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Abstract
Cyclic definitions are often prohibited in terminological
knowledge representatmn languages because, from a
theoretical point of view, their semantics is not clear
and, from a practical point of view, existing inference
algorithms may go astray in the presence of cycles. In

this naner. we chall consider terminoloeical cveles in a
tnis paper, we snail ¢onsicer lermineiogical ¢ycies 1in a

very small KL-ONE-based language. For this language,
the effect of the three types of semantics introduced by
(Nebel 1987,1989,198%a) can be compietely described
with the help of finite automata. These descriptions pro-
vide a rather intuitive understanding of termmologles
with cyclic definitions and give insight into the essen-
tial features of the respectrv'e semantiics. In addition, one
obtains algorithms and complexity results for subsump-
tion determination. As it stands, the greatest fixed-point
semantics comes off best. The characterization of this

cemantics is easv and has an gbhvicus intuitive

semanics 15 Casy and nas an oOovICcuS Inlive

-

interpretation. Furthermore, important constructs — such
as value-restriction with respect to the transitive or
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expressed.

1. Introduction

Cyclic definitions are prohibited in most terminological
knowledge representation languages (e.g.,in KRYI—"TON

(Bracnman et al. 1985), NIKL (l&aczmarek etal. 1%0)
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sons. From a theoretical po t of view, it is not obvio
how to define the semantics of term1nolog1ca1 cycles. But
even if we have fixed a semantics it is not easy to obtain
the corresponding inference algorithms.

On the other hand, cyclic definitions may be very use
and intuitive, e.g., if we want to express the transitiv
closure of roles (i.e., binary relations). For a role Chlld
value-restrictions with respect to its transitive closure off-
spring can be expressed by cycuc concept definitions if we
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sive axioms are considered in database research (see e.g.,
(Aho & Ullman 1979), (Immerman 1982), (Vardi 1982),
and (Vielle 1989)). Aho and Ullman have shown that the
transitive closure of reiations cannot be expressed in the
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language They proposed to

are interpreted by least uxed-polm sem:
algo the startine noint for an e

also the starting point for an exten
extensions of first-order logic (see e.g., (Gurevich &
Shelah 1986)).

A thorough investigation of cycles in terminological

knOWlCUgc rcprebﬁn[duoﬂ kmguagcs can De lUUﬂU in \lVCDUl
105?’7 1020 105209\ Nebel congidered three different kindg

of semantlcs - namely, least fixed-point semantics,
greatest fixed-point semantics, and what he called descrip-
tive semantics — for cyclic definitions in his language
ATF. But, due to the fact that this language is relatively

he doec not nrovide a deen incioht inta the mean-
, ¢ QOCS NCL proviae a ¢ecp msignt mie (e mean
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ing of cycles with respect to these three types of
semantics. For the two fixed-point semantics, Nebel ex-
plicates his point just with a few examples. The meaning
of descriptive semantics — which, in Nebel’s opinion,

comes “closest to the intuitive nnl‘lprcrnndlng of termino-
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logical cycles” ((Nebel 1989a), p. 124) — is treated more
thoroughly. But even in this case the results are not quite
saustactory Por example, the dec1dab1h§y of subsumption
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used to derive a practical algorithm

give insight into ‘the reason why one oncept defmed by
some cyclic definition subsumes another one.
Before we can determine what kind of semantics is most
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ter understanding of their meaning. The same argument
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applies to the decmon whether to allow or disallow
cycles. Even if cycles are prohibited, this should not just

be done because one does not know what they mean and
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In this paper, we shall consider terminological cycles

a very small KL-ONE-based language which allows only
concept conjunction and value-restrictions. For this lan-
guage the effect of the three above mentioned types of

qamantice can ha camnlataly dacrrihad with tha holn Af
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finite automata. These descriptions provide a rather intu-

I.I)

2. The language allows concept and role conjunction, value-
restrictions, number-restrictions and negation of primitive
concepts.

3. Roughly speakmg, the argument says that it is sufficient to

consider Only finite ln[erpre[a[lons to determine SuUSump[lOn
relations
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itive understanding of terminologies with cyclic
definitions and give insight into the essential features of
the respective semantics. In addition, subsumption deter-
mination for each type of semantics can be reduced to a
(more or less) well-known decision problem for finite
automata. Hence, existing algorithms can be used to decide
subsumption and known complexity results yield the
complexity of subsumption determination.

Syntax and (descriptive) semantics of our small termi-
nological language is introduced in the next section. In
Section 3, alternative types of semantics — namely least
and greatest fixed-point semantics — are considered, which
may be more appropriate in the presence of terminological
cycles. We shall see that, from a constructive point of
view, the greatest fixed-point semantics should be preferred
since greatest fixed-point models can be obtained by a
single limit process. In Section 4, the three types of
semantics are characterized with the help of finite
automata. The characterization of the greatest fixed-point
semantics is easy and intuitively clear. Subsumption with
respect to greatest fixed-point semantics, and — after some
modifications of the automaton — also with respect to least
fixed-point semantics can be reduced to inclusion of
regular languages. For descriptive semantics, we have to
consider inclusion of certain languages of infinite words
which are defined by the automaton. Fortunately, these
languages have already been investigated in the context of
monadic second-order logic (see (Biichi 1960)).

2. A Small KL-ONE-based KR-language

In KL-ONE-based languages we start with atomic concepts
and roles and can use the language formalism to define
new concepts and roles. Concepts can be considered as
unary predicates which are interpreted as sets of individuals
whereas roles are binary predicates which are interpreted as
binary relations between individuals. The languages differ
in what kind of constructs are allowed for the definition of
concepts and roles. The language considered in this paper
has only two constructs, which can be used to define
concepts: concept conjunction and value-restriction.

Definition 2.1. (concept terms and terminologies)

Let C be a set of concept names and R be a set of role
names. The set of concept terms is inductively defined. As
a starting point of the induction,

(1) any element of C is a concept term. (atomic terms)
Let C and D be concept terms and let R be a role name.
(2) Then C 1 D is a concept term.  (concept conjunction)
(3) Then VR:C is a concept term. (value-restriction)
Let A be a concept name and let D be a concept term,
Then A = D is a terminological axiom. A terminology (T-
box) is a finite set of terminological axioms with the
additional restriction that no concept name may appear
more than once as a left hand side of a definition. O

A T-box contains two different kinds of concept names.
Defined concepts occur on the left hand side of a termin-
logical axiom. The other concepts are called primitive
concepts. For our language, roles are always primitive

622 KNOWLEDGE REPRESENTATION

since we do not have role definitions. The following is an
example of a T-box in this formalism: Let Man, Human,
Male and Mos (for “man who has only sons™) be concept
names and let child be a role name. The T-box consists of
the following axioms:

Man Humanr Male
Mos Manm Vchild: Man

That means that a man is human and male. A man who
has only sons is a man such that all his children are male
humans. Male and Human are primitive concepts while Man
and Mos are defined concepts. Assume that we want to ex-
press a concept “man who has only male off-springs”, for
short Momo. We can’t just introduce a new role name off-
spring because there would be no connection between the
two primitive roles child and off-spring. But the intended
meaning of off-spring is that it is the transitive closure of
child. It seems quite natural to use a cyclic definition for
Momo: A man who has only male off-springs is himself a
man and all his children are men who have only male off-
springs, i.e.,

Momo = Manm Vchild: Momo.

This is a very simple cyclic definition. In general,
cycles in terminologies are defined as follows. Let A, B be
concept names and let T be a T-box. We say that A
directly uses B in T iff B appears on the right hand side of
the definition of A. Let uses denote the transitive closure
of the relation directly uses. Then T contains a termino-
logical cycle iff there exists a concept name A in T such
that A uses A.

noavwt dafinitiam thaneats

Anl H
The next definition slvva a modcl-theorctic scmantics

for the language introduced in Definition 2.1.

Definition 2.2. (interpretations and models)
An interpretation 1 consists of a set dom(I), the domain of
the interpretation, and an interpretation function Wthh
associates with each concept name A a subset Al of
dom(I), and with each role name R a binary relation RI on
dom(l), i.e., a subset of dom(I) x dom(I). The sets AL RI
are called extensions of A, R with respect to 1.
The interpretation function — which gives an interpretation
for atomic terms — can be extended to arbitrary terms as
follows: Let C D be concept terms and R be a role name.
Assume that Cl and DI are already defined. Then

Ccn D} = Cl~ DI,

(VR:C)! := { x € dom(l); for all y such that (x,y) €

Rlwehaveye CI).

An interpretation I is a model of the T-box T iff it
satisfies

Al'= DI for all terminological axioms A=DinT. O

The semantics we have just defined is not restricted to
non-cyclic terminologies. But for cyclic terminologies this
kind of semantics — which will be called “descriptive
semantics” in the following — may seem unsatisfactory.
One might think that the extension of a defined concept
should be completely determined by the extensions of the
primitive concepts and roles. This is the case for non-
cyclic terminologies. More precisely, let T be a T-box
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containing the primitive concepts Py, ..., P, and the roles
Rj, ..., Ry If T doesn’t contain cycles, then any interpre-
tation Pil, ..., P,I, R{L, ..., Rp! of the primitive
concepts and roles can uniquely be extended to a model of
T (see e.g., (Nebel 1989a), Section 3.2.4). If T contains
cycles, a given interpretation of all primitive concepts and
roles? may have different extensions to models of T.

Example 2.3. Let R be a role name and B, P be
concept names.5 The terminology T consists of the single
axiom B =P n VR:B.

We consider the following primitive interpretation: dom(I)
:={a,b,c,d} = Pland Rl := { (a,b), (c.d), (d,d) }. It is
easy to see that this interpretation has two different exten-
sions to models of T. The defined concept B may be inter-
preted as {a,b } oras { a, b, ¢, d }. Please note that
individuals without Rl-successors are in the extension
(VR:C)! of the term VR:C, no matter how C may be
interpreted. (3

The example also demonstrates that, with respect to
descriptive semantics, the above construction B = P n
VR:B does not express the value-restriction B = VR*:P for
the reflexive-transitive closure R* of R. This implies that
our definition of the concept Momo from above is not
correct, if we use descriptive semantics.

For these reasons we shall now consider alternative
types of semantics for terminological cycles.

3. Fixed-point Semantics for
Terminological Cycles

A terminology may be considered as a parallel assignment
where the defined concepts are the variables and the primi-
tive concepts and roles are parameters.

Example 3.1. Let R, S be role names and A, B, P, Q
be concept names, and let T be the terminology A=Q n
VS:B, B =P rn VR:B. We consider the following primi-
tive interpretation I, which fixes the values of the
parameters P, Q, R, S: dom(l) := { ag, ay, ap, ... }, Pl :=
[31,32,33, "-], = {aO}sRI :={(ai+]aai);i2 1 },
and ST:= { (ag,a; 121 ).

For given values of the variables A, B, the parallel
assignment A := Q n VS:B, B :=P r VR:B yields new
values for A, B. If A and B are interpreted as the empty
set, an application of the assignment T yields the values @
for A and { a1 } for B. If we reapply the assignment to
these values we obtain @ for A and { aj,ap } for B. O

In the general case, a terminology T together with a
primitive interpretation I defines a function Ty: (2dom(I)y?

4. In the following such a partial interpretation will be called
primitive interpretation.

5. We shall no longer use intuitive names for concepts and
roles since I agree with (Brachman & Schmolze 1985), p.176,
that “suggestive names can do more harm than good in
semantic networks and other representation schemes.”
Suggestive names may seemingly exclude models which are
admissible with respect to the formal semantics.

- (2d°ma))n, where 24om(D) denotes the set of all subsets
of dom(I) and n is the number of defined concepts in T.
For the above example we have seen that Ty(3,9) = (9,
{a1 D and Ti(D.{ a1 }) = @.{ a1, a2 }).

A primitive interpretation together with an element A
of (2dom(MH™ '\ hich gives the extensions of the defined
concepts, yields an interpretation of T. Obviously, this in-
terpretation is a model of T if and only if A is a fixed-
point of the function T, i.e., if and only if Ti(A) = A. In
our example, the element ({ ag },{ a1, ap, a3, ... }) of
(2dom@)2 s 4 fixed-point of T. If we extend I by defining
Al:= (a9 },Bl:= { a1, ag, a3, ... }, we obtain a model
of T.

One may nov. ask whether any primitive interpretation I
can be extended to a model of T, or equivalently, whether
any function 'IB has a fixed-point. The answer is yes,
because (2d°m( )n, ordered componentwise by inclusion,
is a complete lattice (i.c., a partially ordered set where any
subset has a least upper bound) and the functions Ty are
monotonic (i.e., A < B implies Ti(A) ¢ T(B)). More
precisely, this implies that Ty has a least fixed-point
Ifp(Ty), a greatest fixed-point gfp(Ty), and possibly other
fixed-points which lie between the least and the greatest
fixed-point (see e.g., (Schmidt 1986), Chapter 6, and
(Lloyd 1987), Chapter 1, §5).

Definition 3.2. Let T be a terminology, possibly
containing terminological cycles.

(1) The descriptive semantics allows all models of T as
admissible models.

(2) The least fixed-point semantics (lfp-semantics) allows
only those models of T which come from the least fixed-
point of a function Ty (Ifp-models).

(3) The greatest fixed-point semantics (gfp-semantics)
allows only those models of T which come from the
greatest fixed-point of a function Ty (gfp-models). Q3

Any primitive interpretation I can uniquely be extended
to a lfp-model (gfp-model) of T. In Example 2.3, the
extension of I which interprets B as { a, b } is a Ifp-model
of T and the extension which interprets B as { a, b, c, d )
is a gfp-model of T. It is easy to see that, for cycle-free
terminologies, 1fp-, gfp- and descriptive semantics coincide
(see (Nebel 1989a), p.137,138).

The next question is how 1fp-models (gfp-models) can
be constructed from a given primitive interpretation.
(Nebel 1987,1989,1989a) claimed that the functions Ty are
even -continuous (i.e., for any chain_A(O) cADc
one has Ui»oT(AD) = TI(Ui0AD)), and that thus
Hp(T1) = Ui>0T(bottom), where bottom denotes the
least element of (29°m(I)* ‘namely the n-tuple (@.....3).
Unfortunately, this is not true.

Proposition 3.3. In general, we may have Ifp(Ty) #
Uiz T} (bottom).

PROOF. We consider Example 3.1. It is easy to see that
TINB.9) = (D.{ a1, a2, ..., 3; }). Thus U;>0T1H(D,9) =
(@.{ a;;i>1 }) which is not a fixed-point since T{(@,{ a;;
iz1})=({ap).{a;iz1}). Q

In this example, the least fixed-point is reached by
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one may need several limit processes to obtam the least
fixed-point (see (Lloyd 1987), p.29). On the other hand, I
was able to show that the greatest fixed-point can always
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-continuous, i.c., fi descendmp,r chain A®)
(1) 2 ... we have ﬂl>oT1(A(')) THM ,>0A(‘))
Consequently, the greatest fixed-point may be obtained as
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BIp\L1]) =1 101 \l.uy}, WiCiC 0p = \uum\x;,.. .,Q0M 1} ).

PROOF. See (Baader 1990). 0O

The two propositions show that, from a constructive
point of view, the gfp -semantics should be preferred.
However if dom(I) is ﬁmte the greatest and the least
u)\cu-puuu. can be reached after a finite number of ayynwa-
tions of Ty.

An important service terminological representation
systems provide is computing the subsumption hierarchy.

Definition 3.5. (subsumption of concepts)

dows
LYY

3

|U

T At Tha a tarminnlaocw and lat A D ha rnancant namaag
LAL L Vv a lllllllUlUsy aliu vt n, LD ULV VULILLVPL LiAliivo.
c~R iff Al Bl forallmodelsIof T
e N =l e ALL A AVUL QUL 11IVUAVID A VUL 3

b

AcypTB iff Alc B for all Ifp-models 1 of T,
Angp T B iff Alc Bl for all gfp-models I of T.
In this case we say that B subsumes A in T w.r.t. descrip-
tive semantics (resp. ifp-semantics, gip-semantics). U

4, Characterization of the Semantics
Using Finite Automata

Refore we can agsociate a finite automaton 9 to a termi-
B e SOC1A| 1 AT

U Q@ LiaanU GulUiniauls

nology T we must transform T into some kind of normal
form. It is easy to see that the concept terms VR:(Bm C)

1T .T3N Iy

and (VK B)n (VK C) are eqmvalen[ Hence any concept
term can bhe transformed into a finite coniunction of termg

Wi ail v SRR 1433191 Weiidld

of the form VR1:VR9:..VR;:A, where A is a concept
name. We shall abbreviate the prefix “VR1:VR3:...VRy”
by “VW” where W = R1R2.. Ry, is a word over R, the
D\/I. Uf I.Ul\/ lIﬂlll\/B U\f\aullllls lll T. III l.h\l \.ao\/ ll = O ‘v'v'e alSO
write “V€:A”0 instead of simply “A”. For an interpreta-
tion I and a word W = R1R2 Ry, let w! denote the
composmon R110R21° <>Rn of the bmary relations R1 ,

Anntac Zes

1\2 3 saey l\n l.ll.U I.Ullll C' UCllUth I.IIC lUUllLll.y' lUlal,lUll,
ie., €= { (dd);de dom() ).

Let T be a termmology where all terms are normalized
as described above.
Definition 4,1. The generalized (nondeterministic)

antomatan 4 ic dafined ac follawg: Tha alnhahat of dm
auwomaion A7 1S GCINCG as i0ua0wWS! 148 a:pnactt 01 ATg

is the set Rt of all role names occurring in T; the states
of At are the concept names occurring in T; a termino-
logical axiom of the form A =VWq:Ajm .. .m) A

oivec rice to k trancitinne whara the trancitinn from A tn
£1VeS I'lSC 10 x Hansnions, wialre e wansiuion irom A o

A, is labeled by the word W;. [

The automaton At is called “generalized” because tran-
sitions are labeled by words over the alphabet and not only

6. “€” denotes the empty word.
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v SYm wever. it is well.known
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that any generalized finite automaton can be transformed
into an eqmvalem finite automaton (see (Manna 1974), p.
9). Definition 4.1 will now be illustrated by an exampie.

Exampie 4.2. (A normalized terminology and the

corresnonding antomaton)
COIresponging auicmaion)

A=VR:ANVS:D
C=VR:C

~
v

B =VRS:Dn VS:C
D=VS:DnVeP

ion S u
finite sequence of rmnqm la 1s followed b

<210 0 ARILL SRl IS

id
Z
~

A5

infinite sequence of transition labels). For example,

R, S, S, S, €; P is a finite path in the above
andR RS Q S Q is an infinite nath. The 1
C

D, 2, 2, 9, .. 134} 1C pPatll.

infinite path is the infinite word RSSSS... . For two
states p, q of an automaton iei L{p,q) denoie the sei of all
finite words which are labels of nathc fom p to g and let

U(p) be the set of all finite” and mfxmle words whnch are
labels of 1nfm1te paths with initial state p- In the example,

L{AP) = R*SS* = { RBSS8™;
{RRR... } U { R"SSS

JANASAS KUad>..5 N

characterlze the gfp- semanuos.

Theorem 4.3. Let T be a terminology and let AT be
the correspondmg automaton. Let I be a gfp -model of T

and let A, B be concept names occurring in T.
(1) For any d € dom(l) we have d € Al iff for all

VLIY) ilave & L Jor (L

primitive concepts P, all words W € L(A,P), and all
individuals e € dom(I), (de) € W! implies e € P!.
(2) Subsumption in T can be reduced to inclusion of

ragnlar lanonmacgec dafined hvy d+ Mare nrecicely A .~ 7
reguiar :anguages GeiineG oy AT, MOIC PIeCise:y, A Sofpy,

B iff L(B,P) c L(A,P) for all primitive concepts P.
PROOF. The “if” direction of (1) is proved by induction
on the positive integer n such that d is not in the A-

comnanent of Trton) The ¢ ‘only if” direction is nroved
component o i (Cpy. 248 n: Girecion 1s proved

by induction on the length of a path from A to P with
label W. (2) is a relatively easy consequence of (1). See
(Baader 1990) for a compiete proof. &

C> -
— :;
£=

The theorem can intuitively be undersiood as follows
The lan ..g_l ge L( P) sta..ds for the n~331blv infinite

7. An infinit

i form W e c € hag
/. AN mimi

e form p; Wi, ..., Wp, €, €, €, ... has
the finite word W1...Wy, as label. This word is also an element
of U(p).



subsumes A w.r.t. gfp—semanncs since L(B,P) = RSS* is
a subset of L(A,P) = R* SS™. For the termmology B=P
HVRBofExampleZ3 L(B,P) = ={R%nz=0]}.

Hence it is an immediate consequence of part (1) of the
theorem that this terminology — if interpreted with gfp-
semantics — expresses value-restriction with respect to the
reflexive-transitive closure of R.

Corollary 4.4. The problem of determining subsump-
tion w.r.t. gfp-semantics is PSPACE-complete.

PROOF. We have already seen that subsumption can be
reduced to inclusion of regular languages. On the other
hand, it is relatively easy to show that inclusion of regular
languages can be reduced to subsumption determination
w.r.t. gfp-semantics. It is well-known (see (Garey &
Johnson 1979)) that inclusion of regular languages is
PSPACE-complete.? O

This shows that, even for our very small language, sub-
sumption determination w.r.t. gfp-semantics is rather hard
from a computational point of view. On the other hand,
(Nebel 1989b) has shown that, even without cycles, this
language has a co-NP-complete subsumption problem.

We shall now consider the 1fp-semantics.

Proposition 4.5. Let T be a terminology and let AT
be the corresponding automaton. Let I be an fp-model of
T and let A be a concept name occumng in T. For any dg
e dom(l) we have dg € Al iff the following two
properties hold:

(P1) For all primitive concepts P, all words W e L(AP),
a;}d all individuals e € dom(l), (dp.e) € w! implies e €
Pf,

(P2) For all infinite paths A; W;, Wo, W3, ... and all
individuals dj f do, d3, ... there exists n 2 1 such that
(dn-1.dn) € W,
PROOF. The proof is more difficult than the proof of
part (1) of Theorem 4.3 since it requires transfinite induc-
tion (see (Baader 1990)). 0

As a consequence of P2 of the proposition, €-cycles in
At - i.e., non-empty paths of the form B; €, ..., €; B —
are important for the Ifp-semantics. In particular, it is easy
to show that the concept A is inconsistent w.r.t. lfp-
semantics - i.e., it has the empty extension in all 1fp-
models of T — if and only if there exists a path A; €, ...,
€; B such that B is the initial state of an €-cycle. Because
of this phenomenon, the automaton At has to be modified
before we can express subsumption w.r.t. Ifp-semantics.

We add a new state Qoop to A7, a transition with label
€ from Qjoop 10 Qloop, and for each role R in T a transi-
tion with lalla)el R from Qjoop t0 Qoop. For any state B
of 2t lying on an €£-cycle we add a transition with label €
from B to Qloop, and for any primitive concept P we add a
transition with label € from Qjoop to P. This modified
automaton will be called By.

8. This is only true if the languages are given by nondetermi-
nistic automata. With respect to the size of deterministic
automata the problem could be solved in quadratic time.

Theorem 4.6. Let T be a terminology and let BT be
the corresponding modified automaton. Then A Elfp,T B
iff U(B) < U(A) and L(B,P) < L(A,P) for all primitive
concepts P.

PROOF. See (Baader 1990). 0

In Example 4.2, B does not subsume A w.r.t. ifp-
semantics since U(B) contains the infinite word SRRR...
which is not in U(A). It is not hard to show that the in-
clusion problem “U(B) c U(A)”, which refers to languages
of finite and infinite words, can be reduced to an ordinary
inclusion problem for regular languages. On the other
hand, inclusion of regular languages can also be reduced to
subsumption w.r.t. Ifp-semantics (see (Baader 1990)).

Corollary 4.7. The problem of determining subsump-
tion w.r.t. fp-semantics is PSPACE-complete. O

For the descriptive semantics, the characterization of
subsumption as well as the proof of its correctness is
more involved. Infinite paths are still important but it is
not enough to consider just their labels. The states which
are reached infinitely often by the path are also significant.
An infinite path which has initial state A and reaches the
state C infinitely often will be represented in the form A,
Ug, C, Uy, C U,, C, ..., where the Uj are labels of non-
empty paths? from A to C fori=0and from C to C for i
> 0.

Theorem 4.8. Let T be a terminology and let AT be
the corresponding automaton. Then A £7 B iff the
Jollowing two properties hold:

(P1) For all primitive concepts P, L(B,P) c L(A,P).

(P2) For all defined concepts C and all infinite paths of the
form B, Up, C, Uy, C, Uz, C, ... there exists k 2 0 such
that UgU ..Uy is the label of a path from A to C.
PROOF. See (Baader 1990). 0

It is not at all obvious how to decide P2 for given states
A, B, C of a generalized nondeterministic automaton.
Fortunately, this problem can be reduced (see (Baader
1990)) to an inclusion problem for a certain class of lan-
guages of infinite words, and this class has already been
considered in the context of monadic second-order logic
(see (Biichi 1960)). A solution to the inclusion problem
for this class is also not obvious, but there is a theorem
due to Biichi and McNaughton (see (Ellenberg 1974),
p. 38210y which implies that the class is closed under
intersection and complement. But then the inclusion prob-
lem can be reduced to the emptiness problem for these
languages as follows: Ly c Ly iff L n L = . Finally,
it is rather easy to solve the emptiness problem. More
precisely, it follows from a result in (Sistla, Vardi &
Wolper 1987) that the inclusion problem for languages ac-
cepted by Biichi automata is PSPACE-complete. This
shows that the problem of subsumption determination

9. Non-empty means that the path uses at least one transition.
Nevertheless, Uj can be empty if all transition of the path are
labeled with €.

10. The proof is constructive; but it takes eight pages, which
shows that we are dealing with a hard problem.
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w.r.t. descriptive semantics is decidable with polynomial
space (see also (Nebel 1990)).

5. Conclusion

We have considered a smaill terminological language, be-
cause for this language the meaning of terminological
cycles with respect to different kinds of semantics and, in
particular, the important subsumption relation could be
characterized with the help of finite automata. These
results may help to decide what kind of semantics is most
appropriate for cyclic definitions, not only for this small
language, but also for suitably extended languages. As it
stands, the gfp-semantics comes off best. The characteri-
zation given in Theorem 4.3 is easy and has an obvious
intuitive interpretation. Furthermore, important constructs
— such as value-restriction with respect to the reflexive-
transitive closure of a role — can easily be expressed. The
Ifp-semantics is less constructive and the modifications of
the automaton which are necessary to characterize sub-
sumption are not obvious. For the descriptive semantics
one has to consider certain languages of infinite words
which are more difficult and less intuitive than the regular
languages which occur in the context of gfp-semantics.

This research can be continued in two directions.
Firstly, one may try to extend the results to cyclic defini-
tions in larger languages. As a first step in this direction,
the results for gfp-semantics were extended to cycles in the
language L of (Levesque-Brachman 1987). Hybrid infer-
ences such as realization can also be handled in this con-
text (see (Baader 1990)). Secondly, one can use a larger
language, but restrict cycles to the small language. One
idea in this direction is to extend a given language by
value-restrictions of the form VL:P where L is a regular
language over the alphabet of role names. In accordance
with part (1) of Theorem 4.3, the semantics of this con-
struct should be defined as (VL:P)l := { d € dom(l); for all
words W & L and all individuals ¢ ¢ dom(D), (de) € wi
implies e € P! }. For example, VRR™:P would express
value-restnchon with respect to the transitive closure of
the role R (RR™ is the regular language { R%; n>1 }).
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