t(SHOOT, s)) (5) 

If Noe$ects(t) is true, it means that the effects of the 
process have not emerged in a time interval t. Func- 
tion time maps situations into corresponding time in- 
tervals. We need also following axioms to tie time 
intervals to situations. 

time($) = to, (6) 
Ve, s. time(resuZt(e, s)) = time(s) + 1. (7) 

Let A denote the set of axioms (l)-(3) and (5)-(7), 
and 11~ the Herbrand universe of A. Assume that 
for any time interval t, II contains a preference rule 
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7rt whose value is true for any formula in Bt and any 
valuation in As(HA), where 

Bt = {wb(f, WAIT, s), lub(f, LOAD, s)}u 
{ NoeRects( . . . , Noeflects(t + k)}U 

{ lNoe$ects(t + k + l), lNoefiects(t + k + 2), . . . }. 

It is easy to see that the weak preference over H re- 
flects the intuition that among the models in which 
effects of the process have not emerged in a time in- 
terval t, those models should be preferred that al- 
low the effects to appear after t + k, but not sooner. 
If we know nothing about the time the process has 
started, lNoeffects(time(s)) should be true in ev- 
ery situation s and, therefore, the conclusion that 
Fred is dead after shooting is blocked. Knowing that 
Noeflects( time(&)) t is rue, we are allowed to conclude 
that lNoeflects(time(So) + k) is true. If k is suffi- 
ciently big, that is k 2 n, Fred can be believed to die 
in the final situation. 

Conclusion 
In this paper we outlined a generalized theory of 

model preference, following the idea that any non- 
monotonic logic can be viewed as a result of transform- 
ing some base standard logic by a selection strategy 
defined on models. Our approach is more general than 
the one presented in [16], b ecause a preference relation 
is parameterized by some theory written in the base 
logic. Moreover, we are not making any assumption 
about properties of preference relations. This allows 
us to model the situations in which our knowledge is 
too restricted to build a reasonable and justified order- 
ing of models of the domain description. It seems also 
that the notions of P-satisfiability and P-validity are 
defined more clearly than the corresponding notions 
of preferential satisfiability and preferential validity 
introduced by Shoham. 
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