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for . probability theory and a class of nonmonotomc 
reasoning which we call daxy nonmonotonic reu- 
soning. In lazy nonmonotonic reasoning, non- 
monotonicity emerges only when new added 
knowledge is contradictory to the previous be- 
lief. 
In this paper, we consider nonmonotonic rea- 
soning in terms of consequence relation. A con- 
sequence relation is a binary relation over for- 
mulas which expresses that a formula is deriv- 
able from another formula under inference rules 
of a considered system. A consequence relation 
which has lazy nonmonotonicity is called a ru- 
tionad consequence relation studied by Lehmann 
and Magidor (1988). 
We provide a probabilistic semantics which 
characterizes a rational consequence relation 
exactly. Then, we show a relationship between 
propositional circumscription and consequence 
relation, and apply this semantics to a con- 
sequence relation defined by propositional cir- 
cumscription which has lazy nonmonotonicity. 

Introduction 

This paper is concerned about a formal relationship 
between nonmonotonic reasoning and probability the- 
ory. Nonmonotonic reasoning is a formalization of rea- 
soning when information is incomplete. If someone is 
forced to make a decision under incomplete informa- 
tion, he uses corm-nonsense to supplement lack of infor- 
mation. Commonsense can be regarded as a collection 
of normal results. Those normal results are obtained 
because their probability is very near to certainty. So 
commonsense has a statistical or probabilistic prop- 
erty. 

Although there are a lot of researches which simulate 
a behavior of nonmonotonic reasoning based on prob- 
ability theory(see [Pearl 19891 for example), there is 

no formal relationship between nonmonotonic reason- 
ing and probability theory, as Lifschitz (1989) pointed 
out. 

In this paper, we consider nonmonotonic reason- 
ing in terms of consequence relation (Gabbay 1985; 
Kraus, Lehmann, and Magidor 1988; Lehmann and 
Magidor 1988; Lehmann 1989). Consequence relation 
is a binary relation over formulas and expresses that a 
formula is derivable from another formula under infer- 
ence rules of the considered system. The researchers 
consider desired properties in a consequence relation 
for nonmonotonic reasoning. 

Gabbay (1985) was the first to consider nonmono- 
tonic reasoning by a consequence relation and Kraus, 
Lehmann and Magidor (1988) give a semantics for 
a consequence relation of nonmonotonic reasoning 
called preferential consequence relation. The seman- 
tics is based on an order over possible states which 
is similar to an order over interpretations in circum- 
scription (McCarthy 1980) or Shoham’s preference 
logic (Shoham 1988). 

Lehmann and Magidor (1988) define a more re- 
stricted consequence relation called rational conse- 
quence relation and shows that a consequence relation 
is rational if and only if it is defined by some ranked 
model. A model is ranked if a set of possible states is 
partitioned into a hierarchical structure, and in a ra- 
tional consequence relation, the previous belief will be 
kept as long as the new knowledge does not contradict 
the previous belief. This nonmonotonicity can be said 
to be lazy because only contradictory knowledge can 
cause a belief revision. 

Moreover, they investigate a relationship between 
Adams’ lo ‘c (Adams 1975) (or equivalently, E- 
semantics Pearl 19881) r and rational entailment in 
which conditional assertion is followed by a set of con- 
ditional assertions. Although Adams’ logic is based 
on probabilistic semantics, it only considers consis- 
tency and entailment for a set of conditional asser- 
tions and does not consider probabilistic semantics for 
a consequence relation. To give a probabilistic seman- 
tics to nonmonotonic reasoning, we have to go beyond 
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Adams’ logic because most nonmonotonic reasoning 
systems define a consequence relation in the sense that 
the systems can define a derived result from a given 
set of axioms by the inference rules of those systems. 

In this paper, we provide a probabilistic semantics 
which characterizes a rational consequence relation ex- 
actly. To do so, we define a closed consequence relation 
in the limit. This property means that there exists a 
probability function with positive parameter ds such 
that a conditional probability of a pair of formulas 
in the consequence relation approaches 1, and a con- 
ditional probability of a pair of formulas not in the 
relation approaches o except 1 as x approaches 0. 

Then, we can show that a consequence relation is 
closed in the limit if and only if the consequence rela- 
tion is rational. 

We apply this result to giving a probabilistic seman- 
tics for circumscription (McCarthy 1980) because cir- 
cumscription has a similar semantics for a rational or 
preferential consequence relation and circumscription 
can define a consequence relation each pair of which 
consists of original axiom and derived result. Although 
we can show that every consequence relation defined 
by circumscription is a preferential consequence rela- 
tion, it is not always rational. Especially, we can show 
that if there are some fixed propositions or if we min- 
imize more than three propositions in parallel, then a 
consequence relation defined by this circumscription is 
always non-rational. 

However, in some cases, we can separate a set of in- 
terpretations into a hierarchy, and so, we can provide 
a probability function so that a consequence relation 
defined by the circumscription in those cases is equiv- 
alent to a consequence relation defined by the proba- 
bility function. 

Consequence Relations and 
Their Models 

In this section, we briefly review a work on con- 
sequence relation by Lehmann, Kraus and Magi- 
dor (Kraus, Lehmann; and Magidor 1988; Lehmann 
and Magidor 1988). A summary of the work is found 
in (Lehmann 1989). 

We use a propositional language L and consider a bi- 
nary relation + over formulas in L called consequence 
relation which has some desired property in a con- 
sidered reasoning system. Intuitively speaking, AFB 
means that if a state of knowledge is A, then B is de- 
rived from A as a belief by inference rules defined in a 
considered reasoning system. 

Definition 1 A consequence relation that satisfies all 
seven properties below is culled .a rational consequence 
relation. 

If A z B is a truth-functional tautology and AI-C, 
then B/4’. (1) 

If A > B is a truth-functional tautology and CbA, 
then CkB. (2) 
A+A. (3) 
If At-B and At-C, then AkB AC. (4) 
If A+C and B/4, then A V BkC. (5) 
If At-B and At-C, then A A BFC. (6) 
If AkC and A/&-B, then A A B/4’. (7) 

A consequence relation that satisfies the first six 
properties is called preferential consequence relation. 

The property (7) is called rational monotony and 
proposed by Makinson as a desired property for non- 
monotonic reasoning system (Lehmann and Magi- 
dor 1988) and corresponds with one of fundamental 
conditions for minimal change of belief proposed by 
Gardenfors (1988). A n intuitive meaning of rational 
monotony is that the previous conclusion stays in the 
new belief if the negation of the added information is 
not in the previous belief. 

A semantics for a rational consequence relation 
called ranked model is also studied by Lehmann and 
Magidor (1988). Th is semantics is a restricted seman- 
tics for preferential consequence relation studied by 
Kraus, Lehmann and Magidor (1988) called preferen- 
tial model. 

Definition 2 A preferential model W is a triple 
(S,l, 4) where S is a set, the element of which is 
called states, 1 assigns a logical interpretation of for- 
mulas to each state and 4 is a strict partial order on S 
(irreflexive and transitive relation) satisfying the fol- 
lowing smoothness condition: for all A E L, for all 

t E A(dsf {sjs E S,l(s) b A}), either 3s minimal in 
A^, such that s 4 t or t is itself minimal in A. 

Definition 3 A ranked model W is a preferential 
model (S, 1, -x) f or which the strict partial order 4 sat- 
isfies the following condition: for all s, t and u in S, 
ifs + t then either s 4 u or u 4 t. 

This definition is different from the original definition 
but actually equivalent. In a ranked model, a set of 
states are divided into hierarchy so that if s 4 t then 
s and t belong to different rank and if l(s 4 t) and 
l(t 4 s) then s and t belong to the same rank. 
We can define consequence relations by the above mod- 
els as follows. 
Definition 4 Let W be a preferential (or ranked) 
model (S, 1, -x) and A, B be formulas in L. The con- 
sequence relation defined by W will be denoted by kw 
and is defined by: A/-Q, B if and only if for any s 
minimal in A^, l(s) b B. 

Kraus, Lehmann and Magidor (1988) show that a con- 
sequence relation is preferential if and only if it is 
the consequence relation defined by some preferential 
model, and Lehmann and Magidor (1988) show that a 
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consequence relation is rational if and only if it is the 
consequence relation defined by some ranked model. 

Probabilistic Semantics for 
Rational Consequence Relation 

From this poin t, we assume 
symbols in L is always finite. 

the set of propositional 

Definition 5 Let L be a propositional language. Then 
probability function Pz on L with positive parameter x 
is a function from a set of formulas in L and posi- 
tive real numbers to real numbers which satisfies the 
following conditions. 

1. For any A E L and for any a~ > 0, 0 5 P,(A) 5 1. 

2. For any x > 0, P,(T) = 1. 
3. For any A E L and B E L and for any x > 0, if 

A A B is logically false then P,(A V B) = Pz(A) + 
P,(B). 

If we ignore a parameter x, the above definition be- 
comes the standard formulation for probability func- 
tion on L (Gardenfors 1988, p. 37). We introduce a 
parameter x to express the weight of the probability for 
every states. Spohn (1988) uses a similar probability 
function to relate his Natural Conditional Functions 
to probability theory. 

Definition 6 Let A, B E L. We define the condi- 
tional probability of B under A, P,(BIA) as follows. 

1 if P,(A) = 0 
Px(BlA) = Px(A A B, 

P,(A) 
otherwise 

Definition 7 A probability function P, on L with pos- 
itive parameter x is said to be convergent if and only if 
for any A E L, there exists (Y such that lilime P,(A) = (Y. 

Now, we define a consequence 
above probability function Px. 

relation in terms of the 

Definition 8 A consequence relation b is said to be 
closed in the limit if and only if there exists convergent 
probability function P, on L with positive parameter x 
such that for all A E L and B E L, 

AFB if and only if liiO P,(BIA) = 1. 

Intuitively speaking, if a pair, (A, B) is included in the 
closed consequence relation in the limit, then we can> 
let the conditional probability of B under A approach 
1 as much as possible and if not, the conditional proba- 
bility will approach some value except 1. This intuitive 
meaning will be justified later. 

We can show the following relationship between 
closed consequence relation in the limit and rational 
consequence relation. 

Theorem 1 + is closed in the limit if and only if + 
is rational ‘. 

Proof: 
We can show only-if half by checking that every closed 
consequence relation in the limit satisfies all properties 
for rational consequence relation. 
We show if-half. If k is rational, then there exists 
some ranked model W = (S, I,+) such that for ev- 
ery pair of formulas A and B, AkB if and only if 
Ab,B (Lehmann and Magidor 1988). Since the lan- 
guage is logically finite, there exists a finite ranked. 
model with a finite number of ranks. Let the number 
of ranks be n(n 2 1). Let qa be the number of states 
at the i-th rank (states which are higher in 4 is in a 
higher rank). 

Let a function P, on L with positive parameter x 
be defined as follows:2 

n 

c qA * xi-1 
p,(A) def i;l 

c Tg * xi-l 
i=l 

where r),p is the number of states at the i-th rank that 
satisfies A. 

Then, P, is convergent and we can show the fol- 
lowing consequence relation I-’ is equivalent to bw: 
Ak’B if and only if LlqP,(BIA) = 1 0 

There is another probabilistic characterization for a 
rational consequence relation. 
Definition 9 Let L be a finite propositional language 
and b be a consequence relation. k is said to be E- 
definable if and only if there exists a function X : L2 I--+ 
[0, l] such that 

I. for all A, B E L, AFB if and only if X(A, B) =l. 
2. for all E > 0, there exists a proper probability func- 

tion P such that for all A, B E L, 
IP(BIA) - X(A, B)I < E. 

An &-definable consequence relation fits our intuitive 
meaning stated above and is actually equivalent to a 
closed consequence relation in the limit and therefore, 
equivalent to a rational consequence relation. 

Consequence Relation and 
Circumscription 

Preferential Consequence 
Circumscription 

Relation and 

Here, we refer circumscription to the following defini- 
tion. This is a slightly modified version of generalized 

‘Independently, Morris, Pearl and Goldszmidt have ob- 
tained a-similar result to this theorem, as have Lehmann 
and Magidor . 

2This assignment is suggested in (Lehmann and Magi- 
dor 1988). 
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circumscription (Lifschitz 1984) as we use < instead 
of 5. 

Definition 10 Let A be a propositional formula and 
P be a tuple of propositions and p be a tuple of propo- 
sitional variables. Then Circum(A; <p) is defined as 
follows: 

A(P) A -UP@ A P cp P), 

where A(p) is obtained by replacing every proposition 
of P in A(P) by every corresponding propositional 
variable, and p < p P is a binary relation over for- 
mulas which satisfies the following two conditions: 

1. For any P, 1P <p P 
2. For any P, Q and R, if P <p Q and Q <p R, 

then P <p R 

Then, we can define a consequence relation b <p as 
follows: 

A+,pB if and only if Circum(A; <p) j= B. 

Semantics for the above circumscription is based on 
the following order over interpretations: 11 <p 12 if 
and only if for every proposition P not in P, Il[P] = 
Iz[P], and p <p Q is true if we replace Ii[P] whose 
P is in P for p and Is[P] whose P is in P for Q. 
Then, we can think of the following preferential model 
W = (S, 1,‘4) where a set of logical interpretations is 
S, and 1 is an identity function and -i is a strict partial 
order <p over those interpretations. We say the pref- 
erential model is defined by <p. As Kraus, Lehmann 
and Magidor (1988) p ointed out, if S is finite, the 
smoothness condition is always satisfied. Here, we con- 
sider a finite set of interpretations, so the smoothness 
condition is always satisfied. 

However, there are some differences between pref- 
erential consequence relation and circumscription. In 
propositional circumscription, for any satisfiable for- 
mula A, Abc,pF 3 (we say k is proper), but in prefer- 
ential consequence relation this is not always the case. 

And since we use an identity function for 1 in cir- 
cumscription, there is a preferential consequence rela- 
tion in a language which can not be represented by 
circumscription in the same language. For example, 
L contains only two propositions P and Q, then there 
is a proper preferential consequence relation such that 
P V Q+(lP A Q) V (P A 19) and Pk P A l& and 
&k-P A Q, but, there is no consequence relation de- 
fined by circumscription equivalent to the preferential 
consequence relation. This is because two or more 
states are mapped to the same interpretation in a cor- 
responding preferential model. 

We say a formula A is complete if for every formula 
B in L, A + B or A b 1B. A complete formula cor- 
responds with an interpretation. Then, the following 
property excludes a preferential consequence relation 

3F is falsity 
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such that two or more states are mapped to the same 
interpretation in a corresponding preferential model. 

If C is complete and A V BklC, then Ak4’ 
or Bk-6’ 4. 

Theorem 2 k is a proper preferential consequence 
relation and satisfies the above property if and only 
if there is some <p such that b<p = b 

Proof: 
We can easily show that every consequence relation 
defined by a circumscription is a proper preferential 
consequence relation and satisfies the above property. 
We show the converse. Suppose k is a proper pref- 
erential consequence relation and satisfies the above 
property. Let a(P) and ,8(P) be complete formulas. 
Define a(P) + p(P) if and only if a(P) V ,f3(P)/vx(P) 
and a(P) # /3(P). Then 4 is a irreflexive and tran- 
sitive relation. Suppose we collect all pairs in -i: 
m(P) -4 h(P) . ..an(P) + ,&(P). Then, p <p P is de- 
fined as follows: (al(p) A ,81(P)) V . ..((~~(p) A p,(P)). 
Then, we can show b<p = k. 0 

Rational Consequence Relation and 
Circumscription 
Unfortunately, although a consequence relation de- 
fined by circumscription is always preferential, it is 
not always rational. 
Theorem 3 

If a tuple of propositions, P does not contain all 
propositions in L and for any non-trivial partial 
order <p (there are some interpretations, I and J 
such that J cp I), the consequence relation defined 
by cp is always non-rational. 
If P contains all propositions in L, then a conse- 
quence relation defined by minimizing one or two 
propositions in parallel is rational. 
Even if P contains all propositions in L, a 
consequence relation defined by minimizing more 
than three propositions in parallel is always non- 
rational. 

Proof: 
1. Since <p is non-trivial, there exist some interpre- 

tations, I and J such that J <p I. And there 
exists some proposition P which is not in P. Let 
I< be a truth assignment which is the same as J 
except the assignment of P. Then since J <p I, 
the assignment of P in I is the same as in J from 
the definition of <p. Then, K is different both 
from J and from I in the assignment of P. We can 
show l(J <p K) and l(h’ <p I) and so, the pref- 
erential model defined by <p is not ranked from 
Definition 3. Therefore, the consequence relation 
defined by <p is not rational. 

*This prope rt corresponds with (R8) in (Katsuno and y 
Mendelzon 1990) 



2. We can easily check that a preferential model de- 
fined by 
ranked. 

minimizing one or two propositions is 

3. Let P contain the following minimized propositions 
P, Q and R. And let the following three interpre- 
tations I, J and K satisfy the following conditions: 

(a) Every assignments are the same except assign- 
ments for P, Q and R. 

(b) I /==PAlQAR, J /= PAQAlRandK + 
7PAQAR. 

Then I <p K, but ~(1 <p J) and l(J <p K) 
and so, the preferential model defined by <p is not 
ranked. Therefore, a consequence relation defined 
by minimizing more than three propositions is not 
rational. 0 

Although rational monotony corresponds with one of 
fundamental conditions for minimal change of belief 
proposed by Gardenfors (1988), there are several ex- 
amples in commonsense reasoning which correspond 
with the third case of the above theorem. A notable 
example is a closed world assumption(CWA). In CWA, 
we minimize all propositions and so, we do not have 
rational monotony if a number of propositions is more 
than three. 

So, one may argue that a rational consequence re- 
lation is not practically rational in commonsense rea- 
soning. However, what we would like to say here is not 
whether it is rational or not, but that circumscription 
in general does not have the probabilistic semantics 
which we have defined so far and that if an order de- 
fined by circumscription 
abilistic rationale. 

is ranked, then it has a prob- 

Probabilistic Interpretation for Lazy 
Circumscription 
In this subsection, we consider the following kind of 
circumscription. 
Definition 11 Circumscription <p is lazy if the pref- 
erential model defined by <p is ranked. 

We can show that a consequence relation k is proper 
and rational if and only if there is some <p of lazy 
circumscription such that k<p = k. And, if a cir- 
cumscription is lazy, we can attach a probability func- 
tion which defines an equivalent consequence relation 
to the consequence relation defined by <p. 

For example, let a set of proposition be {P, Q}. 
Then, there are the following four interpretations: 

W’,lQ), (Cl&), (+>Q)> @=,&)I- 
Suppose we minimize P and Q in parallel. We denote 
the strict partial order relation by this minimization 
as <(pp*). Then the consequence relation defined by 
<tplQ) is as follows: 

AR Q+<wa B( P, Q) if and only if 

A(P, Q)A~~P~~(A(P, q)A((p, a) < (P, Q))) I= B(P, Q), 

Figure 1: Partial Order by Minimizing P and Q. 

where (p, q) < (P, Q) is the following abbreviation: 

(P, a) < (P, Q) def 
(P 1 P) A (q 1 Q) A l((P 1 P) A (Q 1 q)). 

The preferential model defined by <(p@) is ranked 
(Figure 1). In the figure, a lower interpretation is more 
preferable than an upper interpretation. In probabilis- 
tic semantics, we regard this order as an order of prob- 
ability. This means that a lower interpretation is more 
probable 
make the 

than an upper interpretation. Moreover, 
probability function of an interpretation 

we 
in 

(i + l)-th rank be x times as much as that of an in- 
terpreiation in i-th rank so that we can ignore less 
probable interpretation as x approaches to 0. In this 
I -- 

example, we attach the following probability function 
Pz with ‘a positive parameter x to interpretations. 

Ps((+,lQ)) def 1 + 2; +x2 

JW=~ 19)) sf 1 + 2; + x2 

fi((-P>Q)) sf 1 + 2z + x2 

WPt Q)) %f 1 + 2t+ 22 

Then, probability of formula A is defined by a sum of 
interpretations which satisfies A. 

P,(A) gf c P,(I) 
WA 

Let k be a consequence relation as follows. 
AkB if and only if f10 P,(BIA) = 1 

Intuitively, making x approach to 0 means that we 
consider only the most probable interpretations which 
satisfy A and the fact that Pz( B(A) approaches to 1 
means that in all the most probable interpretations 
which satisfy A, B is extremely probable. This is a 
probabilistic semantics for lazy circumscription. 

Let us check if P V &k-P V 1Q. Since (P, l&), 
(lP, Q) and (P, Q) satisfy P V Q, 

SATOH 663 



Px(P v Q) = Px((P,lQ)) + Px((+, Q)) + Px((P, Q)) 
2x + x2 

= 1 + 2x + x2 
Similarly, Pz((P.V &).A (1P V 1Q)) = 1 + z:+ x2 

Then, 
lick P&P v l&lP v Q) 

= lirn C((PV&)A(~PV~Q)J = lim 2x -= 1 
x-0 Px(P v Q) xc--to 2x + x2 

Therefore, P V QklP V l&. This means that in all 
the most probable interpretations which satisfy PVQ, 
~Pv l& is extremely probable and this corresponds 
with the result of P V Q+<(p,QjlP V 1Q. 

And suppose we check if P V Q/-P A 1Q. 

Fio Px(P A 1QlP V Q) 
= 1;, ~((PVQ)A(PAlQ)) = lim x #1 x-0 Px(P v Q) x+0 2x + x2 

Therefore, P V Q k P A -,Q and this corresponds with 
the result of P V Qbc<(p,s) P A l&. In the same way, 
we can show that for every A, B E L, A+ B if and only 
if A~,(P,Q) B- 

Conclusion 
We propose a probabilistic semantics called closed con- 
sequence relation in the limit for lazy nonmonotonic 
reasoning and show that a consequence relation is 
closed in the limit if and only if it is rational. Then, 
we apply our result to giving a probabilistic semantics 
for a class of circumscription which has lazy nonmono- 
tonicity. 

We think we need to do the following research. 
1. We would like to know a probabilistic semantics 

which characterizes a consequence relation defined 
by whole class of circumscription exactly. 

2. We can not apply our result to Default Logic(Reiter 
1980) or Autoepistemic Logic(Moore 1984) because 
a consequence relation defined by those logics is 
not even preferential. We must extend our result 
to apply those logics. 
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