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Table 1: the four worlds of R and C 
world R C probability 

Wl FALSE FALSE 

Abstract 

A method is described for deriving rules of infer- 
ence from relations between probabilities of sen- 
tences in Nilsson’s probabilistic logic. 

Introduction 

One intuitive interpretation of probability is a 
measure of uncertainty. In many of the appli- 
cation areas for artificial intelligence it is impor- 
tant to be able to reason with uncertain infor- 
mation; this has motivated research in developing 
methods for probabilistic inference. See, for ex- 
ample, [Nilsson, 1986, Fagin and Halpern, 1988, 
Pitt, 19891. 

A precise model for dealing with probabilities of 
sentences in predicate calculus was suggested by 
Nilsson in [Nilsson, 19861. In Nilsson’s probabilis- 
tic logic the probability of a sentence is its average 
truth value in possible worlds. Consider the fol- 
lowing example: Let R and C be two sentences; 
in a specific world a sentence is either TRU E or 
FALSE. The truth table of all worlds of R and C 
is given in Table 1. The probabilities of worlds 
are determined by an arbitrary probability dis- 
tribution, i.e., four values pl,p2,p3,p4, such that 
p; 2 Ofor i= 1,...,4,and: 

Pl +J%?+p3+p4 = 1. 

From Table 1 we see that R is true in the worlds 
w3 and ~4, so that its aaverage truth value is 
p3 + p4, while C is true in the worlds wf~ and ~4, 
and its average truth value is 112 + p4. Therefore, 
Prob(R) = p3 + 134 and Prob(C) = p2 + pd. 

The probability of other formulae involving R 
and C can also be computed from Table 1. Thus, 
since R + C is true in wr , ~02, ~4, we have: 

Prob( R -+ C) = pl + p2 -I- ~4, 

and from similar arguments : 

Prob(C + R) = p1 + 119 + 134. 

Now if R stands for the sch tence “it rains” and 
C for the sentence “it is cloudy”, the world w3 is 
impossible. In this case the value of p3 in Table 1 
is 0, Prob( R -+ C) = 1, ant1 Prob(C -+ R) = p1 + 
P4. 

In the process of reasoning with probabilistic in- 
formation we are given probabilities of sentences, 
and either reason about probabilities of other sen- 
tences or learn new inforlnation about a specific 
world. Thus, since Prob(R --+ C) = 1 we can de- 
duce that it is cloudy in a0 world 20’ if we know 
that it rains in 20’. On the other hand, R cannot 
be deduced from C without the additional infor- 
mation that in a specific Ivorld 112 = 0 because if 
p2 # 0 then Prob(C --+ R) < I. 

In this paper we describe a method for identi- 
fying sentences that are true with probability 1 
(i.e., in all possible worlds) from probabilities of 
sentences that are not necessarily true in all pos- 
sible worlds. As an example, notice that for any 
two sentences X, Y: 

x -+ Y s (X A Y) v (1X) 

so that: 

Prob(X + Y) = Prob(S A Y) + 1 - Prob(X). 
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Therefore, Prob(X + Y) = 1 if and only if 
Prob(X A Y) = Prob(X). Specifically, if it is 
known that, say, Prob( R) = 0.7 and Prob( R A C) = 
0.7 then it must be that R + C in all possible 
worlds. This is a special case of results that are 
described in the paper. 

Definitions 

The following definitions of possible worlds and 
probabilities of sentences are the same as those 
in [Nilsson, 19861. 

Let &,... , &, be n sentences in predicate cal- 
culus. A world is an assignment of truth values 
to h-1 &. There are 2n worlds; some of these 
worlds are possible worlds and the others are im- 
possible worlds. A world is impossible if and only 
if the truth assignment to 41, . . . , & is logically 
inconsistent. For example, if 42 = 141 then all 
worlds with both 41 = TRUE and 42 = TRUE are 
impossible. 

We denote by PW the set of possible worlds. An 
arbitrary probability distribution D is associated 
with PW such that a world w E PW has probabil- 
ity D(w) 2 0, and: 

x D(w) = 1. 
&PW 

The truth value of a formula 4 in the primitive 
variables 41, . . . , & is well defined in all possible 
worlds. The probability of 4 is defined as: 

Prob(q5) = x w-9. (1) 
WEPW 

4 is true in w 

Random variables Linear rules of inference can be expressed as: 

A random variable X,,, is a function that has a 
well defined (real) value in each possible world. 
With a formula 4 we associate the random vari- 
able w( (b) that has the value of 1 in worlds where 
4 is true and the value of 0 in worlds where 4 is 
false. Equation (1) can now be written as: . 

Prob(q5) = c ~(4) l  D(w). (2) 
IIJEPW 

Definition: The expected value of the random 
variable X, is: 

E(X,) = x L - D(w). 
UNGPW 

(3) 

From Equation (2) we see that for any formula 4: 

Prob(4) = E(W)). (4) 

Rules of inference 

We consider (deterministic) rules of inference of 
the following type: 

Let X, be a random variable and 4 a formula. 
If: 

w(4) = xw in possible worlds 

then from X, = 1 infer 4 and from X, = 0 
infer 14. 

We investigate only a restricted case of these rules 
in which X, can be expressed as a linear combi- 
nation of the variables ~(4;): 

If there are coefficients a;j such that: 

w($j) = C aijw(&) in possible worlds 
i#j 

then from &j a;jw( 4;) = 1 infer ~~ and 
from C;+j CLijW(&) = 0 infer l$j. 

We call rules of inference of this type linear rules 
of inference. 

The main result of this paper is a method for 
deriving a complete set of linear rules of inference. 
By this we mean a finite set of linear rules of infer- 
ence RI such that: if there is a set of linear rules 
of inference that can infer a formula $ then $ can 
also be inferred from RI. 

Algebraic structure 

w(4j) - C a;jw($;) = 0 ill possible worlds. 
i#j 

The left hand side is a linear combination of the 
random variables w( 4;) i = 1, . . . , n, that van- 
ishes in all possible worlds. A complete set of 
linear rules of this type can be obtained by ob- 
serving that these rules are all elements of a finite 
dimensional vector space, a,nd therefore, any ba- 
sis of this vector space is a. complete set of linear 
rules of inference. 

In order to determine a ba.sis to the vector space 
of linear rules of inference we consider three vector 
spaces: 

666 KNOWLEDGE REPRJBENTATI~N 



v = SPan{w(h), l  l  * 3 u=&J}* 
An element v E V is a random variable that can 
be expressed as v = xi u;w(+i). 
W={vEV:v= 0 in possible worlds}. 
W  is the vector space of elements of V that 
vanish in all possible worlds. Therefore, each 
element of W  can be used as a linear rule of 
inference. 

u = v/w. 
U is the quotient space of V by W. See Chapter 
4 in [Herstein, 19751 ( or any other basic text on 
Algebra) for the exact definition. Its elements 
are subsets of V in the form of v + W, where 
v E v. 

There is a natural homomorphism of V onto 
U with the kernel W. The elements of U are 
the equivalence classes of V, where two elements 
or, 212 E V are equivalent if and only if vr = 
02 in all possible worlds. We use the notation 
v (mod W) for the equivalence class (element of 
U) of v. Thus, if vr = v2 in all possible worlds we 
write vr = 212 (mod W). 

The bases of the vector spaces V, W, U are re- 
lated in a simple way. If vr, l  . . , vt is a basis of 
V, and the equivalence classes of vr , l  l  . , vd form 
a basis of U (d 5 t), then there are coefficients bij 
for i= l,..., t - d such that: 

d 

vd+i = x bdjvj (mod W). (5) 
j=l 

Furthermore, the t - 
. . 

d random variables wi, z = 
1 Y”‘? t - d, that are given by: 

d 
w; = v&i - c bijvj 

j=l 

form a basis of W. (See Chapter 4 in [Herstein, 
19751.) 

We conclude that a basis for W  is a complete set 
of linear rules of inference which can be found by 
computing the linear dependencies in the vector 
space U that are given by Equation (5). 

Example: Let R and C be the two sentences 
from the example that was discussed in the in- 
troduction, where R = TRUE, C = FALSE is an 
impossible world. Let 41 = R, 42 = C, and 4s = 
R A C. The corresponding random variables are: 
Xl = ‘1u(41), x2 = w(&), and x3 = x1.x2 = ~(43). 
If we take V as Span{xr,x2,xa} then {x1,x2,x3} 

is a basis of V, and the equivalence classes of x1 
and 22 form a basis of U. The formula R + C 
can be expressed ,x3 as x3 = Xl, 
which is a linear so that: 

in terms of x1, x2 
rule of inference, 

x3 = Xl (mod IV), 

and x3 - x1 E W. It can be shown that x3 - x1 is 
a basis of W. 

Correlations and the correlation matrix 

Let E be the expected value operator as defined 
in Equation (3). The following observations en- 
able easy computation of linear dependencies in 
U by standard statistical techniques. For any two 
random variables x, y E V: 

e x = y (mod W) a E(x) = E(y). 
o x =0 (mod W) a 23(x2) =O. 

Based on these observations we show that linear 
dependencies in the vector space U can be com- 
puted by applying standard statistical techniques. 

The correlation of two random variables x, y 
is defined in the standa.rd wa.y as E( x y ). Let 
(21 7*--P xt} be t random variables from V. Their 
correlation matrix is the t X t matrix R = (Tij), 
where rij is the correlation value of xi and xj. The 
matrix R depends on the probability distribution 
D, but the following properties of R hold for all 
probability distributions. (For proofs see Chapter 
8 in [Papoulis, 19841.) 

a) If the equivalence classes of xl, . . . , xt are lin- 
early independent in U then R is nonsingular. 

b) If the equivalence classes of xl, . . . , xt are lin- 
early dependent in U then R is singular. 

c) If the equivalence classes of x1, . . . , x +r are 
linearly independent in U, but the equivalence 
classes of xl,. . . , xt are linearly dependent in U 
then 

xt = a151 + - - - + at-m-1 (mod WI (6) 
and al,..., at-1 can be 
tern of linear equations 

obtained from the sys- 

(7) 

where the matrix R is the correlation matrix of 
Xl,...,X&l. 
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The correlation matrix of {xi, x2, x3) is: 

( ii; 1:: k; ) . 

The correlation matrix of {xl, x2) is non-singular, 
but the correlation matrix of {xl, x2, x3) is singu- 
lar, and the system of equations (7) gives: 

( 8:: 2 ) ( :; ) = ( x::: ) * 

The solution is al = 1 and u2 = 0, which gives 
the rule of inference x3 = xl, i.e., 

w(R A C) = w(R) in possible worlds 

which is equivalent to 

R + C in possible worlds. 

Table 2: specific world probabilities 

The following algorithm uses the properties of 
the correlation matrix to generate a basis for W 
in the form of linear rules of inference. Its in- 
put is the correlation values of a set of random 
variables S = {xl, . . . , xn}. In the algorithm we 
denote by I c S a set of random variables that are 
linearly independent modulo W (i.e, their equiv- 
alence classes are linearly independent in U), and 
R is their correlation matrix. 

Algorithm: Initially, let I = {xl}, so that R is 
(rrr), a matrix of size 1 x 1. 
For each xt E S: 

l- Let R’ be the correlation matrix of the random 
variables in I U {xi}. 

2- If R’ is singular solve the system of equa- 
tions (7) and output the linear rule of inference 
(6); otherwise, I c I U {xt}, and R c R’. 

Since the algorithm computes the linear depen- 
dencies that are given by Equation (6) it gener- 
ates a basis for W, which is a complete set of linear 
rules of inference. 

Example: Let x1, x2, x3, be the random variables 
from the example that was given at the end of the 
previous section, with x1 = w(R), x2 = w(C), and 
x3 = w( R A C). If the four worlds of R and C 
appear with probabilities as given in Table 2 we 
have: 

Tll = E(xl-xl)= Prob(R) = 0.7 
7-12 = r21 = E(xl - x2) = Prob(R A C) = 0.7 
7-13 = 7-31 = E(xl l  x2) = Prob(R A C) = 0.7 

7-22 = E(x2 - x2) = Prob(C) = 0.9 
r23 = r32 = E(x2 - x3) = Prob(R A C) = 0.7 

r33 = E(x3 l  x3) = Prob(R A C) = 0.7 

The correlation matrix of {xl, x2) is: 

( i::: ii:;) * 

Notice that this result was obtained from the 
probabilities of the sentences R, C, and R A C, and 
not from Table 2. 

Inference rules as CNF formulae 

Our algorithm for deriving rules of inference from 
probabilities can be used only when linear rules of 
inference exist. In this section we show how the 
algorithm can be applied to derive other types of 
rules of inference. 

We consider 
tions of modus 

rules of 
ponens: 

inference that are varia- 

Let X,Y be two sentences such that X ---) Y 
in all possible worlds. Then in a world where 
X = TRUE infer Y = TRUE. 

IJet 41 ?a . . y 4h. be 
derive rules of the 

n sentences. 
type: 

We would like to 

!P - 4i (8) 

where @ is a formula in the sentences $j, j # i. 
Notice that Equation (8) can also be written as: 

I@ = IP A c,bi in pmsible worlds. 

Therefore, using the random variables w($i) and 
w(!l! A 4i) we can write Equation (8) in the equiv- 
alent form: 

w(q) = w(Q A 4;) in possible worlds. (9) 
The reason that the results of previous sections 
cannot be applied directly to derive rules of the 
type of (9) is that Equation (9) is not a linear rule 
of inference for the sent en ces $1, . . . , &, . 
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The basic idea of this section is that rules of the degree at most k of w(4i), i < 12. Therefore, Equa- 
type of Equation (9) can be linearized by adding tion (10) is a multilinear form of degree at most 
sentences to 41,. . . , &. For example, notice that k + 1 of w(4i), i 5 n. Since each monomial of the 
if we add the (;) sentences di A bj for i # j to multilinear form is linear in formulae from 0 the 
41 , . . . , $n then all formulae of the type & + 40 rule in Equation (10) is 1inea.r in formulae from 0. 
can be expressed as the linear rules: 0 

Clearly, any rule of inference can be regarded as 
a linear rule for some formulae. However, if too 
many sentences are added to 41,. . . , #n then the 
algorithm of the previous section may become im- 
practical. We investigate the case in which the 
formulae Xl? are expressed in conjunctive normal 
form and show that if they have a small size of 
clauses then the number of formulae that need to 
be added to $I,... , & is polynomial in 12. 

A formula in conjunctive normal form (CM F) of 
4 1,--s, +n is a conjunction pl A - - - A p, of clauses, 
where each clause pi is a disjunction ~1 V - l  - V 
Qj; of literals. A literal is either a sentence 4 or 
the negation 4 of a sentence. A k-CNF is a CNF 
expression with clauses that are disjunctions of at 
most k laterals. For example, (41 V $2) A ($1 V ~$2 V 
43) is a 3-CNF. 

Theorem: Let 0 be the set of sentences that 
can be obtained from disjunctions of at most k + 1 
sentences from 41, . . . , @n. 

A formula of the type 

Q -+ hi 

where !P is a k-CN F of 41, . . . , & can be expressed 
as a linear rule of inference of sentences from 0. 

Proof: Let cl,. . . , c, be the clauses of !I!: 

q = cl A .--A c,. 

Application 

The ability to derive crisp informa,tion from prob- 
abilities is most useful in cases where probabili- 
ties can be computed easily. We have shown in 
[Shvaytser, 19881 how similar ideas enable learn- 
ing from examples in the sense of Valiant. (The 
probabilities were obtained from samples of ex- 
amples that correspond to possible worlds.) How- 
ever, there seem to be cases in which it is more 
natural to have information a.s probabilities and 
not as examples. 

Consider a system of 72 computers that are con- 
nected in a parallel architecture. From time to 
time the system is required to handle a problem 
which is distributed among 12/2 of the computers. 
Let 4; be the sentence: “Computer i is busy work- 
ing on the problem”. In this case a possible world 
is a world in which exactly half of the n computers 
are busy working on the problem. 

Let Xi = w(4i). By introducing an additional 
sentence, 40, which is always TRU E, and its corre- 
sponding random variable ~0 z 1, there are linear 
rules of inference since: 

n 
x; = 24x0 - 

2 c Xj. (11) 
j=l ,j#.; 

Now consider the case in lvhich the system mal 
functions, and we suspect that there are problems 
with the distribution of tasks among the comput- 
ers. This can be verified by checking the condi- 
tion: 

This means that 

@=TRUE e Fw(c,)=m, 
cu=l 

and !P -+ #i if and only if 

n 

c 2; = n/2, (12) 
i=l 

(2 W(h) - m>(W(h) - 1) = (W(h) - 1). (lo) 
cV=l 

Each clause c,, for CL! = 1, . . . , m is a Boolean for- 
mula of at most k variables 4;) i < n, so that 
w(ccy), can be expressed as a multilinear form of 

many computers. Therefore, verifying the above 
condition for each instance of the problem may 
cause long delays and may not allow a verifica- 
tion in real time. 

but verifying this condition takes time propor- 

In this case we are not interested in a probabilis- 
tic answer such as that the condition holds “with 

tional to n when checked by a single computer, 
and at least time proportiona, to logn even with 

SHVAYTSER 669 



Table 3: distribution of instances 
x0 xl 22 x3 x4 x5 26 # instances 
1 1 1 1 0 0 0 500,000 
1 1 0 1 0 1 0 400,000 
1 0 1 1 1 0 0 100,000 

high probability”. We would like to verify that for 
al2 instances of the problem condition (12) holds. 

Since Equation (12) can be expressed as a linear 
rule of inference it can be inferred from probabil- 
ities that can be computed in real time. By as- 
signing a processor to each pair of computers, the 
number of times in which they are both activated 
can be computed in a constant time. For the pair 
i and j this is equivalent to the probability of the 
formula 4; A 4j when scaled properly. 

As a numerical example, consider the case 
in which n = 6, the number of instances is 
l,OOO,OOO, and they are given in Table 3. The 
COrrehtion matrix of 20, ’ ’ - , xs, is: 

10 9 6 10 1 1 0 

1 6 162 100 

10 1011100 
110 1010 
0 00 0 000 

Applying the algorithm we get three linear rules 
of inference: 

x3 = x0 

x5 = 2x0 - Xl - x2 - x4 

x6=0 , 

and one can easily verify that they can infer any- 
thing that can be inferred from Equation (11). 
Furthermore, they imply Equation (12). 

Conclusions 

We have shown that relations between probabili- 
ties of sentences can always be used to determine 
linear rules of inference, whenever such rules exist. 
This shows that in many cases probabilities can be 
used to infer crisp (non-probabilistic) knowledge. 
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