
Terminological Cycles in KL-ONE-based Knowledge Representation
Languages1

Franz Baader
German Research Center for Artificial Intelligence

Projektgruppe WINO, Postfach 2080

D-6750 Kaiserslautern, West Germany

baade@uklirb.uucp

Abstract
Cyclic definitions are often prohibited in terminological
knowledge representation languages because, from a
theoretical point of view, their semantics is not clear
and, from a practical point of view, existing inference
algorithms may go astray in the presence of cycles. In
this paper, we shall consider terminological cycles in a
very small KL-ONE-based language. For this language,
the effect of the three types of semantics introduced by
(Nebel 1987,1989,1989a) can be completely described
with the help of finite automata. These descriptions pro-
vide a rather intuitive understanding of terminologies
with cyclic definitions and give insight into the essen-
tial features of the respective semantics. In addition, one
obtains algorithms and complexity results for subsump-
tion determination. As it stands, the greatest fixed-point
semantics comes off best. The characterization of this
semantics is easy and has an obvious intuitive
interpretation. Furthermore, important constructs - such
as value-restriction with respect to the transitive or
reflexive-transitive closure of a role - can easily be
expressed.

1. Introduction
Cyclic definitions are prohibited in most terminological
knowledge representation languages (e.g., in KRYPTON
(Brachman et al. 1985), NIKL (Kaczmarek et al. 1986), or
LOOM (MacGregor & Bates 1987)) for the following rea-
sons. From a theoretical point of view, it is not obvious
how to define the semantics of terminological cycles. But
even if we have fixed a semantics it is not easy to obtain
the corresponding inference algorithms.

On the other hand, cyclic definitions may be very useful
and intuitive, e.g., if we want to express the transitive
closure of roles (i.e., binary relations). For a role child,
value-restrictions with respect to its transitive closure off-
spring can be expressed by cyclic concept definitions if we
take the appropriate semantics. For the same reason, recur-
sive axioms are considered in database research (see e.g.,
(Aho & Ullman 1979), (Immerman 1982), (Vardi 1982),
and (Vielle 1989)). Aho and Ullman have shown that the
transitive closure of relations cannot be expressed in the
relational calculus, which is a standard relational query

1. This work was supported by the German “Bundesministe-
rium ftir Forschung und Technologie” under Grant ITW 8903 0.

language. They proposed to add cyclic definitions which
are interpreted by least fixed-point semantics. This was
also the starting point for an extensive study of fixed-point
extensions of first-order logic (see e.g., (Gurevich &
S helah 1986)).

A thorough investigation of cycles in terminological
knowledge representation languages can be found in (Nebel
1987,1989,1989a). Nebel considered three different kinds
of semantics - namely, least fixed-point semantics,
greatest fixed-point semantics, and what he called descrip-
tive semantics - for cyclic definitions in his language
5@” But, due to the fact that this language is relatively
strong2, he does not provide a deep insight into the mcan-
ing of cycles with respect to these three types of
semantics. For the two fixed-point semantics, Nebel ex-
plicates his point just with a few examples. The meaning
of descriptive semantics - which, in Nebel’s opinion,
comes “closest to the intuitive understanding of termino-
logical cycles” ((Nebel 1989a), p. 124) - is treated more
thoroughly. But even in this case the results are not quite
satisfactory. For example, the de&ability of subsumption
determination is proved by an argument3 which cannot be
used to derive a practical algorithm, and which does not
give insight into the reason why one concept defined by
some cyclic definition subsumes another one.

Before we can determine what kind of semantics is most
appropriate for terminological cycles, we should get a bet-
ter understanding of their meaning. The same argument
applies to the decision whether to allow or disallow
cycles. Even if cycles are prohibited, this should not just
be done because one does not know what they mean and
how they can be handled.

In this paper, we shall consider terminological cycles in
a very small KL-ONE-based language which allows only
concept conjunction and value-restrictions. For this lan-
guage the effect of the three above mentioned types of
semantics can be completely described with the help of
finite automata. These descriptions provide a rather intu-

2. The language allows concept and role conjunction, value-
restrictions, number-restrictions and negation of primitive
concepts.
3. Roughly speaking, the argument says that it is sufficient to
consider only finite interpretations to determine subsumption
relations.

BAADER 621

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

itive understanding of terminologies with cyclic
definitions and give insight into the essential features of
the respective semantics. In addition, subsumption deter-
mination for each type of semantics can be reduced to a
(more or less) well-known decision problem for finite
automata. Hence, existing algorithms can be used to decide
subsumption and known complexity results yield the
complexity of subsumption determination.

Syntax and (descriptive) semantics of our small termi-
nological language is introduced in the next section. In
Section 3, alternative types of semantics - namely least
and greatest fixed-point semantics - are considered, which
may be more appropriate in the presence of terminological
cycles. We shall see that, from a constructive point of
view, the greatest fixed-point semantics should be preferred
since greatest fixed-point models can be obtained by a
single limit process. In Section 4, the three types of
semantics are characterized with the help of finite
automata. The characterization of the greatest fixed-point
semantics is easy and intuitively clear. Subsumption with
respect to greatest fixed-point semantics, and - after some
modifications of the automaton - also with respect to least
fixed-point semantics can be reduced to inclusion of
regular languages. For descriptive semantics, we have to
consider inclusion of certain languages of infinite words
which are defined by the automaton. Fortunately, these
languages have already been investigated in the context of
monadic second-order logic (see (Biichi 1960)).

2. A Small KL-ONE-based KR-language
In KL-ONE-based languages we start with atomic concepts
and roles and can use the language formalism to define
new concepts and roles. Concepts can be considered as
unary predicates which are interpreted as sets of individuals
whereas roles are binary predicates which are interpreted as
binary relations between individuals. The languages differ
in what kind of constructs are allowed for the definition of
concepts and roles. The language considered in this paper
has only two constructs, which can be used to define
concepts: concept conjunction and value-restriction.

Definition 2.1. (concept terms and terminologies)
Let C be a set of concept names and R be a set of role
names. The set of concept terms is inductively defined. As
a starting point of the induction,
(1) any element of C is a concept term. (atomic terms)
Let C and D be concept terms and let R be a role name.
(2) Then C n D is a concept term. (concept conjunction)
(3) Then VR:C is a concept term. (value-restriction)
Let A be a concept name and let D be a concept term.
Then A = D is a terminological axiom. A terminology (T-
box) is a finite set of terminological axioms with the
additional restriction that no concept name may appear
more than once as a left hand side of a definition. LI

A T-box contains two different kinds of concept names.
Defined concepts occur on the left hand side of a termin-
logical axiom. The other concepts are called primitive
concepts. For our language, roles are always primitive

since we do not have role definitions. The following is an
example of a T-box in this formalism: Let Man, Human,
Male and Mos (for “man who has only sons”) be concept
names and let child be a role name. The T-box consists of
the following axioms:

l&n = Humann Male
Mos = Man n Vchild: Man

That means that a man is human and male. A man who
has only sons is a man such that all his children are male
humans. Male and Human are primitive concepts while Man
and Mos are defined concepts. Assume that we want to ex-
press a concept “man who has only male off-springs”, for
short Momo. We can’t just introduce a new role name off-
spring because there would be no connection between the
two primitive roles child and off-spring. But the intended
meaning of off-spring is that it is the transitive closure of
child. It seems quite natural to use a cyclic definition for
Momo: A man who has only male off-springs is himself a
man and all his children are men who have only male off-
springs, i.e.,

Morn0 = Mann Vchild: Momo.

This is a very simple cyclic definition. In general,
cycles in terminologies are defined as follows. Let A, B be
concept names and let T be a T-box. We say that A
directly uses B in T iff B appears on the right hand side of
the definition of A. Let uses denote the transitive closure
of the relation dir&y uses. Then T contains a termino-
logical cycle iff there exists a concept name A in T such
that A uses A.

The next definition gives a model-theoretic semantics
for the language introduced in Definition 2.1.

Definition 2.2. (interpretations and models)
An interpretation I consists of a set dam(I), the domain of
the interpretation, and an interpretation function which
associates with each concept name A a subset A1 of
dam(I), and with each role name R a binary relation RI on
dam(I), i.e., a subset of dam(1) x dam(1). The sets AI, RI
are called extensions of A, R with respect to I.
The interpretation function - which gives an interpretation
for atomic terms - can be extended to arbitrary terms as
follows: Let C, D be concept terms and R be a role name.
Assume that C1 and DI are already defined. Then

(C n Di := C1 n D1,
(VR:C) := (x E dam(1); for all y such that (x,y) E

RIwehaveyE C?).

An interpretation I is a model of the T-box T iff it
satisfies

A1 = D1 for all terminological axioms A = D in T. Ll

The semantics we have just defined is not restricted to
non-cyclic terminologies. But for cyclic terminologies this
kind of semantics - which will be called “descriptive
semantics” in the following - may seem unsatisfactory.
One might think that the extension of a defined concept
should be completely determined by the extensions of the
primitive concepts and roles. This is the case for non-
cyclic terminologies. More precisely, let T be a T-box

622 KNOWLEDGEREPRESENTATION

containing the primitive concepts PI, Pn and the roles
Rl , Rm. If T doesn’t contain cycles, then any interpre-
tation Pl1, Pnl, RI I, Rrnl of the primitive
concepts and roles can uniquely be extended to a model of
T (see e.g., (Nebel 1989a), Section 3.2.4). If T contains
cycles, a given interpretation of all primitive concepts and
roles4 may have different extensions to models of T.

Example 2.3.
concept names.5

Let R be a role name and B, P be
The terminology T consists of the single

axiom B = P n VR:B.
We consider the following primitive interpretation: dam(1)
:= (a, b, c, d } =: P1 and R1 := ((a,b), (c,d), (d,d) }. It is
easy to see that this interpretation has two different exten-
sions to models of T. The defined concept B may be inter-
preted as (a, b } or as (a, b, c, d >. Please note that
individuals without RI-successors are in the extension
(VR:C)I of the term VR:C, no matter how C may be
interpreted. Cl

The example also demonstrates that, with respect to
descriptive semantics, the above construction B = P n
VR:B does not express the value-restriction B = VR*:P for
the reflexive-transitive closure R* of R. This implies that
our definition of the concept Momo from above is not
correct, if we use descriptive semantics.

For these reasons we shall now consider
types of semantics for terminological cycles.

alternative

3. Fixed-point Semantics for
Terminological Cycles

A terminology may be considered as a parallel assignment
where the defined concepts are the variables and the primi-
tive concepts and roles are parameters.

Example 3.1. Let R, S be role names and A, B, P, Q
be concept names, and let T be the terminology A = Q n
VS:B, B = P n VR:B. We consider the following primi-
tive interpretation I, which fixes the values of the
parameters P, Q, R, S: dam(1) := { ag, al, a2, . . .), P1 :=
(al, a2, a3, . . .
and S* :=

), QI := (ag), RI := ((a;+l,ai); i 2 1),
(h,ai);i2 1).

For given values of the variables A, B, the parallel
assignment A := Q n VS:B, B := P n VR:B yields new
values for A, B. If A and B are interpreted as the empty
set, an application of the assignment T yields the values 0
for A and (al) for B. If we reapply the assignment to
these values we obtain 0 for A and (al, a;!) for B. CI

In the general case, a terminology T together with a
primitive interpretation I defines a function TI: (2dom(1))n

4. In the following such a partial interpretation will be called
primitive interpretation.
5. We shall no longer use intuitive names for concepts and
roles since I agree with (Bra&man & Schmolze 1985). p.176,
that “suggestive names can do more harm than good in
semantic networks and other representation schemes.”
Suggestive names may seemingly exclude models which are
admissible with respect to the formal semantics.

-+ (2dom@))n, where 2 dam(I) denotes the set of all subsets
of dam(1) and n is the number of defined concepts in T.
For the above example we have seen that TI(0,0) = (0,
(al 11 and ‘b(Q),{ al I> = (W al, a;! I).

A rimitive interpretation together with an element A
of (2 ! om(l))n, which gives the extensions of the defined
concepts, yields an interpretation of T. Obviously, this in-
terpretation is a model of T if and only if A is a fixed-
point of the function TI, i.e., if and only if TI(A) = A. In
our example, the element ((ag),(al, a2, a3, . . .)) of
(2domo))2 is a fixed-point of TI. If we extend I by defining
;;T= (a0), B1 := (al, a2, as, . . .), we obtain a model

.
One may no\. ask whether any primitive interpretation I

can be extended to a model of T, or equivalently, whether
any function T has a fixed-point. The answer is yes,
because (2dom(d)“, ordered componentwise by inclusion,
is a complete lattice (i.e., a partially ordered set where any
subset has a least upper bound) and the functions TI are
monotonic (i.e., A c B implies TI(& c TI(B)). More
precisely, this implies that TI has a least fixed-point
lfp(Tl), a greatest fixed-point gfp(TI), and possibly other
fixed-points which lie between the least and the greatest
fixed-point (see e.g., (Schmidt 1986), Chapter 6, and
(Lloyd 1987), Chapter 1, $5).

Definition 3.2. Let T be a terminology, possibly
containing terminological cycles.
(1) The descriptive semantics allows all models of T as
admissible models.
(2) The least fixed-point semantics (lfp-semantics) allows
only those models of T which come from the least fixed-
point of a function TI (lfp-models).
(3) The greatest fixed-point semantics (&p-semantics)
allows only those models of T which come from the
greatest fixed-point of a function TI (gfp-models). Cl

Any primitive interpretation I can uniquely be extended
to a lfp-model (gfp-model) of T. In Example 2.3, the
extension of I which interprets B as (a, b) is a Ifp-model
of T and the extension which interprets B as (a, b, c, d)
is a gfp-model of T. It is easy to see that, for cycle-free
terminologies, lfp-, gfp- and descriptive semantics coincide
(see (Nebel 1989a), p.137,138).

The next question is how lfp-models (gfp-models) can
be constructed from a given primitive interpretation.
(Nebel 1987,1989,1989a) claimed that the functions TI are
even m-continuous (i.e., for any chain A(O) G A(l) c
one has Ui>OTI(A(‘)) = TI(Ui>uA(iv), and that thus
Ifp(TI) = U +gTIrbottom), wherebottom denotes the
least element of (2 d om(l))n, namely the n-tuple (0 ,..., 0).
Unfortunately, this is not true.

Proposjtion 3.3. In general, we may have lfp(TI) f
U+uTI’(bottom).
PROOF. We consider Example 3.1. It is easy to see that
T1’(0,0) = (0,(al, a2, ai 1). Thus L’i>O’l”I’(Q),Q)) =
(0,(a;; i 2 1)) which is not a fixed-point since TI(0,(ai;
i21))=((a()),(ai;iZl)). CI

In this example, the least fixed-point is reached by

BAADER 623

applying TI once more after building the limit. In general,
one may need several limit processes to obtain the least
fixed-point (see (Lloyd 1987), p.29). On the other hand, I
was able to show that the greatest fixed-point can always
be reached by a single limit process.

Proposition 3.4. The functions TI are always down-
ward o-continuous, i.e., for any descending chain A(*! z,
A(l) 2 . . . we have n i>OTI(A(i)) = TI(n i>o&(‘)).
Consequently, the greatest fixed-point may be obtained as
gfp(TI) = nGoTIr(top), where top := (dom(I),...,dom(I)).
PROOF. See (Baader 1990). Cl

The two propositions show that, from a constructive
point of view, the gfp-semantics should be preferred.
However, if dam(1) is finite, the greatest and the least
fixed-point can be reached after a finite number of applica-
tions of TI.

An important service terminological representation
systems provide is computing the subsumption hierarchy.

Definition 3.5. (subsumption of concepts)
Let T be a terminology and let A, B be concept names.

A ET B iff A1 c B1 for all models I of T,
A EQ, T B iff A1 c B1 for all lfp-models I of T,

A Egfp:T B iff A1 c B1 for all gfp-models I of T.

In this case we say that B subsumes A in T w.r.t. descrip-
tive semantics (resp. lfp-semantics, gfp-semantics). Lt

4. Characterization of the Semantics
Using Finite Automata

Before we can a%OCiate a finite aUtOmatOn AT t0 a termi-
nology T we must transform T into some kind of normal
form. It is easy to see that the concept terms VR:(B I-I C)
and (VR:B) n (VR:C) are equivalent. Hence any concept
term can be transformed into a finite conjunction of terms
of the form VRl:VRz:... VR,:A, where A is a concept
name. We shall abbreviate the prefix “VRl:VR2:...VR,”
by “VW” where W = RlR2...Rn is a word over RT, the
set of role names occurring in T. In the case n = 0 we also
write “V&:A”6 instead of simply “A”. For an interpreta-
tion I and a word W
composition R ~~oR$o

= RlRz...R,, let WI denote the

R2I

. ..oR.I of the binary relations Rll,
, *--, Rril. The term &I denotes the identity relation,

i.e., E1 = ((d,d); d E dam(I) }.
Let T be a terminology where all terms are normalized

as described above.
Definition 4,l. The generalized (nondeterministic)
automaton 5?T is defined as follows: The alphabet of AT
is the set RT of all role names occurring in T; the states
of XT are the concept names occurring in T; a termino-
logical axiom of the form A = VWl:Al n . . . I-I VWk:Ak
gives rise to k transitions, where the transition from A to
Ai is labeled by the word Wi. CI

The automaton AT is called “generalized” because tran-
sitions are labeled by words over the alphabet and not only

by symbols of the alphabet. However, it is well-known
that any generalized finite automaton can be transformed
into an-equivalent finite automaton (see (Manna 1974), p.
9). Definition 4.1 will now be illustrated by an example.

Example 4.2. (A normalized terminology and the
corresponding automaton)

A = VR:A n VS:D B = VRS:D n VS:C
C = VR:C D = VS:D n V&:P

A finite path (resp. infinite path) in a generalized
automaton will be described by the initial state of the path
and the finite sequence of transition labels followed by the
terminal state of the path (resp. by the initial state and the
infinite sequence of transitiou labels). For example, A; R,
R, S, S, S, &; P is a finite path in the above automaton
and B; RS, S, S, S, . . . is an infinite path. The label of the
finite path is the finite word RRSSS while the label of the
infinite path is the infinite word RSSSS... . For two
states p, q of an automaton let L(p,q) denote the set of all
finite words which are labels of paths fom p to q and let
U(p) be the set of all finite7 and infinite words which are
labels of infinite paths with initial state p. In the example,
L(A,P) = R*SS* = (RnSSm; n,m 2 0) and U(A) =
(RRR...) u { R*SSS...; n>O}.Wearenowreadyto
characterize the gfp-semantics.

Theorem 4.3. Let T be a terminology and let AT be
the corresponding automaton. Let I be-a gfp-model of T
and let A, B be concept names occurring in T.
(1) For any d E dam(1) we have d E AZ iff for all
primitive concepts P, all words W E L(A,P), and all
individuals e E dam(I), (d,e) E WI implies e E PI.
(2) Subsumption in T can be reduced to inclusion of
regular languages defined by %I. More precisely, A ~gfp,~
B iff L(B,P) _c L(A,P) for all primitive concepts P.
PROOF. The “if’ direction of (1) is proved by induction
on the positive integer n such that d is not in the A-
component of TI*(top). The “only if’ direction is proved
by induction on the length of a path from A to P with
label W. (2) is a relatively easy consequence of (1). See
(Baader 1990) for a complete proof. CI

The theorem can intuitively be understood as follows:
The language L(A,P) stands for the possibly infinite
number of constraints of the form VW:P which the ter-
minology imposes on A. The more constraints are
imposed the smaller the concept is. In the example, B

7. An infinite path of the form p; WI, Wn, E, E, E, . . . has
the finite word W 1 . ..W. as label. This word is also an element
of U(P). 6. “E” denotes the empty word.

624 KNOWLEDGEREPRESENTATION

subsumes A w.r.t. gfp-semantics since L(B,P) = RSS* is
a subset of L(A,P) = R*SS*. For the terminology B = P
n YR:B of Example 2.3, L(B,P) = R* = { Rn; n 2 0).
Hence it is an immediate consequence of part (1) of the
theorem that this terminology - if interpreted with gfp-
semantics - expresses value-restriction with respect to the
reflexive-transitive closure of R.

Corollary 4.4. The problem of determining subsump-
tion w.r.t. gfp-semantics is PSPACE-complete.
PROOF. We have already seen that subsumption can be
reduced to inclusion of regular languages. On the other
hand, it is relatively easy to show that inclusion of regular
languages can be reduced to subsumption determination
w.r.t. gfp-semantics. It is well-known (see (Garey &
Johnson 1979)) that inclusion of regular languages is
PSPACE-complete.* D

This shows that, even for our very small language, sub-
sumption determination w.r.t. gfp-semantics is-rather hard
from a computational point of view. On the other hand,
(Nebel 1989b) has shown that, even without cycles, this
language has a co-NP-complete subsumption problem.

We shall now consider the lfp-semantics.

Proposition 4.5. Let T be a terminology and let AT
be the corresponding automaton. Let I be an lfp-model of
T and let A be a concept name occurring in T. For any do
E dam(1) we have do E AZ iff the following two
properties hold:
(PI) For all primitive concepts P, all words W E L(A,P),
and all individuals e E dam(l), (dg,e) E WI implies e E
PI .
(p2) For all infinite paths A; WI, W2, W3, . . . and all
individuals dl d2, d3, . . .
(dn-l,dn) e W,!

there exists n 2 1 such that

PROOF. The proof is more difficult than the proof of
part (1) of Theorem 4.3 since it requires transfinite induc-
tion (see (Baader 1990)). 0

As a consequence of P2 of the proposition, &-cycles in
AT - i.e., non-empty paths of the form B; &, &; B -
are important for the lfp-semantics. In particular, it is easy
to show that the concept A is inconsistent w.r.t. lfp-
semantics - i.e., it has the empty extension in all lfp-
models of T - if and only if there exists a path A; &,
&; B such that B is the initial state of an &-cycle. Because
of this phenomenon, the automaton AT has to be modified
before we can express subsumption w.r.t. lfp-semantics.

We add a new state QloO
B

to %, a transition with label
E from Qloo to ~~~~~~

&
an for each role R in T a transi-

tion with la el R from Qloop to QlooP. For any state B
of e lying on an &-cycle we add a transition with label &
from B to QlooP, and for any primitive concept P we add a
transition with label & from Qloop to P. This modified
automaton will be called !&-+.

Theorem 4.6. Let T be a terminology and let /BT be
the corresponding modified automaton. Then A -Clf-,~ B
iff U(B) _c U(A) and L(B,P) _c L(A,P) for all primitive
concepls P.
PROOF. See (Baader 1990). Cl

In Example 4.2, B does not subsume A w.r.t. lfp-
semantics since U(B) contains the infinite word SRRR...
which is not in U(A). It is not hard to show that the in-
clusion problem “U(B) c_ U(A)“, which refers to languages
of finite and infinite words, can be reduced to an ordinary
inclusion problem for regular languages. On the other
hand, inclusion of regular languages can also be reduced to
subsumption w.r.t. lfp-semantics (see (Baader 1990)).

Corollary 4.7. The problem of determining subsump-
tion w.r.t. lfp-semantics is PSPACE-complete. Cl

For the descriptive semantics, the characterization of
subsumption as well as the proof of its correctness is
more involved. Infinite paths are still important but it is
not enough to consider just their labels. The states which
are reached infinitely often by the path are also significant.
An infinite path which has initial state A and reaches the
state C infinitely often will be represented in the form A,
Uo, C, Ul, C, U2, C, ***, where_ the Ui are labels of non-
empty paths9 from A to C for i = 0 and from C to C for i
> 0.

Theorem 4.8. Let T be a terminology and let AT be
the corresponding automaton. Then A ET B iff the
following two properties hold:
(Pl) For all primitive concepts P, L(B,P) _cL(A,P).
0)2) For all defined concepts C and all infinite paths of the

form B, Uo, C, UI, C, U2, C, . . . there exists k L 0 such
that UoUl...Uk is the label of a path from A to C.
PROOF. See (Baader 1990). 0

It is not at all obvious how to decide P2 for given states
A, B, C of a generalized nondeterministic automaton.
Fortunately, this problem can be reduced (see (Baader
1990)) to an inclusion problem for a certain class of lan-
guages of infinite words, and this class has already been
considered in the context of monadic second-order logic
(see (Buchi 1960)). A solution to the inclusion problem
for this class is also not obvious, but there is a theorem
due to Biichi and McNaughton (see (Eilenberg 1974),
p.3821°) which implies that the class is closed under
intersection and complement. But then the inclusion prob-
lem can be reduced to the emptiness problem for these
languages as follows: L1 c L2 iff ?r2 n L1 = 0. Finally,
it is rather easy to solve the emptiness problem. More
precisely, it follows from a result in (Sistla, Vardi &
Wolper 1987) that the inclusion problem for languages ac-
cepted by Biichi automata is PSPACE-complete. This
shows that the problem of subsumption determination

8. This is only true if the languages are given by nondetermi-
nistic automata. With respect to the size of deterministic
automata the problem could be solved in quadratic time.

9. Non-empty means that the path uses at least one transition.
Nevertheless, Ui can be empty if all transition of the path are
labeled with E.
10. The proof is constructive; but it takes eight pages, which
shows that we are dealing with a hard problem.

BAADER 625

w.r.t. descriptive semantics is decidable with polynomial
space (see also (Nebel 1990)).

5. Conclusion
We have considered a small terminological language, be-
cause for this language the meaning of terminological
cycles with respect to different kinds of semantics and, in
particular, the important subsumption relation could be
characterized with the help of finite automata. These
results may help to decide what kind of semantics is most
appropriate for cyclic definitions, not only for this small
language, but also for suitably extended languages. As it
stands, the gfp-semantics comes off best. The characteri-
zation given in Theorem 4.3 is easy and has an obvious
intuitive interpretation. Furthermore, important constructs
- such as value-restriction with respect to the reflexive-
transitive closure of a role - can easily be expressed. The
lfp-semantics is less constructive and the modifications of
the automaton which are necessary to characterize sub-
sumption are not obvious. For the descriptive semantics
one has to consider certain languages of infinite words
which are more difficult and less intuitive than the regular
languages which occur in the context of gfp-semantics.

This research can be continued in two directions.
Firstly, one may try to extend the results to cyclic defini-
tions in larger languages. As a first step in this direction,
the results for gfp-semantics were extended to cycles in the
language Fc of (Levesque-Brachman 1987). Hybrid infer-
ences such as realization can also be handled in this con-
text (see (Baader 1990)). Secondly, one can use a larger
language, but restrict cycles to the small language. One
idea in this direction is to extend a given language by
value-restrictions of the form)JL:P where L is a regular
language over the alphabet of role names. In accordance
with part (1) of Theorem 4.3, the semantics of this con-
struct should be defined as (vL:P)I := (d E dam(1); for all
words W E L and all individuals e E dam(I), (d,e) E W*
implies e E PI }. For example, vRR*:P would express
value-restriction with respect to the transitive closure of
the role R (RR* is the regular language { Rn; n 2 1)).

6. References
Aho, A.V., and Ullman, J.D. 1979. Universality of Data

Retrieval Languages. In Proceedings of the 6th ACM
Symposium on Principles of Programming Languages,
110-120.

Baader, F. 1990. Terminological Cycles in KL-ONE-based
KR-languages. Research Report, RR-90-01, DFKI,
Kaiserslautem.

Brachman, R.J., and Schmolze, J.G. 1985. An Overview
of the KL-ONE Knowledge Representation System.
Cognitive Science 16: 171-216.

Brachman, R.J., Pigman-Gilbert, V., and Levesque, H.J.
1985. An Essential Hybrid Reasoning System:
Knowledge and Symbol Level Accounts in KRYPTON.
In Proceedings of the 9th International Joint Conference
on Artificial Intelligence, 532-539, Los Angeles.

Biichi, J.R. 1960. On a Decision Method in Restricted
Second Order Arithmetic. In Proceedings of the 1960
Congress on Logic, Methodology and Philosophy of
Science, l-l 1, Stanford.

Eilenberg, S. 1974. Automata, Languages and Machines,
Vol. A. New York/London: Academic Press.

Garey, M.R., and Johnson, D.S. 1979. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. San Francisco: Freeman.

Gurevich, Y., and Shelah, S. 1986. Fixed-point
Extensions of First-Order Logic. Annals of Pure and
Applied Logic 32: 265-280.

Immerman, N. 1982. Relational Queries Computable in
Polynomial Time. In Proceedings of the 4th ACM
Symposium on the Theory of Computing, 147-152.

Kaczmarek, T.S., Bates, R., and Robins, G. 1986. Recent
Developments in NIKL. In Proceedings of the 5th
National Conference of the American Association for
Artificial Intelligence, 978-987, Philadelphia.

Levesque, H.J., and Brachman, R.J. 1987. Expressiveness
and Tractability in Knowledge Representation and
Reasoning. Computational Intelligence 3: 78-93.

Lloyd, J.W. 1987. Logic Programming, Second, Extended
Edition. Berlin: Springer Verlag.

McNaughton, R. 1966. Testing and Generating Infinite
Sequences by a Finite Automaton. Information and
Control 9: 521-530.

MacGregor, R., and Bates, R. 1987. The Loom
Knowledge Representation Language. Technical Report
ISI/RS-87-188, Information Science Institute, Univ. of
Southern California.

Manna, Z. 1974. Mathematical Theory of Computation.
New York: McGraw-Hill.

Nebel, B. 1987. On Terminological Cycles. KIT Report
58, Technische Universitit Berlin.

Nebel, B. 1989. On Terminological Cycles. In Preprints
of the Workshop on Formal Aspects of Semantic
Networks, Two Harbors.

Nebel, B. 1989a. Reasoning and Revision in Hybrid
Representation Systems. PhD diss, Universitat des
Saarlandes, Saarbrticken.

Nebel, B. 1989b. Terminological Reasoning is Inherently
Intractable. IWBS Report 82, IBM Deutschland.

Nebel, B. 1990. Terminological Cycles: Semantics and
Computational Properties. To appear in Sowa, J. ed.
1990. Formal Aspects of Semantic Networks.

Schmidt, D.A. 1986. Denotational Semantics: A
Methodology for Language Development. Boston: Allyn
and Bacon.

Sistla, A.P., Vardi, M.Y., and Wolper, P. 1987. The
Complementation Problem for Btichi Automata with
Applications to Temporal Logic. Theoretical Computer
Science 49: 217-237.

Vardi, M. 1982. Complexity of Relational Query
Languages. In Proceedings of the 4th ACM Symposium
on the Theory of Computing, 137-146.

Vielle, L. 1989. Recursive Query Processing: The Power
of Logic. Theoretical Computer Science 69: l-53.

626 KNOWLEDGEREPRESENTATION

