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Abstract 
Cyclic definitions are often prohibited in terminological 
knowledge representation languages because, from a 
theoretical point of view, their semantics is not clear 
and, from a practical point of view, existing inference 
algorithms may go astray in the presence of cycles. In 
this paper, we shall consider terminological cycles in a 
very small KL-ONE-based language. For this language, 
the effect of the three types of semantics introduced by 
(Nebel 1987,1989,1989a) can be completely described 
with the help of finite automata. These descriptions pro- 
vide a rather intuitive understanding of terminologies 
with cyclic definitions and give insight into the essen- 
tial features of the respective semantics. In addition, one 
obtains algorithms and complexity results for subsump- 
tion determination. As it stands, the greatest fixed-point 
semantics comes off best. The characterization of this 
semantics is easy and has an obvious intuitive 
interpretation. Furthermore, important constructs - such 
as value-restriction with respect to the transitive or 
reflexive-transitive closure of a role - can easily be 
expressed. 

1. Introduction 
Cyclic definitions are prohibited in most terminological 
knowledge representation languages (e.g., in KRYPTON 
(Brachman et al. 1985), NIKL (Kaczmarek et al. 1986), or 
LOOM (MacGregor & Bates 1987)) for the following rea- 
sons. From a theoretical point of view, it is not obvious 
how to define the semantics of terminological cycles. But 
even if we have fixed a semantics it is not easy to obtain 
the corresponding inference algorithms. 

On the other hand, cyclic definitions may be very useful 
and intuitive, e.g., if we want to express the transitive 
closure of roles (i.e., binary relations). For a role child, 
value-restrictions with respect to its transitive closure off- 
spring can be expressed by cyclic concept definitions if we 
take the appropriate semantics. For the same reason, recur- 
sive axioms are considered in database research (see e.g., 
(Aho & Ullman 1979), (Immerman 1982), (Vardi 1982), 
and (Vielle 1989)). Aho and Ullman have shown that the 
transitive closure of relations cannot be expressed in the 
relational calculus, which is a standard relational query 

1. This work was supported by the German “Bundesministe- 
rium ftir Forschung und Technologie” under Grant ITW 8903 0. 

language. They proposed to add cyclic definitions which 
are interpreted by least fixed-point semantics. This was 
also the starting point for an extensive study of fixed-point 
extensions of first-order logic (see e.g., (Gurevich & 
S helah 1986)). 

A thorough investigation of cycles in terminological 
knowledge representation languages can be found in (Nebel 
1987,1989,1989a). Nebel considered three different kinds 
of semantics - namely, least fixed-point semantics, 
greatest fixed-point semantics, and what he called descrip- 
tive semantics - for cyclic definitions in his language 
5@” But, due to the fact that this language is relatively 
strong2, he does not provide a deep insight into the mcan- 
ing of cycles with respect to these three types of 
semantics. For the two fixed-point semantics, Nebel ex- 
plicates his point just with a few examples. The meaning 
of descriptive semantics - which, in Nebel’s opinion, 
comes “closest to the intuitive understanding of termino- 
logical cycles” ((Nebel 1989a), p. 124) - is treated more 
thoroughly. But even in this case the results are not quite 
satisfactory. For example, the de&ability of subsumption 
determination is proved by an argument3 which cannot be 
used to derive a practical algorithm, and which does not 
give insight into the reason why one concept defined by 
some cyclic definition subsumes another one. 

Before we can determine what kind of semantics is most 
appropriate for terminological cycles, we should get a bet- 
ter understanding of their meaning. The same argument 
applies to the decision whether to allow or disallow 
cycles. Even if cycles are prohibited, this should not just 
be done because one does not know what they mean and 
how they can be handled. 

In this paper, we shall consider terminological cycles in 
a very small KL-ONE-based language which allows only 
concept conjunction and value-restrictions. For this lan- 
guage the effect of the three above mentioned types of 
semantics can be completely described with the help of 
finite automata. These descriptions provide a rather intu- 

2. The language allows concept and role conjunction, value- 
restrictions, number-restrictions and negation of primitive 
concepts. 
3. Roughly speaking, the argument says that it is sufficient to 
consider only finite interpretations to determine subsumption 
relations. 

BAADER 621 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



itive understanding of terminologies with cyclic 
definitions and give insight into the essential features of 
the respective semantics. In addition, subsumption deter- 
mination for each type of semantics can be reduced to a 
(more or less) well-known decision problem for finite 
automata. Hence, existing algorithms can be used to decide 
subsumption and known complexity results yield the 
complexity of subsumption determination. 

Syntax and (descriptive) semantics of our small termi- 
nological language is introduced in the next section. In 
Section 3, alternative types of semantics - namely least 
and greatest fixed-point semantics - are considered, which 
may be more appropriate in the presence of terminological 
cycles. We shall see that, from a constructive point of 
view, the greatest fixed-point semantics should be preferred 
since greatest fixed-point models can be obtained by a 
single limit process. In Section 4, the three types of 
semantics are characterized with the help of finite 
automata. The characterization of the greatest fixed-point 
semantics is easy and intuitively clear. Subsumption with 
respect to greatest fixed-point semantics, and - after some 
modifications of the automaton - also with respect to least 
fixed-point semantics can be reduced to inclusion of 
regular languages. For descriptive semantics, we have to 
consider inclusion of certain languages of infinite words 
which are defined by the automaton. Fortunately, these 
languages have already been investigated in the context of 
monadic second-order logic (see (Biichi 1960)). 

2. A Small KL-ONE-based KR-language 
In KL-ONE-based languages we start with atomic concepts 
and roles and can use the language formalism to define 
new concepts and roles. Concepts can be considered as 
unary predicates which are interpreted as sets of individuals 
whereas roles are binary predicates which are interpreted as 
binary relations between individuals. The languages differ 
in what kind of constructs are allowed for the definition of 
concepts and roles. The language considered in this paper 
has only two constructs, which can be used to define 
concepts: concept conjunction and value-restriction. 

Definition 2.1. (concept terms and terminologies) 
Let C be a set of concept names and R be a set of role 
names. The set of concept terms is inductively defined. As 
a starting point of the induction, 
(1) any element of C is a concept term. (atomic terms) 
Let C and D be concept terms and let R be a role name. 
(2) Then C n D is a concept term. (concept conjunction) 
(3) Then VR:C is a concept term. (value-restriction) 
Let A be a concept name and let D be a concept term. 
Then A = D is a terminological axiom. A terminology (T- 
box) is a finite set of terminological axioms with the 
additional restriction that no concept name may appear 
more than once as a left hand side of a definition. LI 

A T-box contains two different kinds of concept names. 
Defined concepts occur on the left hand side of a termin- 
logical axiom. The other concepts are called primitive 
concepts. For our language, roles are always primitive 

since we do not have role definitions. The following is an 
example of a T-box in this formalism: Let Man, Human, 
Male and Mos (for “man who has only sons”) be concept 
names and let child be a role name. The T-box consists of 
the following axioms: 

l&n = Humann Male 
Mos = Man n Vchild: Man 

That means that a man is human and male. A man who 
has only sons is a man such that all his children are male 
humans. Male and Human are primitive concepts while Man 
and Mos are defined concepts. Assume that we want to ex- 
press a concept “man who has only male off-springs”, for 
short Momo. We can’t just introduce a new role name off- 
spring because there would be no connection between the 
two primitive roles child and off-spring. But the intended 
meaning of off-spring is that it is the transitive closure of 
child. It seems quite natural to use a cyclic definition for 
Momo: A man who has only male off-springs is himself a 
man and all his children are men who have only male off- 
springs, i.e., 

Morn0 = Mann Vchild: Momo. 

This is a very simple cyclic definition. In general, 
cycles in terminologies are defined as follows. Let A, B be 
concept names and let T be a T-box. We say that A 
directly uses B in T iff B appears on the right hand side of 
the definition of A. Let uses denote the transitive closure 
of the relation dir&y uses. Then T contains a termino- 
logical cycle iff there exists a concept name A in T such 
that A uses A. 

The next definition gives a model-theoretic semantics 
for the language introduced in Definition 2.1. 

Definition 2.2. (interpretations and models) 
An interpretation I consists of a set dam(I), the domain of 
the interpretation, and an interpretation function which 
associates with each concept name A a subset A1 of 
dam(I), and with each role name R a binary relation RI on 
dam(I), i.e., a subset of dam(1) x dam(1). The sets AI, RI 
are called extensions of A, R with respect to I. 
The interpretation function - which gives an interpretation 
for atomic terms - can be extended to arbitrary terms as 
follows: Let C, D be concept terms and R be a role name. 
Assume that C1 and DI are already defined. Then 

(C n Di := C1 n D1, 
(VR:C) := ( x E dam(1); for all y such that (x,y) E 

RIwehaveyE C?). 

An interpretation I is a model of the T-box T iff it 
satisfies 

A1 = D1 for all terminological axioms A = D in T. Ll 

The semantics we have just defined is not restricted to 
non-cyclic terminologies. But for cyclic terminologies this 
kind of semantics - which will be called “descriptive 
semantics” in the following - may seem unsatisfactory. 
One might think that the extension of a defined concept 
should be completely determined by the extensions of the 
primitive concepts and roles. This is the case for non- 
cyclic terminologies. More precisely, let T be a T-box 
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containing the primitive concepts PI, . . . . Pn and the roles 
Rl , . . . . Rm. If T doesn’t contain cycles, then any interpre- 
tation Pl1, . . . . Pnl, RI I, . . . . Rrnl of the primitive 
concepts and roles can uniquely be extended to a model of 
T (see e.g., (Nebel 1989a), Section 3.2.4). If T contains 
cycles, a given interpretation of all primitive concepts and 
roles4 may have different extensions to models of T. 

Example 2.3. 
concept names.5 

Let R be a role name and B, P be 
The terminology T consists of the single 

axiom B = P n VR:B. 
We consider the following primitive interpretation: dam(1) 
:= ( a, b, c, d } =: P1 and R1 := ( (a,b), (c,d), (d,d) }. It is 
easy to see that this interpretation has two different exten- 
sions to models of T. The defined concept B may be inter- 
preted as ( a, b } or as ( a, b, c, d >. Please note that 
individuals without RI-successors are in the extension 
(VR:C)I of the term VR:C, no matter how C may be 
interpreted. Cl 

The example also demonstrates that, with respect to 
descriptive semantics, the above construction B = P n 
VR:B does not express the value-restriction B = VR*:P for 
the reflexive-transitive closure R* of R. This implies that 
our definition of the concept Momo from above is not 
correct, if we use descriptive semantics. 

For these reasons we shall now consider 
types of semantics for terminological cycles. 

alternative 

3. Fixed-point Semantics for 
Terminological Cycles 

A terminology may be considered as a parallel assignment 
where the defined concepts are the variables and the primi- 
tive concepts and roles are parameters. 

Example 3.1. Let R, S be role names and A, B, P, Q 
be concept names, and let T be the terminology A = Q n 
VS:B, B = P n VR:B. We consider the following primi- 
tive interpretation I, which fixes the values of the 
parameters P, Q, R, S: dam(1) := { ag, al, a2, . . . ), P1 := 
( al, a2, a3, . . . 
and S* := 

), QI := ( ag ), RI := ( (a;+l,ai); i 2 1 ), 
(h,ai);i2 1). 

For given values of the variables A, B, the parallel 
assignment A := Q n VS:B, B := P n VR:B yields new 
values for A, B. If A and B are interpreted as the empty 
set, an application of the assignment T yields the values 0 
for A and ( al ) for B. If we reapply the assignment to 
these values we obtain 0 for A and ( al, a;! ) for B. CI 

In the general case, a terminology T together with a 
primitive interpretation I defines a function TI: (2dom(1))n 

4. In the following such a partial interpretation will be called 
primitive interpretation. 
5. We shall no longer use intuitive names for concepts and 
roles since I agree with (Bra&man & Schmolze 1985). p.176, 
that “suggestive names can do more harm than good in 
semantic networks and other representation schemes.” 
Suggestive names may seemingly exclude models which are 
admissible with respect to the formal semantics. 

-+ (2dom@))n, where 2 dam(I) denotes the set of all subsets 
of dam(1) and n is the number of defined concepts in T. 
For the above example we have seen that TI(0,0) = (0, 
( al 11 and ‘b(Q),{ al I> = (W al, a;! I). 

A rimitive interpretation together with an element A 
of (2 ! om(l))n, which gives the extensions of the defined 
concepts, yields an interpretation of T. Obviously, this in- 
terpretation is a model of T if and only if A is a fixed- 
point of the function TI, i.e., if and only if TI(A) = A. In 
our example, the element (( ag ),( al, a2, a3, . . . )) of 
(2domo))2 is a fixed-point of TI. If we extend I by defining 
;;T= ( a0 ), B1 := ( al, a2, as, . . . ), we obtain a model 

. 
One may no\. ask whether any primitive interpretation I 

can be extended to a model of T, or equivalently, whether 
any function T has a fixed-point. The answer is yes, 
because (2dom( d )“, ordered componentwise by inclusion, 
is a complete lattice (i.e., a partially ordered set where any 
subset has a least upper bound) and the functions TI are 
monotonic (i.e., A c B implies TI(& c TI(B)). More 
precisely, this implies that TI has a least fixed-point 
lfp(Tl), a greatest fixed-point gfp(TI), and possibly other 
fixed-points which lie between the least and the greatest 
fixed-point (see e.g., (Schmidt 1986), Chapter 6, and 
(Lloyd 1987), Chapter 1, $5). 

Definition 3.2. Let T be a terminology, possibly 
containing terminological cycles. 
(1) The descriptive semantics allows all models of T as 
admissible models. 
(2) The least fixed-point semantics (lfp-semantics) allows 
only those models of T which come from the least fixed- 
point of a function TI (lfp-models). 
(3) The greatest fixed-point semantics (&p-semantics) 
allows only those models of T which come from the 
greatest fixed-point of a function TI (gfp-models). Cl 

Any primitive interpretation I can uniquely be extended 
to a lfp-model (gfp-model) of T. In Example 2.3, the 
extension of I which interprets B as ( a, b ) is a Ifp-model 
of T and the extension which interprets B as ( a, b, c, d ) 
is a gfp-model of T. It is easy to see that, for cycle-free 
terminologies, lfp-, gfp- and descriptive semantics coincide 
(see (Nebel 1989a), p.137,138). 

The next question is how lfp-models (gfp-models) can 
be constructed from a given primitive interpretation. 
(Nebel 1987,1989,1989a) claimed that the functions TI are 
even m-continuous (i.e., for any chain A(O) G A(l) c . . . . 
one has Ui>OTI(A(‘)) = TI(Ui>uA(iv), and that thus 
Ifp(TI) = U +gTIrbottom), wherebottom denotes the 
least element of (2 d om(l))n, namely the n-tuple (0 ,..., 0). 
Unfortunately, this is not true. 

Proposjtion 3.3. In general, we may have lfp(TI) f 
U+uTI’(bottom). 
PROOF. We consider Example 3.1. It is easy to see that 
T1’(0,0) = (0,( al, a2, . . . . ai 1). Thus L’i>O’l”I’(Q),Q)) = 
(0,( a;; i 2 1 )) which is not a fixed-point since TI(0,( ai; 
i21 ))=(( a()),( ai;iZl )). CI 

In this example, the least fixed-point is reached by 
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applying TI once more after building the limit. In general, 
one may need several limit processes to obtain the least 
fixed-point (see (Lloyd 1987), p.29). On the other hand, I 
was able to show that the greatest fixed-point can always 
be reached by a single limit process. 

Proposition 3.4. The functions TI are always down- 
ward o-continuous, i.e., for any descending chain A(*! z, 
A(l) 2 . . . we have n i>OTI(A(i)) = TI(n i>o&(‘)). 
Consequently, the greatest fixed-point may be obtained as 
gfp(TI) = nGoTIr(top), where top := (dom(I),...,dom(I)). 
PROOF. See (Baader 1990). Cl 

The two propositions show that, from a constructive 
point of view, the gfp-semantics should be preferred. 
However, if dam(1) is finite, the greatest and the least 
fixed-point can be reached after a finite number of applica- 
tions of TI. 

An important service terminological representation 
systems provide is computing the subsumption hierarchy. 

Definition 3.5. (subsumption of concepts) 
Let T be a terminology and let A, B be concept names. 

A ET B iff A1 c B1 for all models I of T, 
A EQ, T B iff A1 c B1 for all lfp-models I of T, 

A Egfp:T B iff A1 c B1 for all gfp-models I of T. 

In this case we say that B subsumes A in T w.r.t. descrip- 
tive semantics (resp. lfp-semantics, gfp-semantics). Lt 

4. Characterization of the Semantics 
Using Finite Automata 

Before we can a%OCiate a finite aUtOmatOn AT t0 a termi- 
nology T we must transform T into some kind of normal 
form. It is easy to see that the concept terms VR:(B I-I C) 
and (VR:B) n (VR:C) are equivalent. Hence any concept 
term can be transformed into a finite conjunction of terms 
of the form VRl:VRz:... VR,:A, where A is a concept 
name. We shall abbreviate the prefix “VRl:VR2:...VR,” 
by “VW” where W = RlR2...Rn is a word over RT, the 
set of role names occurring in T. In the case n = 0 we also 
write “V&:A”6 instead of simply “A”. For an interpreta- 
tion I and a word W 
composition R ~~oR$o 

= RlRz...R,, let WI denote the 

R2I 

. ..oR.I of the binary relations Rll, 
, *--, Rril. The term &I denotes the identity relation, 

i.e., E1 = ( (d,d); d E dam(I) }. 
Let T be a terminology where all terms are normalized 

as described above. 
Definition 4,l. The generalized (nondeterministic) 
automaton 5?T is defined as follows: The alphabet of AT 
is the set RT of all role names occurring in T; the states 
of XT are the concept names occurring in T; a termino- 
logical axiom of the form A = VWl:Al n . . . I-I VWk:Ak 
gives rise to k transitions, where the transition from A to 
Ai is labeled by the word Wi. CI 

The automaton AT is called “generalized” because tran- 
sitions are labeled by words over the alphabet and not only 

by symbols of the alphabet. However, it is well-known 
that any generalized finite automaton can be transformed 
into an-equivalent finite automaton (see (Manna 1974), p. 
9). Definition 4.1 will now be illustrated by an example. 

Example 4.2. (A normalized terminology and the 
corresponding automaton) 

A = VR:A n VS:D B = VRS:D n VS:C 
C = VR:C D = VS:D n V&:P 

A finite path (resp. infinite path) in a generalized 
automaton will be described by the initial state of the path 
and the finite sequence of transition labels followed by the 
terminal state of the path (resp. by the initial state and the 
infinite sequence of transitiou labels). For example, A; R, 
R, S, S, S, &; P is a finite path in the above automaton 
and B; RS, S, S, S, . . . is an infinite path. The label of the 
finite path is the finite word RRSSS while the label of the 
infinite path is the infinite word RSSSS... . For two 
states p, q of an automaton let L(p,q) denote the set of all 
finite words which are labels of paths fom p to q and let 
U(p) be the set of all finite7 and infinite words which are 
labels of infinite paths with initial state p. In the example, 
L(A,P) = R*SS* = ( RnSSm; n,m 2 0 ) and U(A) = 
( RRR... ) u { R*SSS...; n>O}.Wearenowreadyto 
characterize the gfp-semantics. 

Theorem 4.3. Let T be a terminology and let AT be 
the corresponding automaton. Let I be-a gfp-model of T 
and let A, B be concept names occurring in T. 
(1) For any d E dam(1) we have d E AZ iff for all 
primitive concepts P, all words W E L(A,P), and all 
individuals e E dam(I), (d,e) E WI implies e E PI. 
(2) Subsumption in T can be reduced to inclusion of 
regular languages defined by %I. More precisely, A ~gfp,~ 
B iff L(B,P) _c L(A,P) for all primitive concepts P. 
PROOF. The “if’ direction of (1) is proved by induction 
on the positive integer n such that d is not in the A- 
component of TI*(top). The “only if’ direction is proved 
by induction on the length of a path from A to P with 
label W. (2) is a relatively easy consequence of (1). See 
(Baader 1990) for a complete proof. CI 

The theorem can intuitively be understood as follows: 
The language L(A,P) stands for the possibly infinite 
number of constraints of the form VW:P which the ter- 
minology imposes on A. The more constraints are 
imposed the smaller the concept is. In the example, B 

7. An infinite path of the form p; WI, . . . . Wn, E, E, E, . . . has 
the finite word W 1 . ..W. as label. This word is also an element 
of U(P). 6. “E” denotes the empty word. 
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subsumes A w.r.t. gfp-semantics since L(B,P) = RSS* is 
a subset of L(A,P) = R*SS*. For the terminology B = P 
n YR:B of Example 2.3, L(B,P) = R* = { Rn; n 2 0 ). 
Hence it is an immediate consequence of part (1) of the 
theorem that this terminology - if interpreted with gfp- 
semantics - expresses value-restriction with respect to the 
reflexive-transitive closure of R. 

Corollary 4.4. The problem of determining subsump- 
tion w.r.t. gfp-semantics is PSPACE-complete. 
PROOF. We have already seen that subsumption can be 
reduced to inclusion of regular languages. On the other 
hand, it is relatively easy to show that inclusion of regular 
languages can be reduced to subsumption determination 
w.r.t. gfp-semantics. It is well-known (see (Garey & 
Johnson 1979)) that inclusion of regular languages is 
PSPACE-complete.* D 

This shows that, even for our very small language, sub- 
sumption determination w.r.t. gfp-semantics is-rather hard 
from a computational point of view. On the other hand, 
(Nebel 1989b) has shown that, even without cycles, this 
language has a co-NP-complete subsumption problem. 

We shall now consider the lfp-semantics. 

Proposition 4.5. Let T be a terminology and let AT 
be the corresponding automaton. Let I be an lfp-model of 
T and let A be a concept name occurring in T. For any do 
E dam(1) we have do E AZ iff the following two 
properties hold: 
(PI) For all primitive concepts P, all words W E L(A,P), 
and all individuals e E dam(l), (dg,e) E WI implies e E 
PI . 
(p2) For all infinite paths A; WI, W2, W3, . . . and all 
individuals dl d2, d3, . . . 
(dn-l,dn) e W,! 

there exists n 2 1 such that 

PROOF. The proof is more difficult than the proof of 
part (1) of Theorem 4.3 since it requires transfinite induc- 
tion (see (Baader 1990)). 0 

As a consequence of P2 of the proposition, &-cycles in 
AT - i.e., non-empty paths of the form B; &, . . . . &; B - 
are important for the lfp-semantics. In particular, it is easy 
to show that the concept A is inconsistent w.r.t. lfp- 
semantics - i.e., it has the empty extension in all lfp- 
models of T - if and only if there exists a path A; &, . . . . 
&; B such that B is the initial state of an &-cycle. Because 
of this phenomenon, the automaton AT has to be modified 
before we can express subsumption w.r.t. lfp-semantics. 

We add a new state QloO 
B 

to %, a transition with label 
E from Qloo to ~~~~~~ 

& 
an for each role R in T a transi- 

tion with la el R from Qloop to QlooP. For any state B 
of e lying on an &-cycle we add a transition with label & 
from B to QlooP, and for any primitive concept P we add a 
transition with label & from Qloop to P. This modified 
automaton will be called !&-+. 

Theorem 4.6. Let T be a terminology and let /BT be 
the corresponding modified automaton. Then A -Clf-,~ B 
iff U(B) _c U(A) and L(B,P) _c L(A,P) for all primitive 
concepls P. 
PROOF. See (Baader 1990). Cl 

In Example 4.2, B does not subsume A w.r.t. lfp- 
semantics since U(B) contains the infinite word SRRR... 
which is not in U(A). It is not hard to show that the in- 
clusion problem “U(B) c_ U(A)“, which refers to languages 
of finite and infinite words, can be reduced to an ordinary 
inclusion problem for regular languages. On the other 
hand, inclusion of regular languages can also be reduced to 
subsumption w.r.t. lfp-semantics (see (Baader 1990)). 

Corollary 4.7. The problem of determining subsump- 
tion w.r.t. lfp-semantics is PSPACE-complete. Cl 

For the descriptive semantics, the characterization of 
subsumption as well as the proof of its correctness is 
more involved. Infinite paths are still important but it is 
not enough to consider just their labels. The states which 
are reached infinitely often by the path are also significant. 
An infinite path which has initial state A and reaches the 
state C infinitely often will be represented in the form A, 
Uo, C, Ul, C, U2, C, ***, where_ the Ui are labels of non- 
empty paths9 from A to C for i = 0 and from C to C for i 
> 0. 

Theorem 4.8. Let T be a terminology and let AT be 
the corresponding automaton. Then A ET B iff the 
following two properties hold: 
(Pl) For all primitive concepts P, L(B,P) _cL(A,P). 
0)2) For all defined concepts C and all infinite paths of the 

form B, Uo, C, UI, C, U2, C, . . . there exists k L 0 such 
that UoUl...Uk is the label of a path from A to C. 
PROOF. See (Baader 1990). 0 

It is not at all obvious how to decide P2 for given states 
A, B, C of a generalized nondeterministic automaton. 
Fortunately, this problem can be reduced (see (Baader 
1990)) to an inclusion problem for a certain class of lan- 
guages of infinite words, and this class has already been 
considered in the context of monadic second-order logic 
(see (Buchi 1960)). A solution to the inclusion problem 
for this class is also not obvious, but there is a theorem 
due to Biichi and McNaughton (see (Eilenberg 1974), 
p.3821°) which implies that the class is closed under 
intersection and complement. But then the inclusion prob- 
lem can be reduced to the emptiness problem for these 
languages as follows: L1 c L2 iff ?r2 n L1 = 0. Finally, 
it is rather easy to solve the emptiness problem. More 
precisely, it follows from a result in (Sistla, Vardi & 
Wolper 1987) that the inclusion problem for languages ac- 
cepted by Biichi automata is PSPACE-complete. This 
shows that the problem of subsumption determination 

8. This is only true if the languages are given by nondetermi- 
nistic automata. With respect to the size of deterministic 
automata the problem could be solved in quadratic time. 

9. Non-empty means that the path uses at least one transition. 
Nevertheless, Ui can be empty if all transition of the path are 
labeled with E. 
10. The proof is constructive; but it takes eight pages, which 
shows that we are dealing with a hard problem. 
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w.r.t. descriptive semantics is decidable with polynomial 
space (see also (Nebel 1990)). 

5. Conclusion 
We have considered a small terminological language, be- 
cause for this language the meaning of terminological 
cycles with respect to different kinds of semantics and, in 
particular, the important subsumption relation could be 
characterized with the help of finite automata. These 
results may help to decide what kind of semantics is most 
appropriate for cyclic definitions, not only for this small 
language, but also for suitably extended languages. As it 
stands, the gfp-semantics comes off best. The characteri- 
zation given in Theorem 4.3 is easy and has an obvious 
intuitive interpretation. Furthermore, important constructs 
- such as value-restriction with respect to the reflexive- 
transitive closure of a role - can easily be expressed. The 
lfp-semantics is less constructive and the modifications of 
the automaton which are necessary to characterize sub- 
sumption are not obvious. For the descriptive semantics 
one has to consider certain languages of infinite words 
which are more difficult and less intuitive than the regular 
languages which occur in the context of gfp-semantics. 

This research can be continued in two directions. 
Firstly, one may try to extend the results to cyclic defini- 
tions in larger languages. As a first step in this direction, 
the results for gfp-semantics were extended to cycles in the 
language Fc of (Levesque-Brachman 1987). Hybrid infer- 
ences such as realization can also be handled in this con- 
text (see (Baader 1990)). Secondly, one can use a larger 
language, but restrict cycles to the small language. One 
idea in this direction is to extend a given language by 
value-restrictions of the form )JL:P where L is a regular 
language over the alphabet of role names. In accordance 
with part (1) of Theorem 4.3, the semantics of this con- 
struct should be defined as (vL:P)I := ( d E dam(1); for all 
words W E L and all individuals e E dam(I), (d,e) E W* 
implies e E PI }. For example, vRR*:P would express 
value-restriction with respect to the transitive closure of 
the role R (RR* is the regular language { Rn; n 2 1 )). 
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