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Abstract 

Much of the theoretical research on nonmonotonic in- 
heritance has concentrated on formalisms involving 
only IS-A links between primitive nodes. However, it 
is hard to imagine a useful network representation of 
commonsense or expert knowledge that would not in- 
volve nodes representing negative, conjunctive, or dis- 
junctive properties. Certain nodes of this kind were 
included in some of the earliest formalisms for defeasi- 
ble inheritance, but were omitted in later work, either 
to secure tractability or to simplify the task of the- 
oretical analysis. The purpose of the present paper 

is to extend the theoretical analysis of defeasible in- 

heritance to networks incorporating these expressive 
enhancements. 

1 Introduction 

Much of the theoretical research on nonmonotonic in- 
heritance has concentrated on formalisms involving only 
positive and negative IS-A links between,primitive nodes. 
However, even setting aside the need for relational rea- 
soning, many knowledge representation applications call 
for extensions of this austere collection of network prim- 
itives. The following are typical instances of mecha- 
nisms that provide useful expressive power. 

e Negative antecedents. We may wish to say that 
if a seat is unoccupied it is availa,ble. 

0 Conjunction. We may wish to say that purple 
mushrooms are poisonous. 

e Disjunction. We may wish to say that members of 
congress are (by definition) either senators or rep- 
resentatives, and (by default) either democrats or 
republicans. 

It is hard to imagine a useful representation of common- 
sense or expert knowledge that would not call for such 
definitions and assertions. Also, vital tasks like recogni- 
tion of concept instances require expressive extensions. 
If, for instance, we enter three subtypes of sentences- 
declarative, imperative, and interrogative-along with 
information about the constituent structure of these 
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three types, a recognizer must somehow know that a 
string of words that is not classifiable under any of these 
three types is not a sentence. 

What all these expressive extensions have in com- 
mon is the introduction of boolean node types into net- 
work formalisms. Such types were included in some of 
the earliest formalisms, such as that of Fahlman [4], but 
were omitted or restricted in later work, either to secure 
tractability or to simplify the task of theoretical analy- 
sis. If extensions of this sort are to be developed piece- 
meal, there would inevitably be much duplication of 
effort. In a system providing for negative antecedents, 
for instance, as well as in one introducing limited dis- 
junctions, it would be necessary to provide separate 
inheritance definitions-and this would require, for ex- 
ample, a separate account in each case of when one 
reason for a conclusion should preempt another. 

The purpose of the present paper is to present a 
framework providing criteria that apply generally to the 
design of boolean extensions of nonmonotonic inheri- 
tance networks: we develop a theory of defeasible in- 
heritance for networks containing, in addition to nodes 
representing primitive kinds or properties, also nodes 
representing arbitrary boolean combinations of proper- 
ties. As in [9], we allow for both strict and defeasible 
links. However, the treatment of reasoning conflicts 
here is credulous, rather than skeptical. This is for the 
sake of presentation only: the credulous theory is some- 
what simpler, and the other ideas involved in boolean 
inheritance are already complicated enough. 

It is hoped that the theory presented here will help 
to meet the challenges posed by Brachman [2] and Israel 
[lo] for defeasible inheritance reasoners. These papers 
raise two serious problems for knowledge representation 
services employing defeasible inheritance reasoning: il- 
licit cancellation and the need for classification. The 
former problem, which is simply that definitions cre- 
ate strict connections that should not be subject to 
exceptions, is solved by providing a mixed theory like 
that of [9], in which some conclusions cannot be can- 
celed without introducing inconsistency into the net- 
work. The second problem is that, when defeasible links 
are present, it is not clear how a defined concept should 
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be placed in an inheritance hierarchy. In view of the 
usefulness of the classifier in KL-ONE style systems, this 
challenge has to be taken very seriously. 

The theory of [9] d oes not deal with this classi- 
fication issue, because the mixed system of that pa- 
per does not provide for complex concepts. Since the 
present work, however, gives an account of the con- 
clusions derivable from a defeasible network containing 
boolean-defined concepts, it provides also a specifica- 
tion for a classification algorithm in this boolean case. 
Admittedly, implementing such an algorithm would en- 
tangle us in intractability problems; but such entangle- 
ments also arise in purely monotonic settings. As far 
as we know at present, intractability problems are not 
necessarily worsened by the presence of defeasible links. 

2 Basic concepts 

2.1 Nodes and arguments 

Nodes representing objects or individuals are depicted, 
as usual, by lowercase letters from the beginning of the “.. 
alphabet (a through d). Nodes representing kinds or 
properties of individuals, however, may now be com- 
pound. Simple nodes, representing primitive proper- 
ties, are depicted by lowercase letters from the middle 
of the alphabet (f through t). Compound property 
nodes are then obtained by closing the simple property 
nodes under the boolean operations of A, V, and 1; the 
nodes belonging to this closure, both simple and com- 
pound, will be depicted by uppercase letters from the 
middle of the alphabet (F through 7’). Capital letters 
from the end of the alphabet (U through 2) range over 
nodes in general, both individual nodes and property 
nodes. 

Although we generally use infix notation in exam- 
ples, we take the boolean operations of A and V of- 
ficially to operate on sets of nodes; thus, for instance, 
FAGAH is the result of applying conjunction to the set 
{F, G, H}. (It will b e convenient to take the conjunc- 
tion and disjunction of a unit set to refer to that set’s 
only member.) The compound property nodes should 
be interpreted in the obvious way: if F and G are prop- 
erties, then the nodes the nodes FAG, F V G, and TF 
represent the property of being both an F and a G, the 
property of being either an F or a G, and the property 
of not being an F, respectively. 

We allow for both strict and defeasible links. A 
strict link has the form X 3 F. If X is itself a prop- 
erty node, such a link is equivalent in meaning to a 
universally quantified material conditional; for exam- 
ple, the link p A 4 + Y might represent the statement 
‘All purple mushrooms are poisonous’. If X is an indi- 
vidual node, a strict link will mean that this individual 
possesses the property F; the link a a l(p A q), for 
example, might represent the statement ‘Albert is not 

a purple mushroom’. A defeasible link has the form 
X + F. If X is a property node, such a link is to 
be interpreted as a defeasible generic statement; the 
link p A q + f might represent the statement ‘Purple 
mushrooms tend to be poisonous’. It is harder to find a 
natural reading for these defeasible links when X is an 
object, but we can assume that they represent defeasi- 
ble assertions about the properties of individuals; the 
link a + l(p A q), then, might represent a statement 
like ‘It is most natural to suppose that Albert is not a 
purple mushroom’. 

In theories of inheritance that allow only primitive 
nodes, reasoning processes can be represented by paths, 
or linear sequences of links. With the addition of com- 
pound nodes, however, inheritance networks are able to 
support more complicated patterns of reasoning. We 
represent these patterns using certain kinds of proof 
trees, called arguments; we refer to them by lowercase 
Greek letters (a:, ,f?, y, . . .). 

Arguments will be classified as strict or defeasible, 
simple or compound; and with each argument cv there is 
associated a premise node P(o) and a conclusion node 
C(o). These are analogous to the two nodes, in or- 
dinary inheritance, standing at the beginning and the 
end of a reasoning path. An argument supports a con- 
ditional statement constructed out of its premise and 
conclusion. If o is a strict argument, it supports the 
statement P(o) j C(a); if o! is a defeasible argument, 
it supports the statement P(o) + C(o). 

The simple arguments are those containing only one 
inference. If X1 A - - - A X, is a node, then the tree 

is a simple strict argument, with P(a) = X1 A - - - A X, 
and C(a) = F. Likewise, for any node X, the tree 

X 
CV= 

F - 

is a simple defeasible argument, with P(o) = X and 
C(a!) = F. Compound arguments are defined induc- 
tively by the following clauses, in which the bracketed 
components are optional. 

1. Ifal,.. . , on are strict arguments and l\{p(ai), 
“‘, P(cE,), [Xl,. . . ,X,1} is a node, then 

CYl *a* Qn 
CY= 

[Xl .a. xl 

F 

is a compound strict argument, with P(o) = 
l\(P(m), . . . , p(w& [Xl,. . . ,&J) and C(a) = 
F. 
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2. If&l,..., (Y, are arguments at least one of which 
is defeasible, and P(cQ) = X for each oi, then 

ct!l . . . an ix1 a = 
F 

is a compound defeasible argument, with P(a) = 
X and C(o) = F.l 

3. If 01 is any argument, strict or defeasible, with 
P(cQ) = X, then 

is a compound defeasible argument, with P(o) = 
X and C(o) = F. 

In addition to specifying the arguments themselves, this 
definition allows us also to classify inferences contained 
in an argument as strict or defeasible: a double infer- 
ence bar, analogous to the double-arrow link, indicates 
that the inference is strict; a single inference bar, anal- 
ogous to the single-arrow link, indicates that it is de- 
feasible. 

The arguments defined here are intended as a gen- 
eralization of the standard inheritance paths; a path is 
simply an argument that does not branch. To save ver- 
tical space, we will use ordinary path notation from [9] 
to refer to those arguments that can be identified with 
paths. For the same reason, we will occasionally write 
those compound arguments defined by the third clause 
above horizontally, as (al/F) . 

2.2 Nets, theories, and extensions 

Capital Greek letters from the beginning of the al- 
phabet (I’, A, 0,. . .) stand for networks, which are fi- 
nite sets of links; those from the end of the alphabet 
(a, E, Q, . . .) stand for sets of arguments. Intuitively, 
the statements belonging to a network are supposed 
to represent the information provided as hypotheses to 
some reasoning agent. We imagine this agent develop- 
ing a body of accepted arguments in stages, by a pro- 
cess of argument formation and ratification. Since ar- 
guments are a means of constructing other arguments, 
at any stage in this process there will be an argument 
set, consisting of patterns of reasoning that have been 
explicitly carried out and accepted. 

The relation of support already defined between ar- 
guments and statements can be extended in the obvious 
way to a relation between argument sets and statement 

‘The reason why a common premise is required when defea- 
sible arguments are combined is that defeasible arguments can 
be compared and combined only with respect to the same total 
background evidence. This common evidence is represented here 
by the shared premise. 

sets: an argument set Q will be said to support a state- 
ment set A just in case A is the set of statements sup- 
ported by the arguments in a. 

The primary task for a proof-theoretic account of 
inheritance networks is to specify the theories associ- 
ated with each network-the statement sets that an 
ideal reasoner could arrive at, given the information in 
that network as hypotheses. Following the strategy de- 
veloped in previous work on inheritance networks, we 
approach this task here in a roundabout way. We first 
define the relation between a network and certain argu- 
ment sets known as the extensions of that network; in- 
tuitively, these represent alternative argument sets that 
an ideal reasoner would be able to accept, based on the 
initial information contained in the network. Once this 
relation has been defined, it is then a simple matter to 
specify the theories associated with a network: A is a 
theory of the net I’ just in case there is an extension of 
I’ that supports A. 

3 Inheritability 

If I’ is a network and @ is some set of arguments, we 
describe the pair (I’, @) a~ an epistemic context. Al- 
though, formally, any such pairing of a net and an ar- 
gument set counts as a context, it is part of the intuitive 
picture that the argument set should arise out of the 
net. In any given context, certain arguments can be 
classified as inheritable-forcible or persuasive. We use 
the symbol ‘ k ’ to stand for this relation of inheritabil- 
ity, SO that ‘(I, a) k o’ means that the argument Q is 
inheritable in the context (I’, Q). 

This notion of inheritability is the central concept 
in our proof-theoretic account of inheritance networks. 
In the present section, we set out an appropriate no- 
tion of inheritability for arguments. This notion will 
then be used in the following section to provide a defi- 
nition of credulous extensions for inheritance networks 
containing compound nodes. 

3.1 Motivation 

By appealing to logic, it is easy to specify the condi- 
tions under which strict arguments, at least, should be 
classified as inheritable in a context. Suppose we have 
chosen some background logic for the boolean connec- 
tives; this logic will determine a consequence relation t-. 
In fact, the account of inheritance presented in this pa- 
per can be cast against a number of background logics, 
but for reasons described in Thomason et al. [12], the 
most promising candidate seems to be the four-valued 
logic of Belnap [ 11. N ow imagine, for a moment, that we 
interpret the nodes as propositions rather than proper- 
ties; and that we supplement our background logic with 
the strict statements belonging to some net I’ as addi- 
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tional rules of inference. This leads to a new logic, with 
a new consequence relation l-r-. We say that a strict ar- 
gument is F-valid if the conclusion of each inference in 
the argument, regarded as a proposition, follows from 
its premises in the logic b ; and we will say that such 
an argument is inheritable in the context (I’, @) if it is 
P-valid. 

The intuitive idea behind this treatment of the strict 
arguments can be described as follows. Initially, we 
construe all nodes as properties (this includes individ- 
uals, since we can interpret the node a as the property 
of being CL). Each strict link in the net then induces 
a new logical rule of inference involving a single free 
variable, say 2: the link p j q, for instance, leads to 
the rule of inference p(z)/q(z); the link a + p leads 
to 2 = a/p(x). We want to evaluate strict arguments 
against this new predicate logic determined by the net. 
However, since we are reasoning about statements con- 
taining only a single free variable, it suffices to treat 
the logic as propositional, and the nodes as proposi- 
tions. Notice that, for the four-valued logic, and for 
any other reasonable logic of the boolean connectives, 
this treatment already provides, even for entirely strict 
arguments, a polynomial reduction of inheritability to 
an NP-complete problem. 

We turn now to the matter of inheritability for de- 
feasible arguments; and here, we focus on the special 
case of compound defeasible arguments ending in a de- 
feasible inference. This is really the most interesting 
case, since it forces us to isolate the conditions under 
which an inference can be drawn using defeasible in- 
formation. Once the case is understood, it is then a 
simple matter to embed it in a general definition of in- 
heritability. For arguments of this kind, the account 
we provide is modeled on that of Touretzky [13] : such 
an argument will be classified as inheritable in a con- 
text if it is constructible, but neither conflicted nor pre- 
empted. These key concepts-constructibility, conflict, 
and preemption-are defined by Touretzky for paths. 
Our task here is to generalize them in such a way that 
they will apply to arguments as well. 

The generalization is unproblematic in the case of 
constructibility. We adopt the following definition, which 
captures the idea that the arguments constructible in 
a context are those that can be assembled by chain- 
ing together, in a certain way, the arguments and links 
already present in that context. 

Definition 1 (Constructibility) Let a, be an argu- 
ment of the form (c~l/Y), with C(cxl) = U. Then cy 
is constructible in the contezt (I’, @) ifl cy1 E @ and 
u-49x 
It is helpful to think of the final inference, or link, 
in a constructible argument as a reason for accepting 
that argument. Suppose, for example, that the agent 

Figure 1: I’1 Figure 2: I’2 

isgiventhenetI’r={a+p,a+q,pAq+r}ashis 
initial information, where p = purple things, q = mush- 
rooms, and r = poisonous things. This net is shown in 
Figure 1, in which the compound conjunctive node p Aq 
is depicted as a conjunction sign with double-barbed 
arrows pointing at its conjuncts (disjunctive and nega- 
tive nodes will be depicted in a similar fashion). Now 
let 

a a 
= = 

a! = V Q 

PM 
and /3 = (a/r); and supp ose that the reasoning agent 
has already accepted the argument cr, so that he is in 
the epistemic context (I’, @) with Q = I’ U {oy). In this 
new context, the argument /3 is constructible. Since 
the agent has already accepted the argument that a is 
a purple mushroom, the link pA q + r, telling him that 
purple mushrooms are poisonous, gives him a reason to 
accept the argument that a is poisonous. 

Constructibility is a necessary condition that an ar- 
gument of this kind must satisfy in order to be classi- 
fied as inheritable, but it is not sufficient. Even if an 
argument is constructible in some context, it will not 
be classified as inheritable if it is either conflicted or 
preempted. 

The intuitive force of the requirement that a con- 
flicted argument should not be inheritable is that the 
agent must check for consistency before accepting argu- 
ments. An argument cannot be classified as persuasive- 
even if there is some reason for accepting it-whenever 
the adoption of that argument would introduce a con- 
flict into an epistemic context. The need for this re- 
quirement is usually illustrated by the familiar Nixon 
Diamond. Once an agent has embraced, say, the argu- 
ment that Nixon is a pacifist, he can no longer accept 
the conflicting argument that Nixon is not a pacifist. 

The generalization of the notion of conflictedness to 
nets with compound nodes is nontrivial, because the 
more powerful strict consequence relation provided by 
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boolean nodes can make conflicts indirect. To illus- 
trate this possibility, suppose that the reasoner is given 
as his initial information the net I?2 = (a 3 p,p ---) 
s,a 3 q,q + t,a * ~(s A t)}, depicted in Figure 2; 
and suppose also that he has already accepted the ar- 
gument a =) q ---) t, so that his epistemic context is 
(I’z,@) with @ = l?2 U {a + q + t}. Here, the argu- 
ment a + p * s would introduce a conflict into the 
context, even though the context does not contain an 
explicit argument to the contrary. 

In order to generalize the notion of conflict to handle 
cases like this, we need to introduce a few preliminary 
ideas. First, where @ is an argument set and X is a 
node, we let @(X) = (C(o) : (Y E Q and P(Q) = X). 
This set can be thought of as the projection of Q onto 
X; it tells us what an agent who has accepted all the 
arguments in ip has concluded in particular about X. 
Next, we say in the obvious way that a set of nodes F 
is a conjlict set in l? iff F b 2 and F b 12, for some 
node 2; and that F is a minimal conflict set in I’ (a 
I’-mcs) iff F but none of its proper subsets is a conflict 
set in I’. Using these ideas, the notion of a conflicted 
argument can be defined as follows. 

Definition 2 (Conflict) Let a be an argument of the 
form (al/Y), with P(cq) = X. Then (Y is conflicted 
in the context (I’, a) i$ there is a r-mcs 3 such that 
YE3and3-(Y)C:@(X). 

In the example above, it can now be seen that the ar- 
gument a * p ---) s is conflicted in the context (I’2, a), 
since F = (s, t, l(sAt)) is a Pa-mcs and F-(s) C @(a). 

The appeal to minimal conflict sets in the defini- 
tion above is one way of capturing the idea that a 
path is conflicted only if it is somehow responsible for 
a conflict2 Why not simply say in the definition above 
that (or/Y) is conflicted in (I’, @) if Q(X) U {Y} is a 
conflict set in I’? The problem with this simpler for- 
mulation is that it does not properly capture the idea 
that a path is conflicted only if it introduces a con- 
flict into a context; and as a result, it classifies too 
many paths as conflicted. Consider, for example, the 
net r3 = (a + p, a + -p, a a q, q + r), depicted in 
Figure 3. Suppose the agent has drawn no inferences, 
so that he is in the context (I’, @a>, with @ = l?. Accord- 
ing to the simpler analysis, the argument a + q + r 
would have to count as conflicted, since (a(u) U (r) is a 
conflict set. But according to the official analysis con- 
tained in our definition, a 3 q -+ T does not count as 
conflicted, since it does not introduce a conflict into the 
context. It seems that this official analysis of conflict- 
edness is preferable: rs contains a little bit of inconsis- 
tency elsewhere, but it gives us no real reason not to 
conclude that a is a r. 

2There may be other, more natural mechanisms for capturing 
this notion of blame for a conflict. 

4 

Jl 
. 

T . p 3-0 
\I/ . 

4 

Figure 3: l?s 

e 9 
Figure 4: I’4 

Like a conflicted argument, an argument that is pre- 
empted cannot be classified as inheritable. An ideal 
reasoner should not view an argument as persuasive 
whenever his context provides him with a more spe- 
cific reason for accepting a conflicting argument. The 
notion of specificity appealed to here is carried over di- 
rectly from simple inheritance: we say that V <a U 
iff U E a(V); and that V <G U, meaning that V is a 
specific kind of U, iff V sa U but it is not the case 
that U <,a V. Using this idea of specificity, the notion 
of preemption can be defined as follows. 

Definition 3 (Preemption) Let a be an argument of 
the form (al/Y), with P(cy1) = X and C(al) = U. 
Then o is preempted in the context (I’, @) ifl there are 
nodes V and W such that 

1. X s* V and V <.g U, 

2. V + W E I? and there is a I?-mcs 3 such that 
W,Y~3and3-{W,Y)54P(X). 

The first clause of this definition tells us that V rep- 
resents a better reason than U for drawing conclusions 
about X; the second clause tells us that V suggests a 
conclusion about X that conflicts in the context with 
the conclusion suggested by U. Again, it would be sim- 
pler to replace the second clause with a stipulation to 
the effect that V -+ W E l? and a(X) U {W,Y} is a 
conflict set; but this would often lead to the wrong re- 
sults. For example, with the simpler stipulation, the 
path x 3 u -+ y would b e improperly preempted in 
the context (r,l?), where r = {X + U,U ---) y, x G- 

v,vuu,v--+w,x~~w). 

To illustrate the notion of preemption, let us sup- 
pose that the reasoner is given as his initial informa- 
tion the net l?h = (a 3 m,m * n,a * 0,n --) p,o -+ 
!l,(Pkl) * r,m --) lr}, illustrated in Figure 4. Just to 
give the net some concreteness, we adopt the following 
interpretation: p = people with Disease-l, q = peo- 
ple with Disease-2, r = people exhibiting Symptom-3, 
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n = people who have spent time on Island-l, o = peo- 
ple who have spent time on Island-2, m = people who 
have spent time in some particular swamp on Island- 
1. Under this interpretation, what I4 tells us is that 
the Island-l people tend to acquire Disease-l, that the 
Island-2 people tend to acquire Disease-2, that anyone 
with both of these diseases must exhibit Symptom-3, 
that the swamp people tend not to exhibit this symp- 
tom, and that the individual a has spent time both on 
Island-2 and in the Island-l swamp. Now suppose that 
the agent has reasoned his way to the epistemic context 
(r4, Q), where @ = r4 u {a 3 m * n,a * 0 + q); 
that is, he has already decided that a has Disease- 
2. In this context, he will find that the argument 
a 3 m + n + p is preempted by the more specific 
argument a * m + ir. 

3.2 The definition 

At this point, we can embed the special cases of in- 
heritability that we have considered into a general def- 
inition. It is convenient to begin by introducing some 
notation, analogous to that of [9], for analyzing the 
structure of arguments. Where (Y is an argument tree, 
we let a(a) be the maximal strict subtree of cx begin- 
ning with its root inference; and we let S(o) be the 
set of argument trees that remains when a(a) is trun- 
cated from o. These concepts are easier to illustrate 
than to define precisely; so suppose that o is the argu- 
ment 

Y 

In that case, we would have 

and 

{ 

a Q 
S(a) = P 

= a 
!l 7 - 

I 

. 
S 

r 

Using this notation, we can classify the arguments 
according to their structure as follows. An argument Q 
might end in a strict inference without without being 
entirely strict, in which case we would have a(a) # o 
and S(o) # {a}. Alt ernatively, the argument might be 
entirely strict, in which case we would have a(o) = Q, 
or it might end with a defeasible inference, in which case 
we would have 6(a) = {a}. We use this classification of 
arguments to define inheritability for argument trees. 

Definition 4 (Inheritability) 

Case A: a(o) # a and S(a) # {cu}. Then (I’,@) k a! 
iflu(cu) E @ and S(a) C Qp. 

Case B: a(a) = CY. Then (I’, a) k Q i$cr isJ’-valid. 

Case C-I: S(a) = {a} and cv is a direct link. Then 
(r, a) )- LY ifla E r. 

Case C-II: S(Q) = {o} and Q is a compound path. 
Then (I’,(a) k cx i$ 

1. o is constructible in (I’,@), 

2. Q is not conflicted in (I’, a), 

3. a~ is not preempted in (I’, @). 

Here, Case A reduces the question of inheritability for 
a defeasible argument ending in a strict inference to 
two questions: inheritability for a strict argument and 
inheritability for arguments ending in a defeasible in- 
ference. These are treated in Cases B and C. 

4 Credulous extensions 

With the relation of defeasible inheritability secured, it 
is straightforward to define the credulous extensions of 
the inheritance networks containing compound nodes. 
Intuitively, an extension is supposed to represent some 
total set of arguments that an ideal reasoner would be 
able to accept, based on the initial information in some 
network. Therefore, we need only ask: what could pre- 
vent a path set <p from representing such an ideal set 
of arguments determined by the net I’? There are two 
possibilities. First, @ might contain too few arguments; 
there might be some argument inheritable in the con- 
text (l?, @) that does not actually belong to a. Or 
second, Qi might contain too many arguments; some ar- 
gument actually belonging to @ might turn out not to 
be inheritable in the context. The credulous extensions 
of a net I’ can be defined as those path sets exhibiting 
neither of these defects. 

Definition 5 The argument set @ is a credulous ex- 
tension of the theory I’ ifl@ = {(w : (I’, @) )- cu}. 

One requirement of the theory of skeptical mixed in- 
heritance from [9] was that it should specialize to previ- 
ously formulated skeptical theories of strict and defea- 
sible inheritance. In the same way, it can be shown that 
the theory of boolean inheritance presented here spe- 
cializes to the mixed theory of [7], a forward-chaining 
variant of the original credulous theory of inheritance 
from Touretzky [13]. Criteria guaranteeing the exis- 
tence of extensions for boolean nets, and also the prop- 
erties of soundness and stability, are established in [S], 
which describes a defeasible logic from which the present 
treatment of inheritance is descended. 
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5 Conclusion 

The main result of the paper is a generalization Touret- 
zky’s familiar inheritance definition to networks con- 
taining boolean-defined nodes. We have concentrated 
on motivating this definition, and have not discussed 
the independent problem of providing a model theo- 
retic semantics for the theory; this problem is complex 
and somewhat problematic even in the case of simple 
inheritance. It seems however, that certain model the- 
oretic studies of simple inheritance networks, such as 
those of Gelfond and Przymusinska [5] or Ginsberg [6], 
could be extended to the boolean system of this paper. 

In obtaining generality, our inheritance formalism 
also becomes intractable; as we have pointed out, there 
is a polynomial reduction of inheritance in our system 
to the problem of boolean satisfiability. We have tried 
to keep an open mind on whether it is best to secure 
a polynomial inheritance algorithm at all costs, or to 
provide expressive adequacy even if this requires in- 
tractable algorithms. It remains to be established that 
special-purpose representation problems can be fully 
supported by tractable algorithms, so that the repre- 
sentation tasks can be served without user-defined calls 
to the programming language that underlies the repre- 
sentation system. In the case of medical applications, 
for example, Doyle and Patil [3] argue forcefully that 
expressive extensions are needed for KL-ONE style sys- 
tems. The special-purpose problem of representing syn- 
tactic structures in natural languages provides another 
case in point. So far, the formalisms that have been de- 
veloped for this purpose have been highly intractable, 
though in this application one would hope for tractabil- 
ity (see Shieber [ll] for background). 

Whether we seek tractable fragments of the full the- 
ory or begin with a powerful theorem-proving imple- 
mentation of the full system, it seems impossible to 
avoid the need for careful testing of the system under 
field conditions. Both sorts of systems need to be tested 
for expressive adequacy and for practical efficiency, but 
with different emphases in the testing. The theory of 
this paper serves as a first step in designing implemen- 
tations of both sorts. 
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