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Abstract 
This paper addresses the problem of bridging the gap be- 
tween the fields of Knowledge Renresentation OCR) and 
Uncertain Reasoning (UR). The prohosed solution consists 
of a framework for representing uncertain knowledge in 
which two components, one dealing with (categorical) 
knowledge and one dealing with uncertainty about this 
knowledge, are singled out. In this sense, the framework is 
“hybrid”. This framework is characterized in both model- 
theoretic and proof-theoretic terms. State of belief is repre- 
sented by “belief sets”, defined in terms of the “functional 
approach to knowledge representation” suggested by 
Levesque. Examples are given, using first order logic and (a 
minimal subset of) M-Krypton for the KR side, and a yes/no 
trivial case and Dempster-Shafer theory for the UR side. 

1. Introduction 
An impressive work has been carried out over the last 
two decades in the fields of Knowledge Representation 
(RR) and of Uncertain Reasoning &JR), resulting in a 
number of concepts being investigated, a number of 
problems being identified, and a number of solutions be- 
ing developed (see e.g. Israel & Brachman, 1981; 
Bra&man & Levesque, 1985; Saffiotti, 1987; Henkind & 
Harrison, 1988). Yet, curiously enough, these two 
fields, which we would expect to be tightly related, ap- 
parently suffered from a lack of cross-fertilization, or 
even of communication, during their development. As a 
matter of fact, the literature in each field seems to have 
scarcely taken into account the problems and the results 
emerged in the other one. As an example, consider the 
assertions “Birds are animals”, “Typically birds fly”, 
“Most of my friends like music” and “Smoke suggests 
fire”: a person working in KR would recognize them as 
pertaining to qualitatively different types of knowledge, 
and would claim for different mechanisms to represent 
(part of) them. Though, a Bayesian would probably code 
all of them by the single structure P(AIB) = x. 

* This research has been partially supported by the ARCHON pro- 
ject, funded by grants from the Commission of the European 
Communities under the ESPRIT-II Program, P-2256. The partners 
in the ARCHON project are: Krupp Atlas Elektronik, Amber, 
CERN, CNRG-NTUA Athens, ECRC, Framentec, FWI Univ. of 
.4msterdam, Iberduero, Univ. Libre de Bruxelles, JRC Ispra, 
Labein, Volmac, Univ. of Porto, Queen Mary College. 

In this paper we present an attempt at bridging the gap 
between the UR and the KR fields, by describing a for- 
mal unifying framework for representing uncertain 
knowledge. It is of basic importance here to make clear 
what we mean by “uncertain knowledge”. We postulate 
that uncertain knowledge is composed of categorical 
knowledge accompanied by information regarding the 
uncertainty about it; for instance, the fragment of uncer- 
tain knowledge expressed by “Smoke suggests fire” can 
be seen as a piece of categorical knowledge (e.g. a 
“symptom-of’ link between the concepts “Smoke” and 
“Fire” in a semantic net), plus information about its 
uncertainty (e.g. a probability value for that link). From 
an AI viewpoint, this corresponds to seeing uncertainty 
as metaknowledge. Throughout this paper, we will use 
the expressions “knowledge component” and “uncertainty 
component” to refer to the two components of uncertain 
knowledge. Two hypotheses are hidden in this notion of 
uncertain knowledge. First, knowledge, and the reason- 
ing processes based on it, is categorical: it is the validity 
of knowledge (and that of the conclusions drawn from it) 
to be a matter of degree, not the knowledge itself. 
Second, the only uncertainty we talk about is epistemic 
uncertainty: uncertainty about the validity of our knowl- 
edge with respect to an intrinsically certain reality. An in- 
teresting problem is whether other types of uncertainty 
(vagueness, for instance) are captured by our notion or 
not. For the case of vagueness, the answer is affirmative, 
if we accept the interpretation of the vagueness of the 
sentence “Enzo is rich” as pertaining to the adequacy (in 
our mind) of the description “rich” to the individual 
“Enzo”, rather than to the ontological fuzziness of the 
predicate “rich” (cf. Schefe, 1980). 

The formal framework that we define in this paper 
deals with uncertain knowledge by singling out the 
knowledge component and the uncertainty component. 
Both the differences and the relationships between these 
two components are accounted for. Under the hypothesis 
of considering uncertainty as a kind of knowledge (about 
our knowledge), the proposed framework fits the “hybrid 
knowledge representation” paradigm (Bra&man & 
Levesque, 1982). Apart from its theoretical interest, this 
framework is meant to form a basis for defining -given 
a RR system and a UR system- a combined uncertain 
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knowledge representation system able to perform uncer- 
tain reasoning on structured knowledge. 

The rest of this paper is organized as follows: section 2 
presents the conceptual background and the formal de& 
nition of our framework. Section 3 gives a model-theo- 
retic account of this framework in terms of possible 
worlds, and shows three examples. Section 4 mimics 
section 3, but uses a proof-theoretic perspective. Some 
hints for building a real hybrid system for uncertain 
knowledge are also given. Finally, section 5 concludes. 

2. Hybrid Belief Structures 
Once we have clear the notion of “uncertain knowledge” 
that we want to model, we can state two essential re- 
quirements for a general framework in which this uncer- 
tain knowledge can be represented and dealt with: 
1. it must account for both the distinction and the rela- 

tionship between “knowledge” and “uncertainty”, as 
the two basic components of uncertain knowledge; 

2. it must be general enough to accommodate a number 
of KR languages and of UR calculi: the framework 
should not make strong hypotheses on the form in 
which knowledge and uncertainty are represented. 

In order to guarantee ourselves a general formalization, 
we adhere to what Levesque (1984) has called “functional 
approach to Knowledge Representation”. In this ap- 
proach, knowledge is represented by abstract data struc- 
tures (“Knowledge Bases”) characterized in terms of the 
operations that can be made on them. Typical operations 
will be a query operation “Ask”, an updating operation 
“Tell”, and an initialization operation “Empty”. 
Correspondingly, we model uncertain knowledge in 
terms of abstract “Belief Sets”, the uncertain correspon- 
dent of Levesque’s Knowledge Basest. In them, knowl- 
edge and uncertainty about this knowledge are repre- 
sented according to a specific KR language and a specific 
UR calculus, respectively. We will write IBS to refer to 
the set of belief sets. Belief sets will be characterized in 
terms of the following operations: 

Ask: 31f;XBS+ r 
Tell: ZXYXBS+ 
Empty : (0) + %S 

where Z is the language used to represent knowledge (a 
KR language), and T is the set of beZief judgements used 
to represent uncertainty about this knowledge (numbers, 
“true/false”, tokens, etc.). Intuitively, “Ask[a,K]” returns 
an element of r representing the extent to which the be- 
lief expressed by formula a of Z may be considered 
true2 in the belief set K, while “Tell[a,x,K]” returns the 

1 Here “belief’, as opposed to “knowledge”, is not related to what 
is true in the real world, and is a matter of degree. We later use 
“belief judgement” instead of “truth value” in a similar way. 
2 Notice that we are only considering yes-no queries; this assump- 
tion is not restrictive (Levesque, 1984). 

new belief set obtained by assimilating in K the belief ex- 
pressed by a with belief judgement x. “Empty[]” simply 
returns a knowledge base without any knowledge. 

Unfortunately, the operations proposed by Levesque 
do not account for the dichotomous nature of uncertain 
knowledge. We want to find a decomposition of these 
operations, in which the KR component and the UR 
component are singled out. In order to do this, we will 
borrow from another well-known dichotomy: the distinc- 
tion between extension and intension. By intension of a 
sentence we mean its “meaning”, i.e. the idea expressed 
by it. By extension of a sentence we mean the particular 
object designated by it (i.e. a truth value). E.g. the two 
sentences “17 is a prime” and “A=A” have the same ex- 
tension (true), but different intensions. For our goals, we 
accept the following characterization of intensions: the 
intension of a sentence is a function from possible states 
of affair (contexts) to the truth value of the sentence in 
each context. In this light, we can state the problem ad- 
dressed by the Ask operation as that of judging how 
much the context (partially and doubtfully) specified by a 
belief set K is likely to be one in which the asked formula 
is true. We decompose this problem into two steps 
1. Given formula a, evaluate its intension (written Ilall); 
2. Given Ilall, evaluate its belief judgement in the context 

(partially and doubtfully) specified by K. 
Intuitively, step 1 corresponds to a process of meaning 
attribution, i.e. a mapping between the structures we use 
to represent knowledge and the knowledge which is rep- 
resented. This process is typically performed by a KR 
system. So step 1 identifies the KR component in the Ask 
process. On the other hand, in step 2 we completely dis- 
regard linguistic structures: rather, we evaluate belief 
judgements of abstract propositions (intensions) in a 
given context. This corresponds to the entailment part of 
what has been traditionally called “the evidential reason- 
ing problem” in the UR literature (e.g. Thompson, 
1985). Thus, step 2 identifies the UR component of the 
Ask process. An analogous decomposition of 
“Tell(a,x,K)” can be given as: 1) evaluate llall (meaning 
attribution), and 2) update K by assimilating llall (with its 
belief judgement x) in it (updating part of the evidential 
reasoning problem). The above decompositions are 
graphically summarized below 
Ask: X X 8s Tell: L x r x as 

where 9 is the set of intensions, 0 is a function respon- 
sible for attributing a meaning to formulae, Y is a func- 
tion responsible for solving the (two facets3 of the) evi- 
dential reasoning problem, and I is the identity. 

3 Y will be actually c onsidenxi as a pair of functions. 
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We are now in a position to formally define hybrid be- 
lief structures, the basic ingredient of our framework. As 
a notational convention, we use a, p,... to denote formu- 
lae of Z; x, y ,... for belief judgements; p, q ,... for in- 
tensions; Kl, K2,... for belief sets; and @ CI for the 
power set of set Ct. 

Def. I. Let Z be a language, and r and 9 be non 
empty sets. Let 33 stand for (9 X V). Let also 0 be 
a function from 35 to 9, and V be a pair offinctions 
(Y1,Y2) such that@: 9 X @ 33 + r and 
Y2: 33 X k;3 33 + @ 33. Then we call the tuple 
X = <3S, a, 9, r, Y> a hybrid belief structure. 

In words, we are given a KR language aP;, and a function 
0 for it which maps each formula of IE to an intension 
(its meaning). 3e and @ together constitute the KR com- 
ponent of X. From the other hand, we are given the set 
r of belief judgements of an UR calculus, and a pair of 
functions (Y’,Y2) which define its dynamic behaviour 
on the space of the intensions. Y’ returns a belief judge- 
ment given an intension and a belief set: this is the belief 
judgement for the given intension with respect to the be- 
lief judgements of the other beliefs in the belief set. Y2 
returns a (new) belief set given a (new belief judgement 
for a) belief and a (old) belief set: this is the updated be- 
lief set in which the belief judgements of all beliefs have 
been modified in order to account for the new one. r 
and Y together constitute the Uf? component of X . 
Notice that the only hypothesis made on the KR and the 
UR components is that their semantics can be described 
in terms of the functions Bi and Y above. These compo- 
nents act as independent and autonomous systems, which 
cooperate via elements of $. Intensions are used as ab- 
stract objects which represent our knowledge indepen- 
dently from the particular linguistic structures we use (in 
Z) to express it: it is to these objects that uncertainty is 
alIocat.ed. 

We now define belief sets trough the operations which 
characterize their behaviourz 

Def. 2. Let X = <X,Q,d,~,Y> be a hybrid belief 
structure. Then belief sets on X are defined by the 
following operations: 

Ewtyx [I = 1 wlm&l9m,> 1 
Ask&, ~1 = Y’@(a), K) 

Tell#[a, x, K] = Y2(&(a), x>, K) 

where mz p re resents the tautology of E, and 
tTU&xE $I@ represents total confidence. 

Operationally speaking, belief sets are built starting from 
Empty& and then by performing successive Tell, op- 

erations on it. Thus, belief sets are sets of pairs <p,x>, 
where p is an intension and XE T. Notice that, while we 
use formulae of X to interact with belief sets via the Ask 
and Tell operations, belief judgements are actually asso- 
ciated with the intensions connoted by these formulae 
(and not to the formulae themselves). 

3. The Semantic Perspective 
We now want to see how the belief sets defined above 
can actually perform uncertain reasoning on structured 
knowledge, possibly merging together already existing 
KR and UR systems. We will make a two step descent 
from the abstrc :t level we were before: as a fiast step, we 
will consider particular choices for the set of intensions 9. 
This will of course pose more constraints on the form of 
the Q, and Y functions, and then on the set of KR and 
UR calculi we can capture. As a second step, we will 
consider full instantiations, where the elements of the 
framework will be completely specified for a particular 
choice of KR and UR calculi. In this section, we stick to 
a model-theoretic approach to both KR and UR, by using 
possible worlds to represent intensions. In the next sec- 
tion, we will use (sets of sets of) formulae to represent 
intensions, so switching to a syntactic viewpoint 

Let M = <S, D, V, (ai1 20) > be a Kripke structure4, 
where as usual S is a set of states, D is a domain of indi- 
viduals, V is a mapping from symbols of Z and states SE 
S to elements (and sets) of D, and the 3% i’s are binary 
relations over S. A Kripke world is a pair <M,s>, with 
seS. We then let 

9 C @ { <M,s> I 44,s is a Kripke world} 
Given a KR language Z, and a formula a of it, @(a) 
consists of the set of worlds where, a holds according to 
the semantics given to 35. Thus, according to this seman- 
tic perspective, we must be given a model-theoretic ac- 
count of any KR system we want to fit in a hybrid belief 
structure, where the notion of truth in a world is defined. 
A belief is a set of worlds together with a belief judge- 
ment, and belief sets are composed of these beliefs. The 
pair of functions Y must consider sets of worlds as its 
basic objects. This means that a description of an UR 
technique in terms of possible worlds must be available in 
order to use this technique in a hybrid belief structure. 
Example 1: First Order Logic + (yes, no} 
Only for the sake of familiarizing the reader with the use of hy- 
brid belief structures and of Ask and Tell operations to define 
belief sets, we present a very simple example, where knowl- 
edge is represented in standard first order logic (FOL), and 
uncertainty is represented by yes/no values. We need to define 

4 Other mathematical structures which are used to give semantics 
to KR languages could have been employed. Kripke structures have 
been chosen here mainly because of their wide use within the AI 
community (e.g. Halpem & Moses, 1985). 
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the elements of X1 = <XpoL, aPoL, 4, rTp, W*. X,,, is a 
standard first order language, and rm=(yes, urn). 4 is com- 
posed of sets of worlds cM,s+ such that M = < { ~0) ,D,V> is 
a standard FOL interpretation structure. We indicate by W the 
set of ah these worlds. We then define 

<r?poL(~) = t msp 1 ~,w %I, (11 1 
where I=,,, is the standard truth relation for FOL. In words, 
QFoL(a) returns the set of all the first order models of a. 

The definition of the \y’Ip pair of functions is given by: 

tl.0 otherwise 

hqf-lp.ys;> 1 q9ye-E K} if x=yes 

otherwise 

The condition “qGp” can be read in terms of logical entail- 
ment: given two formulae Q and p of X, respectively connot- 
ing p and q, qEp is true whenever (w I WC p} E 

{w I WC a), that is whenever pt= a. As for the updating side, 
the belief set obtained from 1c by assigning the value true to 
the intension p is made by retaining those sets of worlds in K 
which are consistent with p. Belief set operations are then 
easily defined in terms of @mL and \yTp % 

Emptyl[l = NW, ye-1 

Telll[cx, x, K] = ( 
(<gq,&(a),y~>Icqsyes>EK] ifxy 

otherwise 
As required, knowledge is expressed in these belief sets 
through FOL formulae, and uncertainty about it is expressed 
by “yes/no” values. For instance, if the belief set K is built by 

Te~lWogWd,y=, Tell1[Vx.(dog(x)~animal(x)),yes, Empty l[lll 
then we have 

Ask,[animal(Alex), K] = yes 
Notice that the definition of Ask accounts for the incomplete- 
ness of belief sets: e.g. Ask,[a,EmptyI[]] = no and 
Askl[-a,Emptyl[]] = 1~) for every non valid formula a. 

Example 2: FOL + Dempsterdhafer Theory 
In the next example we want to define belief sets in which 
knowledge is represented in FOL, while uncertainty is dealt 
with according to the Dempster-Shafer (DS) theory of evidence 
(Shafer, 1976; Smets, 1988). As you could expect, only the 
UR component of the X 1 defined in the previous example 
needs to be modified. Our new hybrid belief structure is X2 = 
CX poL, aFoL, 4, r,, \y,s>, where ZFOL, @, ad 9 =e as in 
X 1. rDs is now the [O,l] interval. A belief set on 342, then, is 
a set of pairs <p ,x>, with p being a set of worlds and XE 
[O,l]. In the terminology of the DS theory, we can see a belief 
set K as a “basic probability assignment’* (bps) on the set W of 

5 Not surprisingly, the definitions of Ask and Tell for this 
“collapsed” case basically corresponds to those in (Levesque, 1984). 

possible (FOL) worlds, i.e. a distribution of a unitary mass 
among the subsets of W. 

Y',(P,K) returns an element of [O,l] that corresponds, in 

DS terminology, to the value of Bel(p) with respect to the bpa 
represented by K 

qrP 
Intuitively, our confidence in the truth of the knowledge repre- 
sented by p is just the sum of the mass values attributed to any 
intension in K whose truth entails the truth of p. As for the up- 
dating half of ‘y,s, we notice that updating is typically per- 
formed in DS theory by combining, according to the socalled 
Dempster’s rule of combination, the bpa representing the pre- 
sent state of belief with that representing the new evidence. So, 
we combine the old bpa K with a bpa which allocates the de- 
sired amount of belief to the new intensior8, and the rest to W. 

yi (<)h X>, K) = K@ {<p,X>,<w,l-X>} 

where 8 stands for Dempster’s rule of combination, recast in 
terms of belief sets (see full paper). The definitions of Emptyz, 
Ask2 and Tell2 are then given by: 

Empty2[1 = W, I>) 

Ask&x, K] = c {X t Cq,X>EKdq c @&a)) 

Tel$Ea, x9 ~1 = K@ {d&&%),X>, <w, l-x> } 

We show the behaviour of these belief bases by a simple ex- 
ample. Consider the set of worlds W=(b,d,a,da}, where D 
contains the only individual u, and V is such that in the 
world “d”, & is in the extension of&g, but not in that of 
Animal; in “da”, he is in the extension of both DOP: and 
Animal, etc. We then have the following belief sets: 
~0 = Empty-J] = (<W, 1)) 

K,=Tell$(isa Dog Animal),09,Kg]={ <W,O.l>,<(a,a,da),O.9)) 

~~ = Tell,[(Dog alex), 0.7, ~11 = {<W, O.M>, <{d,da), 0.07>, 

<(a,iqda), 0.27>, <(da), 0.63)) 
From what we get, for instance: 
Askz[(Animal alex), K2] = 0.63 

Example 3: 66Z~~~99 KR System + DS Theory 
In the last example of this section we use a KR system, called 
ZERO, which, though almost unreasonably simple, presents 
some interesting characteristics. First, ZERO incorporates con- 
cepts -like the distinction between “facts” and “deftitions”- 
that are traditionally addressed in the KR field, but which are 
not even taken into consideration in the UR tradition. The re- 
sulting belief sets will therefore exhibit conceptually non trivial 
(though minimal) KR capabilities, together with the power of 
the DS approach in dealing with uncertainty. Second, ZERO 
constitutes the very core of the M-KRYPTON KR language7: 

6 Notice that we are using in the Tell primitive a single value x to 
specify confidence in the truth of (x. We can easily generalize x to 
pairs (xt, xf), where xt and xf measure our confidence in the truth of 
a, and in its falseness, respectively. The full formalization of 
Dempster-Shafer belief sets is given in the fool paper. 
7 M-Krypton (Saffiotti & Sebastiani. 1988) is a KR language that 
extends Krypton (Brachman et al. 1985) with belief operators for 

656 KNOWLEDGEREPRESENTATION 



we could use the same procedure described in this example to 
define belief sets with M-KRYPTON as KR component (by just 
replacing the truth function I== of ZERO by that of M- 
KRYPTON). Third, ZERO has been implemented and used as a 
test-bed to experiment with the ideas presented here. 

Formulae of ZERO are of two kinds*: definitions, of form 
(isa Ci Cj), to be read as “Ci is a sub-concept of Cj”, and 
facts, of form (Ci aj), to be read as “aj is an instance of 
concept C:‘. Semantrcs is given to ZERO in terms of Kripke 
structures m the following way: 
<M,s>~z (Ci 5) in V(aj, S) E V(Ci, S) 
<M,s>~z (isa Ci Cj> iff for& S' s.t. s~s', V(CiBs’) GV(Cjls’) 

The use of the VI, relation guarantees the one-way dependence 
between facts and definitions: if (& Ct C$ holds in a world, 
all instances of Cr in that world will necessarily be instances of 
C2 as we& yet, the opposite implication does not hold. 

Our new hybrid belief structure is X3 = <X,, Qz, 9, rDs, 

YD>, where rDs, \yns and 4 are as in X2, and X, is the lan- 

guage of ZERO. The definition of az is plainly: 

Q?,(a) = { &I,0 I 4&s> Cz a ) 
Empty3, Ask, and Tell, arc exactly the same as in the preced- 

ing example, with az replacing apoL. As a result, the modelled 
belief sets will represent knowledge using the ZERO language 
and mechanisms, and uncertainty using DS. The following ex- 
ample illustrates the behaviour of these belief sets: 

Kl = Tells[(isa Researcher Brontosaurus), 0.7, 
Emptys[ll 
~2 = Tell,[(isa Brontosaurus Animal), 0.9, K~] 
K3 = Tell,[(Researcher alex), 1, ~~1 

From this we get, for instance: 
Ask$(Brontosaurus alex), ~31 = 0.9 
Ask3[(Animal alex), K~] = 0.63 

4. The Syntactic Perspective 
Though convenient from a formal point of view, the 
above description in terms of manipulation of abstract 
possible worlds does not shade much light on the practi- 
cal side of our enterprise. The hybrid belief structure 
formalism, however, is not constrained to use sets of 
possible worlds to represent intensions. As proof-theo- 
retic descriptions are normally more convenient than 
model-theoretic ones whenever concreteness is at issue, 
we move now to a proof-theoretic approach, and consider 
representing intensions in terms of more “tangible” syn- 
tactical structures, rather than semantical ones. Given a 
KR language Z, equipped with a proof theory, we define 
a possible argument in Z to be a consistent set of formu- 
lae of Z We let intensions be sets of possible arguments: 

multiple agents. More important here, it provides a Kripke 
tics for Krypton in the same style of that 
8 A full description of ZERO is given in 

given to ZERO. 
the full paper. 

seman- 

Given a KR language Z, and a formula a of it, we focus 
on all those possible arguments in Z such that a is de- 
ducible from them according to the given proof-theory. 
We then let @(a) consist of the collection of all these sets 
of formulae? Therefore, according to this syntactic per- 
spective, we must be given a proof-theoretic account of 
any KR system we want to fit in a hybrid belief structure, 
where the notion of deduction is defined (but notice that 
we do not need a truth relation for Z any more). A belief 
is then a set of possible arguments together with a belief 
judgement, and belief sets are composed of these beliefs. 

Example 4: 6CZ~~~" KR System + DS 
We restate example 3 in proof-theoretic terms. ZERO provides 
us with a proof theory (and hence a deduction operator I-J 
consisting of one axiom schemata and two inference rules: 

Al. (isaC&) 
Rl . 
R2. 

From (Ci ak) 1ul(i (isa Ci C* infer (Cj ak) 
From (isa Ci Ci, and (isa d’ j Ck) infer (isa q Ck> 

Our new hybrid belief structure is X4 = 4,, a’=, !I’, rDS, 

Y’,>. Apart from 4 ‘, the only difference with 94 3 is in the 
definition of @=, given now in terms of deduction: 

W,(a) = ( n E P I ‘TE l-p ) 
where P is the set of all possible possible arguments for 
ZERO. As for the uncertainty component of X4, rw and \yDs 
are exactly the same as in X3. The intuitive interpretation is 
however different. The condition q Ep in YIDs should now be 
read in terms of deduction: (R I A-p) E {n: I al-a) is true 

when, whatever argument is valid among those proving p, it 
proves a as well, i.e. whenever f%a. The ‘y2Ds function, by 
considering the intersection of possible arguments (via 
Dempster’s rule), extends the set of focal elements to include 
the intension corresponding to the conjunction of all the 
knowledge already in K with the new one. 

Ask4 and Tell4 are the same as in example 3, with @’ re- 

placing 0, while Empty4[] = { <P,l>). The behaviour of the 
resulting belief sets on X4 will be the same as in the X3 case: 
using a model-theoretic or a proof-theoretic approach is trans- 
parent to the user of the resulting belief sets. 

Going down to the syntactic level gets us closer to the 
implementation side. Consider the architecture below: 

9 When Z comprises a conjunction operator A satisfying “( a$) I- 
y iff (aAp) l-r, and a disjunction operator v satisfying “(a) l-7 or 
((3)I-r iff (av(3)L~. a (finite) set of possible arguments (Xi I 

7ti=( (3il ....*fjiNi) ) is equivalent t0 the fmula Of X; “Vi(Aj bij)“. In 

such cases, we could represent intensions by formulae of Z. 
However, this is not true in general (eg Zero does not fit this case). 
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The role of the KR module (possibly an already existing 
system) is to compute Q(a) for each formula a of the KR 
language. When Q(a) is a set of possible arguments, this 
role is not so far from a plausible behaviour for a KR 
system. Though, this set includes &l the possible argu- 
ments for a according to the deduction theory of Z, and 
this is in general a computationally intractable object. 
Two steps may be undertaken at this stage: 
1) to only consider possible arguments which are 

“reasonable” with respect to what is actually believed 
in the belief sets; and 

2) to let the KR module provide “fragments” of possible 
arguments, generated while performing inferences; 
the reconstruction of full possible arguments from 
these fragments is then performed by the UR module. 

Step 1 means that the KR module must access the content 
of the belief set to decide which inferences to draw. Step 
2 greatly weakens the demands on the KR module. 
Moreover, if the fragments above correspond to reports 
of single inference steps, they can be seen as ATMS jus- 
tifications (deKleer, 1986). We can then use an ATMS 
inside the UR module to reconstruct the full possible ar- 
guments (ATMS “environments”) given these justifica- 
tionsrO. The discussed architecture, and the two steps 
above, are detailed in (Saffiotti, 1990), where a possible 
algorithm based on an ATMS is also proposed. 

5. Conclusions and 
We have presented an approach to link an arbitrary model 
for UR to an arbitrary KR system (provided that suitable 
formalizations are available for both). This approach has 
been formalized by defining in a functional way belief 
sets, abstract data types where uncertain knowledge is 
represented as knowledge (dealt with by the KR system) 
plus uncertainty (dealt with by the UR calculus). Belief 
sets are peculiar in that they associate uncertainty to the 
knowledge itself rather than to the linguistic structures 
used to represent it. From the point of view of KR, belief 
sets are a tool for attaching an arbitrary treatment of 
uncertainty to a KR system. From the point of view of 
UR, they constitute a tool for extending the applicability 
of an UR technique to kinds of knowledge that would 
otherwise be difficult to express in the language of the 
mathematical model of the UR calculus. E.g. consider ex- 
pressing in a standard DS formalism 
Tell[Vx.@y.child(x,y)+married(x)), 0.9, Empty[]] 

The idea of marring uncertain reasoning with knowl- 
edge representation seems to be fairly new in the litera- 
ture. Some symptom of this tendency may be found in 
(Zadeh, 1989). However, Zadeh’s solution consists in 
proposing Fuzzy Logic @ a KR tool, while we suggest to 
combine an UR tool with a KR tool. On a different side, 
the possible world account given here to DS theory is 

lo This suggestion is similar to some recent proposal to use an 
ATMS for implementing.DS thecxy (e.g. Laskey & Lehner, 1989). 

strongly related to other possible world based accounts 
given to DS theory or to probability theory (e.g. 
Gaifman, 1986; Ruspini, 1986; Fagin and Halpem, 
1989). However, our focus is the decomposition of the 
uncertain knowledge representation task in its KR and 
UR components, using intensions as a formal bridge: 
possible worlds are just one of the possible choices for 
representing intensions. Moreover, while the accounts 
above are normally restricted to the propositional case, 
we attach it to an arbitrary KR language. 
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