
Very Fast Decision Table Execution of Propositional Expert Systems 

Robert M. Colomb 
Charles Y.C. Chung 

CSIRO Division of Information Technology 
Box 1599 North Ryde NSW 2113 Australia 

colomb@syd.dit.csiro.au 

Abstract 
A formal equivalence between propositional expert systems 
and decision tables is proved, and a practicable procedure 
given to perform the transformation between propositional 
expert systems and decision tables. The method gave an 
order of magnitude speed increase for a well-known expert 
system in routine use. The method is very general: 
adaptations are shown for forward and backward chaining 
inferencing engines, inexact reasoning, and systems where 
some facts have a high cost and must be determined only if 
necessary. A particular application for the decision table 
representation is in real-time expert systems, since a 
simple hardware implementation is available which gives 
further orders of magnitude increase in performance. 
Finally, the decision table representation greatly simplifies 
the problem of completeness and consistency checking. 

Introduction 

Expert systems which rely on the propositional calculus 
are very common, and the standard implementations are 
very computationally expensive, both in time and memory. 
For example, the COLOSSUS system (Beinat & Smart 
1989) has 6500 rules, and runs on a very large mainframe 
computer. It requires 20 megabytes of real memory per 
user, and has a response time measured in minutes. 

In this paper, we show that a propositional expert system 
can be mechanically transformed into a decision table. 
Decision tables are very simple computational structures 
which can be executed very quickly and require little 
memory. With very simple hardware assist, it is possible 
to build systems with hundreds of rules with execution 
times of a few tens of microseconds, which could greatly 
expand the useful domain of expert system technology, 
especially in real time applications. In addition, the 
decision table representation greatly simplifies the problem 
of checking rules for completeness and consistency. 

After a few definitions, we present a general proof of the 
equivalence of propositional expert systems and decision 
tables. We then describe a computationally practicable 
algorithm for performing the transformation, and describe 
its application to a real system. The algorithm can be 
easily adapted to a much more space efficient product, 
shown in the next section. We describe generalizations to 
inexact reasoning systems and systems where some facts 
have a high cost and must be obtained only if necessary. 
We show how the decision table form is particularly 

adapted to real time applications, and finally consider 
consistency and completeness checking in the decision 
table representation. The paper completes with a 
conclusion section. 

This restriction to propositional systems differs from the 
main stream of parallel production system research (Gupta 
et al. 1986, Stolfo 1985), which concentrates on systems 
like OPS-5, which are based on the first order predicate 
calculus. 

Definitions 

A propositional expert system is a set of propositions in 
Horn clause form. Each clause consists of an antecedent, 
which is a conjunction of elementary propositions, and a 
consequent, consisting of a single elementary proposition. 
A clause will be called a rule in the following. Note that a 
proposition with disjunctions in its antecedent or 
conjunctions in its conclusion can be easily transformed 
into clausal form. 

Elementary propositions can be classified into three 
mutually exclusive groups: facts, which appear only in 
antecedents; conclusions, which appear only as 
consequents; and assertions, which appear both in 
antecedents and consequents. We designate the set of facts 
as F = (fi}, conclusions as C = (ci), assertions A = {ai} 
andrules as R = (ri}. 

It is convenient to consider a fact as an assignment to a 
variable of one of a small number of possible values. We 
thus obtain a set X of variables xi each of which has a set 
of possible values Vi, and every fact is a proposition of the 
form Xi = v for v in Vi. An input I is a conjunction of 
assignments to a subset of the variables. The assignment is 
incomplete if the subset is proper. (An incomplete input 
corresponds to the values of some of the variables being 
unknown.) 

In applying an expert system R to an input I, we obtain a 
propositional system P consisting of the conjunction of I 
with the disjunction of the rules in R, and consider the 
conclusions C. A conclusion is determined by the input if 
it is a logical consequence of P, inconsistent with the input 
if its negation is a logical consequence of P, and consistent 
with the input if its negation is not a logical consequence 
of P. A conclusion consistent with an input may be 
determined by it, but not necessarily. 

A decision table is a table with one column for each 
variable and an additional column for an action. Each row 
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of the table contains an assignment of values to variables 
and an associated action. An incomplete assignment is 
equivalent to a don’t care condition for the variables 
without values. A decision table is executed by presenting 
it with an assignment I. If any row is a subset of I, its 
action is executed. 

Equivalence Between Propositional 
Expert Systems and Decision Tables 

A decision table is a propositional expert 
system. The assignment in a row is a conjunction of 
propositions, which is the antecedent of a rule. The action 
of a row is a conclusion. A row is therefore equivalent to a 
rule, and a collection of rules is a propositional expert 
system by definition. Note that the propositional system 
has only facts and conclusions, but no assertions. Such a 
system will be called a flat expert system and is clearly 
equivalent to a decision table. 

A propositional expert system is a decision 
table. Consider an expert system R with an input I. 
Associate with I the subset of conclusions determined from 
the propositional system P given by the conjunction of I 
with the disjunction of rules in R. Call this subset R(1). 
R(1) can always be computed since the propositional 
calculus is decidable. R can thereby be seen as a function 
mapping the set of assignments into the set of subsets of 
conclusions. The number of possible assignments is finite. 
The function can in principle be expressed in an 
extensional form by writing down each assignment I as a 
row in a table and appending to it the subset of conclusions 
R(1). This form is by definition a decision table. 

This proof is constructive, but unfortunately not 
practicable, since the number of assignments is exponential 
in the number of variables. It is, however, general. In 
particular, it is independent of the inference engine used and 
of the details of any rules involving assertions. 

A Practicable Transformation Algorithm 

This section presents a practicable transformation 
algorithm, first by making some restrictive assumptions. It 
is then shown how the algorithm can be modified to 
remove many of the restrictions. The restrictive 
assumptions are that the system uses a forward chaining 
inference engine, and that no assertion is negated in either 
an antecedent or consequent of a rule. 

We consider the rules ri in the expert system R as nodes 
in a graph. An arc is drawn between ri and rj if there is an 
assertion a which appears as the consequent of ri and in the 
antecedent of rj . We assume that this graph is acyclic: no 
proposition is a consequent of a rule of which it is an 
antecedent, or more generally, no proposition is a 
consequent of a rule which has an antecedent necessarily 
logically dependent on it. This graph is essentially the 
dependency graph of Nguyen, et al. (1985). 

We partition the set of rules into B, those all of whose 
antecedents are facts; K, those whose consequents are 
conclusions; and M, the others. (B and K are assumed 
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disjoint. Any rules in B intersect K are flat by definition, 
so can be removed and added to the flat expert system 
produced by the algorithm after its completion.) A node r 
can be labelled by the maximum number of arcs between it 
and a member of B, as shown in Figure 1. B is the set with 
label 0, and M can be partitioned into Ml, M2, etc. each 
Mi consisting of the nodes with label i. The label of K is 
defined as the maximum depth of reasoning of the system 
R. As shown in the figure, we also label each arc with the 
assertion from which the arc is derived and each assertion 
with the maximum label of a node with that assertion as a 
consequent. This labelling can be done in the course of 
verifying that the graph has no cycles using an algorithm 
successively removing nodes with no input arcs. 

3 

Figure 1 
Graphical Representation of Rules 

Labelled by Distance From Base 

Lemma 1: Every assertion in an antecedent of a rule of 
label i must have a label less than i. Proof follows directly 
from the definitions. 

Lemma 2: There is at least one rule with every label up 
to the maximum depth of reasoning. Proof: if a level i 
were missing, then in the acyclic verification process when 
step i were reached there would be no nodes without input 
arcs and the graph would therefore be cyclic. 

The algorithm proceeds by replacing each assertion a in 
the antecedents of rules labelled i with the disjunction of 
the antecedents of rules in labelled i-l of which Vassertion a 
is a consequent, beginning with label 1 . This process in 



effect collapses the rules onto the conclusions by 
successively replacing intermediate assertions with 
expressions which imply them. The resulting propositions 
have only facts in their antecedents and only conclusions as 
consequents, can be expressed in clausal form, therefore 
form a flat expert system and therefore are equivalent to a 
decision table. 

A detailed presentation of the algorithm with a worked 
example is given in Colomb (1989). 

The assumptions can be relaxed. 

Analysis of Algorithm 

The algorithm can be divided into two parts: construction 
of a labelled dependency graph, and production of the 
decision table from the labelled graph. We begin with a 
table of rules. An auxiliary data structure is required: an 
ahernatives cozm, which will contain for each assertion the 
number of rules having that assertion as consequent. The 
dimensions of the problem will be: 

r the number of rules 
a the average number of assertions per rule 
d the maximum depth of reasoning 
To construct the dependency graph, we first count the 

number of alternatives for each assertion. This requires one 
step per rule, therefore is O(r). Facts will be taken as 
having zero alternatives. We then proceed to identify the 
rules with label I, which are those rules all of whose 
antecedents have zero alternatives. When a rule is labelled, 
we decrement the number of alternatives for its consequent 
assertion, and also record a pointer to the rule in a data 
structure associated with the assertion. This step requires 
examination of each antecedent in each rule, and is therefore 
O(ar). At the end of the step, additional assertions have a 
zero alternative count (follows from lemma 2). The graph 
can be completely constructed and labelled in one step for 
each possible label, bounded by the maximum depth of 
reasoning. Construction of the labelled dependency graph is 
therefore O(ard). 

Production of the decision table is done by repeated 
traversal of sections of the dependency graph. The cost of a 
single traversal is highly dependent on the details of data 
representation, but requires at most examination of each 
antecedent in each rule, therefore is at most O(ar). One 
traversal is required for each row in the resulting decision 
table. It is therefore necessary to estimate the number of 
rows. 

There will certainly be one row in the decision table for 
each rule whose consequent is a conclusion. Additional 
rows will arise from alternative paths for satisfying the 
antecedents of one of these terminaI rules. An alternative 
arises if one of its antecedents is the consequent of more 
than one rule. It follows that the number of rows is equal 
to the number of terminal rules if the alternatives count is 
I for each assertion, and that the number of rows increases 
in a complex multiplicative way as the aZternatives counts 
become greater than I. 

The problem is the same as converting an arbitrary 
boolean expression into disjunctive normal form. For 
example 

(a + b & (c + d)) & (e + f) 
converts to 

a&e+b&c&e+b&d&e+ 
a&f+b&c&f+b&d&f 

We can compute the number of rows during the 
construction and labelling of the dependency graph. We 
need an additional data structure fuZZ alternative counts 
paralleling the alternative counts, having one entry for each 
assertion, and also for each conclusion. For a particular 
assertion, the latter is the number of rules having that 
assertion as consequent, while the former will be the 
number of disjuncts in the disjunctive normal form 
expression which implies that assertion starting from facts 
only. Full azternative count is a sort of transitive closure 
ofalternative count, and is initially 0. A fact has full 
alternative count of 3. 

When a rule is labelled, the furl alternative count 
associated with its consequent is increased by the product of 
the full alternative counts of its antecedents. The total 
number of rows in the decision table is the total of the fuZZ 
alternative counts of all the conclusions. 

If IV is the number of rows, then the production of the 
decision table at most O(Nar). This step will tend to 
dominate the computation time. 

Backward Chaining 

The basic algorithm given above is based on a forward 
chaining inference engine, which starts with known facts 
and derives conclusions as the antecedents of rules become 
known. If the rules labelled n are identified as layer n, This 
corresponds to a traversal of the dependency graph starting 
from layer 1. This traversal will tend to be layer by layer, 
necessarily so if negation by failure is employed. We will 
call the labels and layers obtained in the forward chaining 
approach as forward labels and layers, respectively. 

An alternative way to inference is to start from the rules 
with conclusions as consequents and work backwards, 
called backward chaining. If the inference engine is 
backward chaining, we note that a graph can be verified 
acyclic by successively removing nodes with no output arc. 
The dependency graph can therefore be labelled with 
minimum distance from K rather than from maximum 
distance from B, and the algorithm modified accordingly. 
The maximum depth of reasoning d is clearly unchanged. 
These labels will be called backward labels. 

Note that if a node has backward label i it must have 
forward label less than d - i. This follows from the 
observation that step d of the backward algorithm removes 
nodes with no input arc. The backward collapse therefore 
has the same result as the forward collapse since it can be 
performed by the forward collapse algorithm on the graph 
with the backward labelling. 

Under the assumptions made so far, forward and backward 
chaining have exactly the same result, obtained in the 
forward chaining case by collapsing the dependency graph 
from the facts onto the conclusions through the assertions. 
In the backward chaining case, the assertions are subgoals, 
and the algorithm coliapses the graph from the conclusions 
onto the facts through the subgoals. The two strategies can 
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be viewed as alternative ways of constructing the function 
mapping the set of assignments into the set of subsets of 
conclusions. 

Negated Assertions in Antecedents 

We assume that the inference engine does not evaluate a 
rule with a negated assertion in its antecedent until it has 
evaluated all rules with that assertion as consequent. Since 
no rule has a negated assertion as a consequent, the 
inferencing must rely on the closed world assumption for 
negation. 

Let r be such a rule and let i be the maximum forward 
label of any negated assertion in its antecedent. Rule r is 
labelled with the maximum of i and the label of any un- 
negated assertion in its antecedent. When rule r is reached 
in the forward collapse algorithm, any negated assertion is 
replaced by the negation of the expression implying that 
assertion. 

Negated Assertions as Consequents 

In a system where negated assertions are allowed as 
consequents, the closed world assumption is not needed. An 
assertion and its negation are in most respects separate 
propositions and can be treated as such, with two 
exceptions. First, the negation of an assertion can not label 
any arc leading from the base set to a rule for which that 
assertion is a consequent. Second, any input which would 
imply both the assertion and its negation is forbidden. The 
algorithm in its course identifies an expression in facts 
which implies each proposition. If we have for assertion a 

El ->a; E2->nota; 
then a valid input must be consistent with 

no@1 and E2) 

Test Case 

The algorithm has been successfully applied to the Garvan 
ES1 thyroid assay system (Buchanan 1986), which has 
been in routine use since 1984. It has 600 rules, and an 
average depth of reasoning of about 4. Some of the rules 
have negated assertions in their premises, but no rule 
asserts a negation. The system normally runs on a PDP-11 
with a specialized inference engine. For purposes of 
comparison, it was translated into OPS-5 and run on a 
Microvax II, where it operates at about 18 rule firings per 
second, taking about 220 milliseconds to generate a 
conclusion. It was transformed into a decision table with 
5300 rows. There are 34 variables with a total of 93 
possible values, so the decision table requires 5300 x 93 
bits, or about 62k bytes of memory. 

There are a number of ways to process a decision table. 
One is to convert it into a decision tree, using methods like 
ID3 (Quinlan 1982). This approach is presently under 
investigation. A balanced decision tree with N leaves 
identifies a particular leaf in log20 decisions, so that a 
table with 4096 rows would be computed in 12 decisions, 
each of which is a simple if...then statement. This 

approach would clearly be extremely fast on standard 
hardware. In addition, there is evidence that the decision 
table can be considerably reduced, also the subject of 
continuing research. 

Execution results presented here are from a method using 
an inexpensive bit-serial content-addressable memory 
(Colomb & Allen 1989) acting as a co-processor on a Sun 
3/160. It is capable of processing a decision table at a rate 
of about 100 million bits per second, and can compute a 
decision from the transformed Garvan ES1 in about 2 
milliseconds. The processor used has a programming model 
similar to the MasPar, Distributed Array Processor, and the 
Connection Machine, all of which are commercially 
available fine-grained parallel machines. The MasPar, for 
example, would be able to execute the system in about 20 
microseconds. 

We can conclude from this that it is possible to transform 
a general propositional expert system into a form that is 
capable of execution in a time sufficiently short that it 
opens many possibilities for the use of expert systems in 
real time applications. 

Generalizations 

There are a number of practical issues in expert systems 
engineering which are not addressed by the preceding 
results. These include explanation capability, obtaining 
expensive facts only when necessary, and inexact 
reasoning. The results can be generalized to deal with all of 
these issues. 

Explanation Capability 

An important feature of expert systems is the ability to 
explain a conclusion or the reasons for asking a particular 
question. Most approaches to explanation follow the chain 
of assertions between the base facts and the conclusion, so 
are derived from the trace of the traversal of the dependency 
graph. 

In practice, many expert systems do not use explanations 
in their normal execution. (Garvan ES 1, for example, is a 
batch program.) Jansen & Compton (1988) make a strong 
case for the separation of the normal execution 
environment where explanations are not available from a 
maintenance environment where a very complete 
explanation environment is provided 

In any case, it is possible to adapt the main results to 
give an efficient computation structure which permits a 
complete explanation capability. Rather than a decision 
table, this approach relies on executing the rules in 
sequence in a single pass. 

Recall that the algorithm labels each rule with the 
maximum number of inference steps between it and the 
base facts. From lemma 1, all antecedents of rules at level i 
are determined by rules of level less than i. In addition, 
rules at the same level can be evaluated in any order. 
Clearly, if the rules are sorted by level, it is possible to 
execute them in a single pass. It is only necessary to keep 
a table of the value of each of the assertions (initialized to 
fake if the closed world assumption is used) which is 
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updated by any rule firing whose consequent makes that 
assertion. Since no assertion found in the antecedent of a 
rule can be changed by any subsequent rule, a complete 
explanation capability is available. For example, if the 
question is “why did a particular rule not fire?“, the table of 
assertions will contain the values of all the antecedents of 
that rule at the time it was considered. A further 
explanation can be obtained in a similar way be examining 
the rules in earlier layers which have a particular assertion 
as consequent. 

One way to represent this system is as a decision table 
with one row per rule and one column for each possible 
value of each fact augmented by one column for each 
possible value for each assertion. The Garvan system noted 
above can be represented as a decision table with 600 rows. 
There are 52 assertions, so 104 columns are needed besides 
the 93 required for the 34 fact variables, so that 600 x (104 
+ 93) bits or about 15k bytes are needed for its storage, 
considerably less than the 62k bytes needed for the fully 
expanded decision table. 

The Knowledge Dictionary of Jansen & Compton (1988) 
has been re-implemented with an inference engine 
employing the method of this section (Lee, 1990). Note 
that the Garvan ES1 inference engine (Horn et al. 1985) 
takes essentially this approach to get fast execution on a 
PDP-11 with limited memory. Their approach can now be 
seen to be quite general. 

Expensive Facts 

The previous results make the implicit assumption that all 
facts are available at the beginning of inference, and all 
facts have equal cost. In practice, some facts may have a 
high cost, perhaps because they require database access or 
questioning the user. In this case, it is usual to first make 
use of the inexpensive facts available at the beginning, 
obtaining the expensive facts only if necessary. There will 
usually be rules whose consequent is not an assertion, but 
a command to assign values to a group of variables. 

The set of facts can be labelled in the same way as the 
assertions, with facts available immediately labelled zero. 
In the decision table representation, the row headings can 
be sorted in increasing order of label. If the table is 
processed left to right, by the time a column labelled one 
or more is reached, the conditions under which that column 
is needed would be able to be evaluated. In the single-pass 
representation, the rule whose consequent is to obtain these 
facts will be in its correct place in the sequence. 

Note that in this case the choice of forward or backward 
chaining affects the sequence in which expensive facts are 
obtained, since the dependency graph is traversed in a 
different order. This order is preserved in the sequence of 
column headings in the resulting decision table or in the 
sequence of rules in the single pass version. 

Inexact Reasoning 

Some expert systems use one or another form of inexact 
reasoning. The result can be adapted to this situation, 

although insufficient research has been conducted to 
determine the practicality of the method. 

First, an uncertainty measure can be appended to each 
proposition. An assignment of values to variables would 
also assign an uncertainty measure. The subset of 
conclusions would also have uncertainty measures. The 
main theorem still holds. 

Second, in the forward chaining algorithm, the 
uncertainty measure can be propagated as a tree of function 
composition. For example, if u(x) is the uncertainty of 
proposition x, we might have 

a&b->c u(c) = f(u(a), u(b)) 
c&d-Be u(e) = f(u(c), u(d>) 

then we would have 
u(e) = f(fo, u(b)), u(d)) 
If the uncertainty propagation function is associative, it is 

not necessary to record the tree of inferences by which the 
assertions are eliminated, and the uncertainty of a 
conclusion can be computed directly from the uncertainties 
of the base facts in its antecedent. 

In particular, the commonly employed Bayesian measure 
of uncertainty is a priori independent of the intermediate 
assertions, since the joint probability of conclusions and 
base facts is known in principle independently of the 
reasoning system. 

Advantages of Decision Table 
Representation 

Representation of an expert system as a decision table has 
advantages apart from the possibility of faster execution. 

Real Time 

The main impact of these results on real-time systems is 
that execution time is not only much faster than 
conventional implementations, but it is also bounded. If 
the decision table is converted into a decision tree, the 
maximum number of decisions is known. If the decision 
table is processed directly by a fine-grained parallel 
processor, the maximum number of column operations 
needed is known. 

A secondary benefit, particularly when the decision table 
is processed directly using a fine-grained parallel processor, 
comes from the fact that in real time situations facts are 
sometimes available asynchronously. In the decision table 
representation, it is very simple to compute the set of 
conclusions consistent with any assignment, no matter 
how incomplete. If we collect facts as they become 
available into what can be called a current assignment, we 
can always associate with the current assignment the set of 
conclusions consistent with it. Of course, we can in 
particular note the conclusions determined by the current 
assignment. 

There might be a subset of conclusions considered to be 
important for some reason. It would be easy to monitor 
whether any important conclusions were consistent with 
the current assignment, for example. The possibility of one 
of these might trigger some additional measurements. 
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When a measurement is made which conflicts with a fact 
in the current assignment, the associated conclusions of the 
new current assignment can be computed quickly, perhaps 
making complex truth maintenance algorithms less 
necessary. 

Rule Induction 

Since propositional expert systems are equivalent to 
decision tables, it is more plausible that rule induction 
methods which build decision trees from examples (e.g 
Quinlan 1986), are generally applicable. 

Consistency and Completeness 

The decision table representation is much easier to test for 
consistency and completeness. The methods advocated by 
e.g. Cragun & Steudel (1987) are seen to be generally 
applicable. 

Conclusion 

The equivalence of propositional expert systems and 
decision tables has been shown, and a practicable algorithm 
presented for transforming an expert system into a decision 
table. The algorithm has been successfully tested on a 
substantial system of real utility. The method is capable of 
generalization to accommodate many of the practical 
problems encountered in practice, and makes consistency 
and completeness checking much easier. A particular 
consequence is that the computation time for these systems 
can be reduced by orders of magnitude, potentially greatly 
increasing the applicability of expert systems technology 
especially for real time problems. 
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