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Abstract 

This paper describes a probabilistic approach to 
nonmonotonic reasoning which combines the prin- 
ciple of infinitesimal probabilities with that of 
maximum entropy, and which sanctions inferences 
similar to those produced by the principle of 
minimizing abnormalities. The paper provides 
a precise formalization of the consequences en- 
tailed by a defeasible knowledge base, develops 
the computational machinery necessary for deriv- 
ing these consequences, and compares the behav- 
ior of the maximum entropy approach to those 
of e-semantics ([Pearl SSa]) and rational closure 
([Lehmann 891). 

1 Introduction 
An approach to defeasible reasoning based on proba- 
bilities arbitrarily close to 1 (see [Geffner & Pearl 881, 
[Pearl 881) p ro d uces a semi-monotonic logic that prop- 
erly respects specificity-based preferences but often ap- 
pears to be too conservative. This system, called E- 
semantics, was proposed as a common core for all non- 
monotonic formalisms, but, in itself, turns out too 
weak to capture many aspects of common sense rea- 
soning such as chaining, contraposition, and respect- 
ing irrelevancies ([Pearl SSa]). Pearl has proposed to 
increase the inferential power of c-semantics using the 
independence assumptions embedded in distributions 
of maximum entropy, and has shown that when ap- 
plied to knowledge bases containing a small number 
of rules, maximum entropy yields patterns of reason- 
ing which are rather pervasive in common discourse 
(see [Pearl 881 chapter 10). 

This paper explores a system based on infinites- 
imal probabilities augmented by maximum entropy 
considerations. Given a set R of rules and a set 
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P,,, of probability distributions that satisfy each of 
the rules in R to within E, we single out a distin- 
guished distribution P,*,a having the greatest entropy: 
- C, P(w) log P(w). We then define the notion of a 
plausible conclusion of R in terms of a collection of 
such distributions, parameterized by e. 

This system is related to those based on minimizing 
abnormalities (e.g. circumscription [McCarthy SS]), in 
that inferences are sanctioned if they hold in a model 
that minimizes a weighted count of rule violation. We 
discuss the computational and behavioral aspects of 
the ME approach, indicating improvements over E- 
semantics and the rational closure of [Lehmann 891. 

The paper is organized as follows: Section 2 in- 
troduces the language and some basic definitions 
and theorems. Section 3 is concerned with the 
formalism of parameterized probability distributions 
(PPDs). In section 4 the necessary machinery is de- 
veloped for computing the maximum entropy distri- 
bution and deciding whether an arbitrary conditional 
sentence is a plausible conclusion of a given knowl- 
edge base. Section 5 provides a summary and ex- 
amples, and Section 6 evaluates the main results. 
Proofs to all theorems can be found in the full pa- 
per [Goldszmidt, Morris & Pearl 901. 

2 Notation and Preliminaries. 
Let L be a closed set of well formed propositional for- 
mulas, built in the usual way from a finite set of propo- 
sitional variables and the connectives “V” and “1”. 
The letters A, B, C, D will be used to denote formulas 
in L. 

A world ‘w is an assignment of truth values to the 
propositional variables in Z. The satisfaction of a for- 
mula by a world is defined as usual, and will be written 
as 20 + A. Note that if there are n propositional vari- 
ables in L there will be 2n worlds. Let U stand for the 
set of worlds. 

A more complete treatment of the concepts summa- 
rized below can be found in [Goldszmidt & Pearl 891. 

Using the binary connective u+n and two formulas 
A and B from 1: we can construct the defeasible rule 
A + B. We will use 72 to denote a set of such rules. A 
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rule A -+ B is said to be verified by w, if w b A A B. 
The same rule is said to be falsified or violated by w, 
if w b A A -B. If u, &c= A, the rule is considered as 
neither verified nor falsified. 

A rule T is tolerated by a set ‘R if we can find a world 
w that verifies r while no other sentence in 72 is falsified 
by w. We will say that a non-empty set 72 of rules is 
confirmable if we can find a rule r E R that is tolerated 
by R. 

Given a positive real number e, we will say that a 
probability measure P e-satisfies the rule A + B if 
P(BIA) 2 l- e. Given a set 72 of rules, we will use 
P,,a to denote the set of probability distributions that 
e-satisfy R. We will say that a probabilty measure 
P is proper for 72, if P(A) > 0 for all A such that 
A + B E 72. A rule will be considered proper if its 
antecedent is satisfiable. 

A set R is probabilistically consistent if, for every 
E: > 0, there is a proper probability assignment P such 
that P E-satisfies every rule A + B E R. Intuitively, 
consistency means that it is possible for all rules to be 
as close to absolute certainty as desired. Alternatively, 
it means that P E,~ is nonempty for all E > 0, and 
hence, the existence of P:,R is guaranteed for consis- 
tent rule sets. Moreover, if Pc,~ is a convex set, P:‘R 
will be unique. The next theorem constitutes the ba.&s 
of a simple procedure for testing consistency: 

Theorem 1 (Consistency.) ’ A set 72 is probabilis- 
tically consistent if und only if every nonempty subset 
R’ of R is confirmable. 

In other words, 72 is consistent iff we can find a sen- 
tence tolerated by R’, in every subset R’ of R. 
Corollary 1 ([Goldszmidt & Pearl 891.) Given a 
set R, consistency can be tested in I%Zi2/2 sutisfiability 
tests by the following simple labeling procedure: con- 
struct the set RI with all rules tolerated by 2, then 
construct the set R2 with all rules tolerated by R -RI 
and so on. If a partition of R is obtained the set is 
consistent; otherwise R is inconsistent. 

Although propositional satisfiability is in general NP- 
complete, for the case of Horn clauses it is lin- 
ear on the number of occurrences of literals in 
R [Dowling & Gallier 841. 

3 Parameterized Probability 
Distributions 

Among the general laws 
that a common sense consequence relation (denoted 
by b)” might be expected to obey, the following have 
been proposed ([Geffner & Pearl 881, [Kraus et.al. 881, 
[Makinson 891, [Pearl 89a]): 

‘This theorem appears initially in [Adams 751 and 
is extended to mixtures of defeasible and strict rules 
in [Goldszmidt & Pearl 891. 

2We reserve the symbol I- for classical derivability 

(Logic) If P t- Q, then P b Q. 
(Cumulativity) If P b Q, then P b R iff PAQ k R. 
(Cases)IfP~RandQ~R,thenPVQ~R. 
Kraus, Lehmann and Magidor [Kraus et.al. 881 in- 

troduce the class of preferential models, and show that 
each preferential model satisfies the three laws given 
above. Moreover, they show every consequence re- 
lation satisfying those laws can be represented as a 
preferential model. (Kraus, et. al. actually use a 
slightly different set of laws, but they are easily shown 
to be equivalent to those above.) Equivalent results 
were shown in [Lehmann & Magidor 881 with respect 
to the class of ranked preferential models and the 
set of rules above augmented by Rational Monotony: 
IfPbRandPplQthenP~QbR. 

As it stands, e-semantics does not quite fit within 
the same framework as preferential models. The ba- 
sic notion behind e-entailment is: Given a set R, a 
new rule A + B is e-entailed, if for all S > 0, there 
exists an e > 0 such that for all P in PC,, we have 
P(BIA) 1 1 - 6. Thus, c-semantics defines an entail- 
ment relation which is essentially that induced by the 
class of preferential models [Lehmann & Magidor 881, 
but, it presents no direct counterpart to the notion of 
an individual preferential model. Furthermore, in gen- 
eral, e-semantics does not satisfy rational monotony. 
This motivates the following reformulation of the idea 
of e-semantics: 
Definition 1 A parameterized probability distribu- 
tion (PPD) is a collection (PC) of probability measures 
over a space of worlds, indexed by a parameter t that 
ranges over positive real numbers in a neighborhood of 
zero. 

Definition 2 Every parameterized probability distri- 
bution {PC) induces un consequence relation on for- 
mulas us follows: A k B i$ lim,,e PE( BIA) = 1. 

To avoid having to treat some cases separately in the 
proofs and definitions, it is convenient for the purposes 
of this section to define P(BIA) = 1 when P(A) = 0 
(thus extending Definition 2 to non-proper distribu- 
tions.) Under this convention, a PPD consequence re- 
lation can now contain instances of the form A k false 
even when A is logically consistent (see [Adams 661.) 

It is easy to show from elementary probability equiv- 
alences that each such consequence relation satisfies 
the Logic, Cumulativity, and Cases laws discussed ear- 
lier. Also, as might be expected, there is a close rela- 
tion between PPDs and e-semantics: 
Theorem 2 A proper rule is a consequence of a finite 
probabilistically consistent set of rules with respect to 
the class of PPDs in it is e-entailed. 

We now identify a subclass of PPDs that is of spe- 
cial interest. We will say a PPD {Pe} is convergent if 
PE (B IA) converges (as c + 0) for each pair of sentences 
A and B. The following is an important sufficient con- 
dition for PPD convergence. We define a PPD to be 
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analytic if, for every event E, P,(E) has an extension 
to a function over complex values of e that is analytic 
in a neighborhood of 0. (This implies that it possesses 
derivatives of all orders, all of which converge as E ap- 
proaches 0.) 
Theorem 3 Every analytic PPD is a convergent 
PPD. 

The proof is a direct consequence of the fact that any 
given analytic PPD can be expanded as a Taylor series 
about zero. Either Pc( E) is identically zero, or at least 
one of the coefficients must be non-zero. In the latter 
case, as c approaches 0, the series is dominated by the 
first term whose coefficient is non-zero. 

Besides the three laws considered earlier, a con- 
vergent PPD consequence relation satisfies Ratio- 
nal Monotony. The following theorem is an 
f=JY consequence of the results and methods 
in [Lehmann & Magidor 881. A similar result has been 
independently obtained by Satoh [Satoh 901. 
Theorem 4 Every convergent PPD entailment rela- 
tion can be represented as a ranked preferential model,3 
and every ranked preferential model with a finite non- 
empty state space can be represented as a convergent 
PPD entailment relation. 

There is also a connection between PPDs and 
preferential models: since the entailment relation 
of a PPD satisfies the laws of Logic, Cumulativity, 
and Cases, it can be represented as a preferential 
model [Kraus et.al. 881. The following result shows 
that the converse is also true, for finite systems. 
Theorem 5 Every PPD entailment relation may be 
represented as a preferential model, and every prefer- 
ential model with finite non-empty state space may be 
represented as a PPD theory. 

The basic idea in the converse part of the proof is to 
consider the total order extensions of the partial order 
that determines the preferential model. Each of these 
corresponds to a ranked preferential model, which by 
theorem 4 can be expressed as a convergent PPD. In- 
terleaving the individual PPDs then gives a single PPD 
that represents the original preferential model. 

Preference logics were originally introduced as a gen- 
eralization of circumscription. One might ask where 
circumscriptive theories fit in the framework discussed 
above. The simplest form of circumscription is one 
that minimizes a single finite abnormality predicate, 
letting everything else vary. Thus, it is characterized 
by a preference for worlds that satisfy minimal subsets 
of a finite set of abnormality propositions. We will call 
a system of axioms together with such a preference a 
finite abnormality model . Clearly, every such system 
can be represented as a preferential model. The fol- 
lowing is a partial converse. 

‘We remark that the proof of theorem 3 shows that for 
analytic PPDs, the ranks are well-ordered. This stands in 
contrast to example 4.1 in [Lehmann & Magidor 881. 

Theorem 6 Every preferential model with a finite 
propositional language and finite state space can be rep- 
resented as a finite abnormality model. 

4 Maximizing the Entropy. 
As mentioned earlier, given any ruleset R, there is a 
distinguished PPD {P:,‘R} where P:,R is defined as 
the distribution of maximum entropy that c-satisfies 
each rule in R. This suggests the following defini- 
tion (we assume proper probability distributions and 
proper rules): 
Definition 3 (ME-plausible conclusions.) 
Given a consistent set R, we say that A + B is a 
ME-plausible conclusion of 72 iff lim,,oP,*,,(BIA) = 
1. Equivalently, we say that A )- B is in the ME- 
consequence relation of R, denoted CME(R) 

While plausible conclusions in c-semantics are re- 
quired to attain arbitrarily high probabilities in all 
probability distributions in Pc,a, the requirement for 
ME-plausible conclusions concerns only one distin- 
guished distribution, that having the maximum en- 
tropy among those in Pc,a. In this section we develop 
the machinery for deciding whether a rule A + B is an 
ME-plausible conclusion of R in accordance with the 
definition above. 

Let R be a set of defeasible rules ra : Ai + Bi, 
1 5 i 5 n. Each of these rules imposes the constraint: 

P(BilAi) 2 1 - .S 0) 

on the space of distributions. Using elementary prob- 
ability theory we can rewrite Eq. (1) as: 

fi x P(Bi, Ai) 2 P(&, Ai) - 

where & denotes the complement of Bi. Note that the 
term P(Bi, Ai) equals the sum of the probabilities of 
the worlds in which Ai + Bi is verified and similarly 
P(&, Ai) equals th e sum of the probabilities of the 
worlds in which Ai + Bi is falsified. Writing IV”‘: as a 
shorthand for the set of worlds in which ri is verified, 
and lXr; for the set of worlds that falsify ri, Eq. (2) 
can be written as: 

P(W) - fi x P(W~) 5 0 - (3) 
where P(WJ = cwGw;, P(w) and P(W,?) = 

c w@v$ P(w)* 
The entropy associated with a probability distribu- 

tion P is defined as: 

H[P] = - c P(w) log P(w) 
W 

(4) 

The problem of computing the maximum entropy dis- 
tribution PJ’ a reduces to the problem of maximizing 
the entropy expression (Eq. (4)) subject to the set of 
constraints Eq. (3) and the normalization constraint 
c, P(w) = 1. 
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One of the more powerful techniques for solving such 
optimization problems is that of Lagrange multipli- 
ers [Aoki 711. This technique associates a factor a! 
with each constraint (rule), and yields a distribution 
P*(w) that is expressible as a product of these factors 
([Cheeseman 831). We will show that, under the in- 
finitesimal approximation, P*(w) will be proportional 
to the product of the factors (o) associated only with 
rules falsified in w *. 

At the point of maximum entropy, the status of a 
constraint such as (3) can be one of two types: ac- 
tive, when the constraint is satisfied as an equality, and 
passive, when the constraint is satisfied as a strict in- 
equality. Passive constraints do not affect the point of 
maximum entropy and can be ignored (see [Aoki 711). 
The task of identifying the set of active constraints is 
discussed at the end of this section. We will first as- 
sume that all constraints are active. 

An application of the Lagrange multiplier technique 
on a set of n active constraints yields the follow- 
ing expression for each term P(w) (see the appendix 
in [Goldszmidt, Morris & Pearl 901 for a step by step 
derivation):5 

P(W) = CYO x I-J ixTi x n ,!;-ilt;) (5) 
riERZ rjER$ 

where R; denotes the set of rules falsified in w and 
R$ denotes the set of rules verified in w. Motivated by 
Theorem 3, we look for an asymptotic solution where 
each CV’,~ is-proportional to e’i for some non-negative 
integer tci ,6 (-A) namely, each term of the form opj - will 
tend to 1 as e tends to 0 . The term CYO is a normaliza- 
tion constant that will be present in each term of the 
distribution and thus can be safely ignored. Using P’ 
to denote the unnormalized probability function, and 
taking the limit as e goes to 0, equation (5) yields: 

P’(w) W 
;Ir;ER; “i 

R, =0 
otherwise 

Thus, the probability of a given world w depends only 
on the rules that are falsified in that world. Once the 
a-factors are computed, we can construct the desired 
probability distribution and determine which new rules 
are plausible conclusions of 72. 

In order to compute the o-factors we substitute the 
expression for each P’(w) (Eq. (6)) in each of the the 
active constraints equations (Eq. (3)), and obtain: 

4 We drop the subscript “E, R” for notation clarity. 
51n equation (5) (~0 = e(‘O+‘) and arPk = exk, where X0 

and Xk are the actual Lagrange multipliers. 
6 We use a Qbootstrapping” approach: if this assumption 

yields a solution, then the uniqueness of P’ will justify this 
assumption. Note that this amounts to the assumption that 
there is no world whose probability depends exponentially 
on E. 

where 1 5 i 5 n. A few observations are in or- 
der: First, Eq. (7) constitutes a system of n equa- 
tions (one for each active rule) with n unknowns (the 
o-factors, one for each active rule). Unfortunately, 
each summation might range over an exponentially 
large number of worlds. Second, by our assumption, 
ari Fz: ad.5 ni where Ki is a nonnegative integer. This im- 
plies log CVy,i =logai+Kilogexrciloge,and &a~. 
Thus, each probability term P’(w) is determined once 
the values of the K’S are computed (see Eq. (6)). We 
can rewrite Eq. (7) * t m erms of the K’S, by replacing the 
summations in Eq. (7) by the min operation since the 
highest order term (the term with minimum K) will be 
the most significant one as e approaches 0. Taking the 
log on both sides of Eq. (7) yields: 

=l+uy.~[ c ni] l<iLn (8) 
rs rjERZ 

Each Eli can be regarded as the cost added to a world 
w that violates rule ri; since such violation causes 
log(P’(w)) to decrease by pi. 

Since rule ri is falsified in each world on the left- 
hand-side of equation (8), pi will appear in each one 
of the C-terms inside the min operation and can be 
isolated: 

Ki+wFfig c Kkl= 1 +w~$n[ c tcj] 
‘i rkER; r* rjER, 

(9) 

k#d- 

Even with these simplifications, it is not clear how 
to compute the values for the K’S in the most general 
case. We now introduce a class of rule sets R for which 
a simple greedy strategy can be used to solve the set 
of equations above: 
Definition 4 (Minimal Core Sets.) A sed R is a 
minimal core (MC) set i$ for each rule ri : Ai ---) Bi E 
R, its negation Ai ---) 1Bi is tolerated by R - {ri}. 
Equivalently, for each rule ri there is a world that fal- 
sifies ri and none other rule in R. 

Clearly, to decide whether a set R is an MC set takes 
1721 satisfiability tests. Note also that the MC property 
excludes sets R that contain redundant rules, namely, 
rules r that are already e-entailed by R - {r}. This 
is so because the toleration requirement of MC sets 
guarantees that the negation of each rule ri is consis- 
tent with respect to the rest of the rules in R and it 
is known (see [Goldszmidt & Pearl 891) that a rule ra 
is c-entailed by R - {ri) if and only if its negation 
is inconsistent with R - { ri}. For example, consider 
the rule set RJ,.b = {s --) c, s + b, s + c A bj7. This 
set is redundant because the third rule is e-entailed by 
the first two, and vice versa. Indeed, Rscb does not 
meet the MC requirements (Def. 4); any world falsify- 
ing s ---) c (or s + b) must also falsify s + c A b. 

‘A possible interpretation for this set could be: “typi- 
cally, Swedes are civilized”, “typically, Swedes are blond”, 
‘%ypically, Swedes are civilized and blond”. 
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The MC property guarantees that for each rule 
ri E R there is a world wi, in which only that rule 
is falsified. Thus, From Eq. (6), P’(w,) m ari M cni. 
Note that in the equation representing the constraint 
imposed by rule ri (Eq. (9)), the min operation on the 
left-hand-side ranges over all worlds w in which ri is 
falsified. Clearly, the minimum of such worlds is wi, 
and the constraint equations for an MC set can be fur- 
ther simplified to be: 

lei = 

We now describe a greedy strategy for solving 
Eq. (10). Let us assume that we are given a consistent 
MC set R and let {Rr,&, Rs, . . .} be the partition 
of R that results from applying the labeling procedure 
described in Section 2 (Corollary 1). For every rule 
ri E RI there is a world w: for which the set Rz! 

is empty, no rule is falsified by w: and consequently 
ZjER- “j w! 

= 0. It follows that for every ri E 721 we 

must have pi = 1 (see Eq. (10)). We can now use these 
values to compute an initial upper bound for the rest of 
the K’S. We set to infinity all K’S associated with rules 
in R -‘RI, and evaluate the right-hand-side of Eq. (10) 
associated with rules in 322. These evaluations will pro- 
duce an upper bound for the K’S associated with these 
rules. Using these upper bounds we repeat this pro- 
cess and compute upper bounds for the K’S associated 
with rules in Rs and so on. By following the order- 
ing induced by the labeling procedure, we are assured 
that none of this upper bounds for the K’S will be in- 
finity. By definition, for each rule ri E R, there is at 
least one world wi in which ri is verified and the rules 
that are falsified must belong to R, where 1 5 m < n. 
Thus, the min operator ranging over wi must produce a 
x-term which is no greater than that associated with 
that particular world wi, and this term is clearly fi- 
nite. Once these initial upper bounds are computed 
we can divide the K’S into two disjoint sets: the first 
set includes the cc’s for which a precise value is known 
(initially only the K’S associated with rules in RI), and 
the second set includes those for which only an upper 
bound is known. Let FINAL denote the first set, and 
let BOUNDED denote the second set. The objective 
is to compute precise values for the K’S in BOUNDED 
and transfer them into FINAL. Thus, until BOUNDED 
is empty, we repeatedly perform the following steps: 
(1) identify those K* in BOUNDED with minimal up- 
per bound, (2) remove them from BOUNDED, (3) in- 
clude them in FINAL and update the bounds of the 
remaining tc’s in BOUNDED. 
Theorem 7 Given a consistent MC set R the above 
procedure computes a solution to Eq. (lo), and requires 
no more than I%Zl- 17211 iterations. 

Once the K-values are computed we have a complete 
model, and a new rule r:A+ B is ratified as an 

ME-plausible conclusion if and only if the following 
equation is satisfied: 

(11) 

Note that under the approximations described, the sat- 
isfaction of this equation will guarantee the satisfaction 
of Def. 3. 

We conclude this section with a discussion of the 
issue of recognizing the active constraints in non-MC 
knowledge bases. The Lagrange multipliers method 
treats all constraints as equalities, and finds local max- 
ima on the boundaries defined by these constraints. 
The problem with blindly assuming that all rules in 
a set R are active is that the system may become 
overspecified, and the technique we have been using 
might find spurious solutions which do not satisfy all 
the constraints. Such constraints violations cannot be 
detected by the infinitesimal analysis presented here 
since the coefficients of .s were ignored. Some passive 
constraints could, in principle, be detected before the 
maximization process begins, since they do not par- 
ticipate in delimiting the feasible region. For example 
consider:s 

P(bls) 2 1 - E (12) 
P(?.uls) 2 1 -E (13) 

P(b, ~1s) 2 1 - E (14 

Since the third statement implies the first two, the 
point of maximum entropy must lie in the region de- 
fined solely by Eq. (14). The first two constraints are 
completely irrelevant (and will be satisfied by strict 
inequalities). The main problem are those constraints 
that do constrict the feasible region, but do not influ- 
ence the maximum value of the entropy. These con- 
straints represent rules which already belong to the 
maximum entropy closure of the active set of rules. 
We know of no effective method of identifying these 
passive constraints in advance, and are currently ex- 
ploring ways of detecting these constraints within the 
K equations since, being passive, they should obtain a 
tc value of 0. 

We remark that the task of identifying the passive 
constraints will be performed only once, during the 
construction of the model from 72, and can be amor- 
tized over many queries as long as R remains fixed. 
This optimistic note however, should be further qual- 
ified by the fact that the minimization required by 
Eq. (11) is NP-complete even for Horn expressionsg. 

5 Summary and Illustration 
The proposed method of infinitesimal ME-analysis 
computes a ranking function 0 on worlds, where 

8Note that these are the probability constraints imposed 
by R&, above. 

‘Rachel Ben-Eliy ahu, personal communication. 
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Q(w) = log(P’(w)) corresponds to the lowest exponent 
of E in the expansion of P’,,(W) into a power series 
in e. This ranking function is encoded parsimoniously 
by assigning an integer weight K to each rule r E R, 
and letting O(w) be the sum of the weights associated 
with the rules falsified by w. Thus, worlds of lower 0 
are considered more “normal” than those of higher 0. 
The weight K, in turn, reflects the “cost” we must add 
to each w that falsifies the associated rule A ---) B, so 
that the resulting ranking function would satisfy the 
constraint conveyed by 72, namely, 

min( O(w) ] o t= (Ai A -Bi) } > 
min( O(w) ] w l= (Ai A &) } Vri E R (15) 

These considerations led to a set of ]n] nonlinear equa- 
tions for the weights IC which under certain conditions 
can be solved by iterative methods. The criterion for 
deciding whether an arbitrary rule P -+ Q is a ME- 
plausible conclusion of R is: 

&(P I\ Q) < 6(P A -Q) 06) 

where for any formula E, 6(E) is defined as d(E) = 
min(@(w)]w b E}. In other words, a rule is ME- 
plausible iff the ranking associated with the minimal 
world falsifying the rule is higher than the ranking as- 
sociated with the minimal world verifying the rule. 

As an example consider the MC set R,, = { ~1 : p + 
lf, r2 : p + b, v-3 : b + f, r4 : b --+ w}l*. Both r-3 
and r4 are tolerated by R,, (they belong to the first 
set in the partition of 7&,,) hence ~3 = 1~14 = 1. The 
equations for ~1 and ~2 are: 

ccl = 1+ min[K3,&2,@3+ ~4)] 

K2 = 1 +min[K3,o,(s3+ K4),@1+ ~4)] 

giving ~1 = ~2 = 2. These Ki-values, 1 5 i 5 4, 
completely specify the ranking 9. 

Assume we wish to inquire whether “green-birds 
fly”, i.e. (b A g) k f E C~J#&,). Since the propo- 
sitional variable g l1 does not appear in any rule of 
R PW, its truth value does not constraint the rank- 
ing function 0 (see Eq. (15)). Thus, it must be the 
casethat@gAbAf)=$(bAf)and&(gAbAlf)= 
6(b A -f). Since b + f E Rpw, 6(b A vf) > 6(b A f) 
and (bbd )v f is indeed in the closure. In general it 
follows that the ME formalism complies with the in- 
tuition that, if nothing is specified in R about some 
property g, and A --+ B can be concluded from R, 
then (A A g) + B should also follow from R. 

Now consider whether penguins, despite being an 
exceptional class of birds (with respect to flying) can 

“The literals can be taken to mean bird, penguin, fly, 
and winged-animal, respectively. 

I1 We are slightly abusing the language by using g both as 
a propositional variable denoting the property “green” and 
the proposition that “green” is true. The correct meaning 
of g however, should be clear from the context. 

inherit other properties of birds. In particular, we 
wish to test whether 72,, sanctions that penguins are 
winged-animals. It is easy to verify that 6(p A w) = 1 
while 6(p A -w) = 2, and in accordance with Eq. (16), 
p ---) w is an MEplausible conclusion of R,,. Such 
conclusions, representing property inheritance across 
exceptional classes, are not sanctioned by s-semantics 
nor by the rational closure of [Lehmann 891. 

6 Discussion 
As we saw in the previous section, ME overcomes some 
of the deficiencies of e-semantics as well as rational 
monotony. In particular it properly handles irrelevant 
properties (a deficiency of c-semantics), and sanctions 
property inheritance across exceptional subclasses (a 
deficiency of both c-semantics and rational monotony). 
In fact maximum entropy can be viewed as an ex- 
tension of these two systems. Like E-semantics, ME 
is based on infinitesimal probability analysis, and like 
rational monotony, ME is based on optimal rankings 
of models subject to constraints, and a sanctions in- 
ferences on the basis of more normal worlds. Ratio- 
nal monotony however, is driven by a different rank- 
ing, uniquely determined by the relation of tolerance 
(see section (2)). In this ranking, called Z-ranking 
in [Pearl 903, worlds are ranked according to the most 
crucial rule violated in each world, while the rules are 
ranked according to the partition formed by the con- 
sistency test (see section (2)). In contrast ME ranks 
worlds according to the weighted sum of rule viola- 
tions, and it is this difference that explains the ability 
of ME to conclude that “penguins are winged-animals” 
in the example from the previous section. 

Another instance where the MEranking proves ben- 
eficial is in answering the following question, posed 
in [Lifschitz 891: can the fact that we derive -p v -q 
from p V Q when p, Q are jointly circumscribed be ex- 
plained in terms of probabilities close to 0 or l? Trans- 
lated to the ME formalism, we have R,, = {True + 
-rp,True -+ YQ}, and we wish to inquire whether 
(PVQ) k (‘P-q) is in fact in CME(~&). Since the 
minimal world verifying (p v q) ---) (1p v lq) violates 
a subset of the rules violated by the world verifying 
(P v q) - (P A q), we see that 8((pV q) A (PA q)) > 
6((p V q) A l(p A q)) which verifies the conclusion. 
This conclusion is not sanctioned by rational monotony 
since, given that the two initial rules belong to the 
same rank (first level of the consistency partition), the 
ranking on worlds violating one or two rules will be the 
same. Note however, that had we encoded the informa- 
tion slightly different, e.g. RL4 = {True + -(p A q)}, 
ME would not yield the expected conclusion. This 
sensitivity to the format in which rules are expressed 
seems at odds with one of the basic conventions of 
traditional logic where a ---) (b A c) is regarded as a 
“shorthand” for a -+ b and a + c. However, it might 
be useful for distinguishing fine nuances in natural dis- 
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curse, treating q and p as two independent properties 
if expressed by two rules, and related properties if ex- 
pressed together. Another pattern of reasoning sanc- 
tioned by maximum entropy is contraposition. For ex- 
ample, from R,, we could conclude that animals with 
no wings are not birds (lw )- lb), but penguins with 
no wings are “ambiguous”, they may or may not be 
birds. 

The main weakness of the ME approach is the fail- 
ure to respond to causal information (see [Pearl 881, 
PP. 463,519, and [Hunter 891). This prevents 
this formalism from properly handling tasks such as 
the Yale shooting problem [Hanks & McDermott 861, 
where rules of causal character are given priority over 
other rules. This weakness may perhaps be overcome 
by introducing causal operators into the ME formu- 
lation, similar to the way causal operators are incor- 
porated within other formalisms of nonmonotonic rea- 
soning (e.g., [Shoham 861, [Geffner 891). 
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