
A Framework for Investigating Production System Formulations
with Polynomially Bounded Match

Milind Tarnbe
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Real time constraints on AI systems require guaranteeing bounds on
these systems’ performance. However, in the presence of sources of
uncontrolled combinatorics, it is extremely difficult to guarantee such
bounds on their performance. In production systems, the .prirnary source
of uncontrolled combinatorics is the production match. To eliminate
these combinatorics, the unique-attribute formulation was introduced in
(Tambe and Rosenbloom, 1989). which achieved a linear bound on the
production match. This formulation leads to several questions: is this
unique-attributes formulation the best conceivable production system
formulation? In fact, are there other alternative production system
formulations? If there are other formulations, how should these
alternatives be compared with the unique-attribute formulation?

This paper attempts to address these questions in the context of Soar. It
identifies independent dimensions along which alternative production
system formulations can be specified. These dimensions are based on the
fiied class of match algorithms currently employed in production
systems. These dimensions create a framework for systematically
generating alternative formulations. Using this framework we show that
the unique-attribute formulation is the best one within the dimensions
investigated. However, if a new class of match algorithms is admitted,
by relaxing certain constraints, other competitor fonnulations emerge.
The paper indicates which competitor formulations are promising and
why. Although some of the concepts, such as unique-attributes, are
introduced in the context of Soar, they should also be relevant to other
rule-based systems.’

1. Introduction
Soar is an architecture for a system that is intended to be

capable of general intelligence. It is based on formulating all
symbolic goal-oriented behavior as search in problem spaces
(Laird, Newell, and Rosenbloom, 1987). The primitive acts of
the system, called decisions, are those required to pursue this
search: the selection of problem spaces, states, and operators,
plus the application of operators to states to generate new states.
The information necessary for the performance of these
primitive acts can be provided in one of two ways: from Soar’s
knowledge base, which is implemented as a production system,
or by the recursive use of problem space search in subgoals.
Both can result in adding new working memory elements
(wmes) to the system’s existing working memory. Soar learns
by converting subgoal-based search into productions that
generate comparable results under similar conditions (Laird,
Rosenbloom, and Newell, 1986). The actions of the new
productions are based on the results of the subgoals. The
conditions are based on those wmes in parent goals upon which
the results depended. This chunking process is a form of
explanation-based learning (Rosenbloom and Lair-d, 1986).

‘This mearch was sponsored by the Defense Advanced Research Projects Agency (DOD) under
contract numbers F33615-87-C-1499 and NOOO39-86CXO33 (via subcontract from the Knowledge
Systems Laboratory, Stanford University), by the Nathal Aeronautics and Space Adminktration
under cooperative agmcmmt number NCC 2-538.

Paul S. Rosenbloom
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina de1 Rey, CA 90292

This paper is focused on providing Soar with an efficient and
non-combinatorial (polynomially bounded) production match,
particularly in the presence of continuous chunking. Production
match in Soar is a key performance bottleneck. Soar’s current
production match is OPSS-based (Forgy, 1981), i.e., it is NP-
hard (Tambe and Newell, 1988). Production match occurs at
every decision in problem solving in Soar, and unpredictable
combinatorial processing can occur in the match at any such
decision.

This combinatorial match leads to various problems in Soar:
(1) It prevents Soar from operating in real time (Newell, 1989).
(2) It leads to the problem of expensive chunks, i.e., productions
learned in the course of problem solving that can cause a severe
degradation in Soar’s performance (Tambe and Newell, 1988).
(3) It is problematical for Soar’s quest of modeling human
cognition (Newell, 1990). (4) It leads to load-balancing
problems in parallelization (Acharya and Tambe, 1989, Gupta,
et. al., 1989, Tambe and Acharya, 1989). An efficient and
bounded production match could alleviate all these problems.

In (Tambe and Rosenbloom, 1989), the unique-attribute
formulation was introduced to guarantee an efficient and
bounded production match. This formulation eliminated
combinatorics from the match by trading off some expressive
power. This formulation leads to several questions: is this
unique-attributes formulation the best conceivable alternative to
the current production system formulation? Are there any other
alternative production system formulations? If there are, how
should they be compared with the unique-attribute formulation?

This paper attempts to address these questions in the context
of Soar. The paper identifies different dimensions along which
alternative production system formulations can be specified.
These dimensions are based on the fixed class of match
algorithms currently employed in production systems. These
dimensions create a framework for systematically identifying
the different production system formulations. This paper shows
how the unique-attribute formulation fits into the framework
presented. Using this framework the paper shows that unique-
attributes are the best possible formulation within the
dimensions investigated. However, if a new class of match
algorithms is admitted, other competitor formulations emerge.
The paper indicates which competitor formulations are
promising and why. Although these results are introduced in the
context of Soar, Section 9 discusses their relevance to other
systems.

All alternative formulations investigated in this paper tradeoff
expressive power for production match complexity, thus
providing some additional data points in understanding the
general tradeoff in knowledge representation and reasoning
(Lcvesque and Bra&man, 1985, Patel-Schneider, 1989).
Additionally, Soar’s chunking provides a unique opportunity to

TAMRE AND ROSENBLOOM 693

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

(Production Length-3 /** The working memory **/ gain a better understanding of how learning interacts with this
tradeoff.

The paper is organized as follows: Section 2 provides an
implementation-independent model of the production match,
since this paper depends on a deeper understanding of
production match. Section 3 presents the unique-attribute
formulation. Section 4 discusses issues in evaluating alternative
production system formulations. Section 5 introduces the
framework for generating alternative formulations and shows
how unique-attributes fit in the framework. Section 6 introduces
tokenless match, the basis for the new class of match algorithms.
Section 7 shows how promising new alternative formulations
emerge with the introduction of tokenless match. Section 8
provides some evidence about the generality of the formulations
presented here, by showing how marker passing - a
formulation quite different from the standard production match
- maps onto it. Section 9 outlines the contributions of this
paper and its relevance to other research.
2. Modeling Soar’s Production Match

The k-search model (Tambe and Newell, 1988) of production
match covers match algorithms that find all possible solutions,
without the aid of heuristics. This includes widely used match
algorithms such as Rete (Forgy, 1982) and Treat (Miranker,
1987). The k-search model is based on the notion of tokens, or
partial instantiations. Consider the (simplified) production
Length-3 shown in Figure 2-l-a. In the figure, up-arrow (A)
indicates an attribute, and angeled bracket (<>) indicates a
variable. Figure 2-l-b shows the working memory of the
production system, which describes the graph in Figure 2-l-c.
On the creation of the wme (current-position A), the
production Length-3 will match the working memory,
generating tokens, e.g., (2; cx> = A, <z> = B). The first
number in the token indicates the number of conditions matched
and the other elements indicate the bindings for the variables.
Thus, tokens indicate what conditions have matched and under
what variable bindings. These tokens can be represented in the
form of a k-search tree, as shown in Figure 2-l-d. This k-search
tree represents the search conducted by the matcher, using
tokens, to match the production. The result of the k-search is the
four tokens (instantiations) shown at the leaves of the k-search
tree. The time/token is approximately constant (Tambe and
Newell, 1988). Therefore, for Soar productions, the number of
tokens in the k-search tree is a reasonable estimate of the time
spent in match.

The causes of Soar’s combinatorial production match can
now be explained. All the wmes in Soar’s production system
are a priori candidates to match a condition, leading to a k-
search tree with a number of tokens greater than wmesconditions.
However, variables bound in the conditions prior to the current
condition, and constants, can provide a strong filter on the
match. Soar conditions have four fields: (CZUSS identifier
attribute value). The class and attribute fields are constant
(almost always), the identifier field is prebound (almost always)
and the value field can be a constant, a prebound variable, or an
unbound variable. Thus, an unbound variable should only occur
in the value fieZd, and multiplicity only occurs in matching a
Soar condition if there are multiple possible values
corresponding to the three already fixed fields, i.e., there is more
than one value for an attribute. This is referred to as a
multi-attribute. For instance, in Figure 2-1-b, connected-to is a
multi-attribute of the objects A and D - point A is
connected-to both B and C, while D is connected-to to both E
and F. As shown in Figure 2-1-d, the k-search tree branches out

(current-position a>)

(point <x> -connected-to <Z>)

(point <z> %onnected-to cy>)

(point <y> Aconnectad-to cu>)

-->
(write path of length 3 from

<Jo to <w>))

(a)

E

c D F

d?
A B

(3:
<z>

(4;

(point A *connected-to B)

(point B Yxnmected-to D)

(point A Yzonnected-to C)

(point c ~wnnected-to 0)

(point D "connected-to E)

(point D %onnected-to F)

@I

- Cl

- D)

= A.
= c,
- D,
* F)

(cl 00
Figure 2-1: An example production system.

in matching the multi-attributes with conditions 2 and 4. Thus,
combinatorics can occur in Soar’s production match only in the
presence of multi-attributes. (Preferences - special control
Lrnents in Soar -

*
can also contribute to the combinatorics.

However, their impact is much smaller than multi-attributes, and
they are ignored here. See (Tambe, Newell and Rosenbloom,
1990) for details.)
3. Unique-attributes

If multi-attributes are eliminated completely, the branching of
the k-search tree is also eliminated. This will then limit-the
number of tokens in the k-search tree to the number of
conditions in the production. Thus, the cost of a production will
be linear in the number of conditions, i.e., the-match cost will be
bounded linearly rather than being NE-hard. For productions
containing variables, this O(conditions) match bound is optimal,
since all the conditions of a Droduction must be examined for the
match in any event. The new formulation is referred to as the
unique-attribute formulation (Tambe and Rosenbloom, 1989).
In contrast, Soar’s current production system formulation will be
henceforth referred to as the unrestricted formulation, i.e., a
formulation with no representational restrictions. (This
unrestricted formulation was referred to as the multi-attribute
formulation in (Tambe and Rosenbloom, 1989, Tambe, Newell
and Rosenbloom, 1990)).

The principle computational impact of going with unique-
attributes is the removal of the combinatorial k-search from the
match - all combinatorics will now occur as search in problem
spaces. In (Tambe and Rosenbloom, 1989). detailed
experiments on unique-attributes demonstrated the ability of the
unique-attributes to eliminate the combinatorics from the
production match, and to outperform the unrestricted Soar
formulation in various tasks.

Basically, the unique-attribute formulation trades off some
expressive power to gain efficiency in the production match.
This loss in expressive power is not inconsequential. It
manifests itself in three issues. First, multi-attributes are used in
encoding unstructured sets in working memory. For instance, in
Figure 2-1-b, points B and C are an unstructured set of points
connected to point A. With unique-attributes, all sets in working

694 KNOWLEDGEREPRESENTATION

memory have to be structured (e.g., lists), which may not always
be easy (Tambe and Rosenbloom, 1989). Second, the loss of
multi-attributes causes a loss in chunk generality. A much larger
number of unique-attribute chunks may be required to gain the
same amount of coverage as an unrestricted chunk. Until such
coverage is obtained, the unique-attributes have to perform
potentially expensive problem-space search. So far, in the tasks
encoded in the unique-attribute formulation, these two issues
have not been a major problem (Tambe and Rosenbloom, 1989).

The third implication of the unique-attributes is the inability
to process arbitrary sets in a single decision, which is important
in cognitive modeling tasks such as syllogisms (Polk, Newell,
and Lewis, 1989). The unrestricted formulation allows this type
of processing. With unique-attributes, sets are structured and
have to be processed in multiple decisions (or a large number of
chunks have to be learned to allow the processing to occur in a
single decision) (Tambe and Rosenbloom, 1989). These three
issues imply that the unique-attribute formulation is not the best
conceivable alternative to the current formulation - its
expressive power can potentially be improved.
4. Evaluating Alternative Formulations

The unique-attribute formulation is not the best conceivable
formulation. But, in practice, is it the best possible?, i.e., is the
tradeoff in unique-attributes the best rrcrdeo#? This is a difficult
question. As shown later, different formulations, which
polynomially bound the match, restrict the production system in
different ways and engage in different tradeoffs. The concept of
the best @a&o#is imprecise.

Thus, it is impossible to devise an independent test to
determine if the unique-attribute, or any other formulation is the
best possible in practice, without a comparison with other
formulations. That is, to determine the best, different
formulations have to be compared and ranked. Even this
comparison is quite difficult. However, we can enumerate a set
of requirements, which will help in comparing different
formulations. These requirements can be divided into absolute
and relative. Absolute requirements allow formulations to be
evaluated independent of each other, while relative requirements
only enable comparative evaluations. The absolute requirements
are:
1. Polynomial bound on match complexity: The match

complexity of the desired re resentation should be
polynomially bounded (in num er of conditions in a g
production and wmes in the s

f
stem).

2. Closure under chunking: f the productions and the
workin
particu ar P

memory meet the restrictions imposed by a
re

$
esentation

chunks
scheme before chunking, the

shou d also meet the restriction. If chunking
violates the restrictions and creates expensive chunks,
clearly that defeats the purpose of this exercise.

3. zure;tness of match: The match should provide correct
.

The relative requirements are:
1. Expressive adequacy: How easy/difficult is it to encode

various existing Soar tasks in a given representation? The
prevrous section discussed this issue with respect to
unique-attributes. Schemes that allow easier encoding of
various Soar tasks are referred.

2. Relative e rciency:
fff

fv ithin the space of polynomially
bounded ormulations, schemes with smaller polynomial
bounds are preferred.

- _
3. Chunk&g generality: This refers to the number of chunks .

it%:-i!
-.-
?ia F

articular representation to cover a given
ormulation providing higher chunking

4.5 -
enerality is preferred.
rrnciple of uniformity: Formulations that do not introduce

arbitrary divisions in productions or working m.em+ory are
f-ke;l. Soar strongly *adheres to the. prmct Fwe;f

1990). l%i
m varrous archnectural mechamsms d
s re urrement extends that principle to th; q -

production system formulation.
These are diverse requirements, possibly conflicting with

each other. Hence these requirements have to be prioritized: the
requirements are listed above in their order of priority. Given
the goals of the current research, we adopt the position that the
absolute requirements must be met by any candidate
formulation. Even with this, the candidate formulations are not
well ordered. First, the relative requirements are quite
subjective. Second, there are interesting tradeoffs/interactions
among these requirements, e.g., it may be possible that a
formulation with an O(n2) match bound may provide better
chunking generality than a formulation with a O(n) match
bound. Even with these shortcomings, the requirements and
priorities outlined above are of great help in the search for
alternative formulations.

As an example of the use of these requirements, consider a
combination of unique- and multi-attributes that attempts to
introduce limited amounts of multi-attributes to gain
expressibility without sacrificing efficiency. First, suppose this
formulation adheres to the principle of uniformity and does not
explicitly separate out multi- and unique-attributes from each
other. Then, it has no way of controlling the number of multi-
attributes matching a production - it is exactly like the
unrestricted Soar system. The match cost of productions
becomes unpredictable and the polynomial match bound
requirement is violated.

Now, suppose the violation of the principle of uniformity is
accepted: the system explicitly labels and separates unique- and
multi-attributes. It can then bound the number of multi-attribute-
matching conditions in any single production - thus controlling
the match cost. However, it is possible for such a system to
create chunks where the number of multi-attribute-matching
conditions in the production exceeds the specified bound -
generating expensive chunks. This violates the requirement of
closure under chunking. Thus, this unique- and multi-attribute
combination does not work.

Note that in this paper, schemes that impose arbitrary time-
based cutoffs on the match or those that require Soar to chunk
selectively, are rejected as possibilities. Such schemes do not
integrate well with the rest of the Soar architecture, i.e., they do
not conform with the assumptions underlying the Soar
architecture (Tambe, Newell and Rosenbloom, 1990).
5. Formulations Based on Existing Match

Algorithms
The previous section showed that the combination of unique-

plus multi-attributes does not meet all the absolute and relative
requirements. Generating a formulation that satisfies all the
requirements is difficult - there is no method that, given the
requirements, will directly provide a formulation satisfying
them. Combined with the need for comparing different
formulations to determine the best among them, this situation
dictates a strategy for exhaustively searching the space of
alternative formulations; then for each formulation, testing if it
meets the requirements, and then comparing its properties with
other formulations to test if it is better.

Although part of the search has already been conducted
(Section 3 and 4), how should the exhaustive search proceed
further? The problem here is the absence of a device to

TAMBEANDROSENBLOOM 695

systematically generate required alternatives. Without such a
device, we cannot understand and usefully exploit the structure
of the space of alternative formulations. Therefore, this paper
introduces a framework for systematically generating alternative
production system formulations. To specify the framework, it is
necessary to first identify the independent dimensions of this
framework. Roughly, these dimensions can be divided into two
categories: (1) those that do not require any modification to the
current set of token-based match algorithms (introduced in
Section 2) (2) those that require some modification. Section 6
introduces dimensions from the second category. This section
introduces dimensions only from the first category. These
dimensions are based on restrictions on Soar’s working memory
format: (class identifier attribute value). They are:
1. Forward-attribute: Given a fixed identifier, this dimension

imposes restrictions on the number of attributes for that
identifier. For examule, sunuose the number of attributes is
restricted to one. If B-1 ii-an identifier, then (class1 Bl
attribute-l vail) and (class1 Bl attribute-2 val2) are not
allowed simulta&ously to exist in working memo ’

7
.

2. Values-per-attribute: Given a fixed identi XX, this
dimension imposes restrictions on the number of values-
per-attribute for that identifier. If the number of values-per-
attribute is restricted to one, the unique-attributes
formulation is obtained. Multi-attributes refer to multiule
values-per-attribute.

1
3. Reverse-attribute: Given a fixed value. this dimension

im oses restrictions on the number of attributes for that
v ue. This is symmetrical to the forward-attribute a!
dimension. Thus, if vall is a value, then (class1 Bl
attribute-l vall) and (class1 B2 attribute-2 vall) are not
allowed simultaneous1

iY
to exist in working memo

‘i:
, as

attribute-l and attri ute-2 are two different attri utes
with the same value vall.

4. Identifiers-per-attribute: Given a fixed value, what are the
restrictions on. the number pf identifiers-per-attribute for
thghyo; Thrs 1s symmetrical to the values-per-attribute

.
(The class slot in Soar’s wmes does not serve any semantic

role. Hence the paper does not refer to the class slot.) Figure 5-l
shows the four dimensions in a tabular format. There are two
co-ordinates along each of the four dimensions - 1 and *. Here,
an asterisk (*) refers to an arbitrary number of values, i.e., no
restrictions on the values. In the figure, to lay out these four
dimensions in two dimensions, the forward-attribute and values-
per-attribute dimensions are paired. Similarly, the reverse-
attribute and identifiers-per-attribute dimensions are paired. The
figure shows that different combinations of co-ordinates along
these dimensions identify different working memory
representations.

The choice of 1 and * for the co-ordinates is an interesting
issue. This choice of co-ordinates covers both the unique-
attribute and the unrestricted working memory and yields
semantically meaningful representations like the Tree
representation (introduced below). Furthermore, if the number
of values-per-attribute are increased to two or more, match
becomes combinatoric and does not admit the linear bound of
unique-attributes. However, whether no other co-ordinates
besides 1 and * are useful, remains unclear.

In the unrestricted working memory representation, with a
fixed identifier, it is possible to have an arbitrary number of
forward-attributes and values-per-attribute. Similarly, with a
fixed value, it is possible to have an arbitrary number of reverse-
attributes and identifiers-per-attribute. Therefore, the
unrestricted working memory occupies the square in the center
of the table, where all four dimensions have a value of *. For
unique-attributes, the restriction is only on the values-per-

attribute - for a fixed identifier, there can be only one value-
per-attribute. Its other dimensions are unrestricted and take the
value of *.
cua Indicates more restrictive l Indicates an arbitrary number

than unique-attributes
<ts Indicates more restrictive

than the tree-structures
Cl21 Indicates more restrictive

than unique-identifiers e Indicates increasing

restrictiveness

(reverse-

attribute,

identifiers-

per-attribute)

(forward-attribute, values-per-attribute)

(1, 1)

(1, 1)

<ua
CUi
eta

(', 1) ('# '1 (1, '1

[Multi- [Multi-
Attr] Attr]

<ua Tree
<Ui <ui <Ill
Ct.8 <ts

(1, 1)

<ua
<III
Ct.8

(', 1)
<ua
<Ui

cua Unique-

<Ui ident
-3l.i <ua

<Ui

;.;T

4 >

Figure 5-1: Dimensions of alternative representations.

In Figure 5-1, the square marked as Tree restricts the reverse-
attributes and identifiers-per-attributes to one and leaves the
other dimensions unrestricted. This representation implies that
two different working memory elements cannot have the same
value in their value fields. More semantically, this
representation corresponds to a tree-structured organization of
the working memory. The square marked as unique-identifiers
restricts the identifiers-per-attribute to one, but does not restrict
any other dimension. The table shows that the Tree and unique-
identifiers allow an arbitrary number of values-per-attribute, i.e.,
they allow multi-attributes. In fact, all the working memory
representations in two of the cohunns allow multi-attributes;
these columns are labeled with Wulti-attr].

The table shows the unrestricted working memory as the least
restrictive form of representation. It occupies the center square
in the table. The other representations form a restriction lattice.
The fmt column and the first row are repeated to show the
symmetry in this lattice. The most restrictive working memory
representation is the one where all the dimensions have the value
1. The table also shows that the Tree structures are more
restrictive than the unique-identifiers; but unique-attributes are
unrelated in terms of restrictions to either one of these.

The important conclusion that can be made from the table is:
unique-attributes provide the best possibie formulation within
the four dimensions investigatz?hat is, the unique-attributes
provide the best fit to all the absolute and relative requirements.
All other formulations are either combinatoric, so that they
violate the absolute requirement of a polynomial match bound;
or they are more restrictive than the unique-attributes, so that
unique-attributes fit the relative requirements better. First,
consider the formulations in the third and fourth columns of the

696 KNOWLEDGEREPRESENTATION

table. They include the Tree and unique-identifiers, which constraint-graph where the variables are represented by nodes
restrict the identifiers-per-attribute. These representations allow and the constraints by arcs. Each constraint specifies the set of
multi-attributes. As described in Section 2, the match in the permitted pairs of values for the two variables involved. Thus,
presence of multi-attributes is combinatoric: thus, all these
formulations violate the polynomial match bound requirement.

if Xi and Xj are two variables with domains Di and Dj
respectively, then the constraint Rij between Xi and Xj is a

Second, consider the formulations in the first and second subset of the Cartesian product of their domains, i.e.,
columns of the table. This includes the unique-attributes and the R, c Di x Di
formulations more restrictive than the unique-attributes. The
formulations that are more restrictive than the unique-attributes
do not reduce the match bound: it is optimal to begin with.
Furthermore, these formulations are guaranteed to not be better
than unique-attributes along the expressive adequacy or
chunking generality requirements, since they are more
restrictive.

More generally, we can also conclude that if a given
formulation meets all the absolute requirements, then more
restrictive formulations, which do not reduce the match bound,
need not be investigated. If the more restrictive formulations
possess the same match bound as the given formulation, only the
remaining relative requirements like expressive adequacy,
choose the better among them. However, the more restrictive
formulations are guaranteed to not meet these remaining relative
requirements better than the given formulation.

Thus, the unique-attribute formulation is the best possible one
in practice, within the four dimensions investigated. The
general conclusions drawn here illustrate the power of the
&amework: the conclusions exploit the structure of the search
space made explicit by the framework. Thus, the need for
detailed evaluation of each formulation is eliminated.

The match for a single Soar production maps on to the
constraint satisfaction problem as follows. The variables in the
conditions form the variables in the constraint satisfaction
problem. For example, the production in Figure 2-l-a can be
represented as the constraint network in Figure 6-l. The symbols
in working memory, i.e., symbols occupying the identifier and
value fields of working memory elements, form the domains of
the variables. A condition containing two variables is a
constraint between the two variables. The condition specifies
(or selects) the wmes with its attribute, so that each wme
represents a permitted pair of values for the variables linked by
the condition. If a condition contains Al as an attribute, it
specifies all the wmes with the attribute Al. Thus, the conditions
from Figure 6-l with the attribute connected-to specify all the
wmes from Figure 2-l-b. Finding all possible solutions of the
constraint satisfaction problem formed by a production will
result in finding all possible instantiations of the production.

current-position

connected-to connected-to connected-to

cx> <LT.> 9’ <w>
6. Tokenless Match: A New Match Scheme

The formulations introduced in the previous section were
based on the the token-based match scheme (henceforth called
token match). The conclusion about unique-attributes being the
best among these formulations is based on this token match. In
a token match, a single token indicates what variable bindings
go together. For example, the token (2; cx> = A, cz> = C)
from Figure 2-l-d indicates that the binding A for cx> and C for
cz> go together. The outcome of the match is a set of
instantiations, indicating which bindings go together.

If a tokenZess match is allowed, then new formulations
emerge: the unique-attribute formulation is no longer
guaranteed to be the best. In a tokenless match, each variable
obtains a list of bindings, independent of the bindings of other
variables. The outcome of this match is a set of bindings for
each variable, rather than the separate instantiations. If the
production Length-3 in Figure 2-l-a is matched with the
working memory from Figure 2-1-b, the result is a set of
bindings for the variables as follows:cx> = A; cz> = B, C; cy>
= D; cw> = E, F. The matcher guarantees that these bindings
are consistent with each other; however, it does not explicitly
create tokens and instantiations. This consistency requirement is
explained in the subsection below with the help of a mapping.
This mapping also provides ready-made algorithms to perform
tokenless match.
6.1. Tokenless Match and Constraint Satisfaction

A constraint-satisfaction problem is defined as follows: given
a set of N variables each with an associated domain and a set of
binary constraining relations between the variables, find all
possible N-tuples such that each N-tuple is an instantiation of
the N variables satisfying the constraining relations (Mackworth
and Freuder, 1985). This problem can be represented as a

Figure 6-1: Mapping tokenless match to constraint satisfaction.

The constraint satisfaction literature distinguishes between
obtaining consistent bindings and forming an instantiation
(Dechter and Pearl, 1988). Once consistent bindings are
obtained, individual instantiations from the bindings are
obtained separately. The tokenless match achieves a similar
consistent set of bindings, without forming any instantiations.
Thus, there is a mapping between the tokenless match and
obtaining consistent bindings in constraint satisfaction problems.
6.2. Implications of the Mapping

The mapping between the tokenless match and constraint
satisfaction problems provides an important notion: the relation
between the structure of a production and the effort required in
obtaining consistent bindings for that production. The structure
of the production refers to the equality tests across the value
fields of the production’s conditions. For instance, if a Soar
production admits no equality tests between two variables in the
value fields of its conditions, then the production has a tree
structure. (To understand why such productions are tree-
structured, consider a graph where the variables in the identifier
and value fields of the production’s conditions are nodes; and
the attributes in the conditions are links bctwcen the nodes. This
graph is tree-structured.) Figure 2-l-a presents one such
production without any equality tests across its value flclds. To
demonstrate how the production structure can be exploited, we
need the concept of arc consistency in constraint-satisfaction
problems.

In constraint-satisfaction problems, arc-consistency is a form
of local consistency. Arc-consistency does not solve the general
constraint-satisfaction problem. A constraint graph is arc-
consistent if each of its arcs is arc-consistent. An arc between
variables Xi and Xj is arc-consistent iff for any value n E Di

TAMBEANDROSENBLOOM 697

there is a value y E Dj such that Rij(x, y) (Mackworth, 1977).
Here Rij(x, y) stands for the assertion that (x, y) is permitted by
the explicit constraint Ri.. We add the following small
symmetric requirement to d e situation above: if there is a value
y E Di then there is a value x E Di such that Rij(x, y).

In terms of the production match mapping, the following has
to be satisfied for a condition with an attribute Al to be arc
consistent: If there is a binding x for the variable <x> in its
identifier field, then there is a binding y for its variable <y> in
its value field, such that there exists a wme with attribute Al,
identifier x and value y. Symmetrically, if there is a binding y
for its variable <y> in the condition’s value field, then there
exists a binding x for the variable cx> in its identifier field such
that there exists a wme with attribute Al, identifier x and value
Y-

Arc consistency is used along with the production structure in
the following result based on an important result from (Dechter
and Pearl, 1988):

If a production is tree structured, and it is made arc-
consistent, then the bindings obtained for its variables are
consistent. Furthermore, this arc-consistency can be achieved in
O(wmes*conditions).

Here, wmes refers to the number of working memory
elements. Thus, if productions are tree-structured, then a
tokenless match can be obtained in polynomial time, i.e., the
match guarantees consistent bindings for the variables in the
production using arc consistency. Note that the tokenless match
is important in achieving this bound. A token match, despite
tree structured
o(wmesconditions

productions, is still exponential -
) (see section 4 of (Tambe and Rosenbloom,

1989) for a demonstration of this effect).
Note, however, that if a production is not tree structured, i.e.,

it has an equality test across the value fields of its conditions, arc
consistency may provide a wrong result. That is, it might
provide a binding for a variable, when a token match for the
same production would have provided none (Tambe and
Rosenbloom, 1990). Thus, there is a tradeoff in the complexity
of the tokenless match and the restrictions on the equality tests.
By restricting the structure of the production in specific ways,
different (and increasingly complex) bounds on the tokenless
match can be obtained (Dechter and Pearl, 1988). With this
result, the structure of the productions emerges as an important
dimension. Thus, two new dimensions are now available in the
framework: tokenless match and production structure.

7. Tokenless Match: New Formulations Emerge
The token/tokenless match and production structure

dimensions, along with the four dimensions introduced
previously (see Figure 5-l), provide us with a total of six
dimensions. From this expanded space, new formulations
emerge, and unique-attributes are no longer guaranteed to be the
best fit to the absolute and relative requirements. To illustrate
this, consider a specific formulation, called the unrestricted-tree
formutation, that works with an unrestricted working memory
representation (from Figure 5-l) and a tokenless match, but
restricts productions to be tree-structured. This formulation
satisfies all of the absolute requirements. First, polynomial
match bound is guaranteed because of the use of a tokenless
match and tree-structured productions. As noted in Section 6.2,
this combination yields polynomial match bound -
O(wmes*conditions) - irrespective of the representation used
in working memory. Second, with a small modification to

chunking - disallowing introduction of new equality tests
across value fields of conditions - this formulation provides
closure under chunking. That is, only tree-structured productions
will be chunked. Third, due to the consistency requirements
imposed, this formulation provides correct results. Therefore,
all the absolute requirements are satisfied.

When the relative requirements are compared for the
unrestricted-tree and unique-attribute formulations, it becomes
clear that neither formulation dominates the other, and hence
neither can be pruned a priori. In particular, in terms of
expressive adequacy, in the unrestricted-tree formulation,
working memory restrictions are absent (compared to unique-
attributes); however, since equality tests across value fields of
conditions are not available, productions have to be written in a
fairly different manner. (If such tests become absolutely
necessary, productions can directly test constants.) Therefore,
we need to implement a set of tasks with this new formulation,
and compare its performance with unique-attributes. Initial
analysis seems to indicate some promising results for the
unrestricted-tree formulation. For example, in the grid task
(Tambe and Rosenbloom, 1989), the unrestricted-tree
formulation should be able to outperform the unique-attribute
and unrestricted formulations. The unrestricted-tree formulation
would provide chunks with polynomial match cost, where
similar chunks in the unrestricted formulation require an
exponential match cost (see Section 4 of (Tambe and
Rosenbloom, 1989)); but simultaneously it would avoid the loss
in chunk generality that afflicts the unique-attributes (Tambe
and Rosenbloom, 1990). The work of implementing tasks in
this new formulation is currently in progress and remains a key
issue for future work.

Besides the unrestricted-tree formulation, other formulations
based on tokenless match are also possible pambe and
Rosenbloom, 1990). For instance, by adopting consistency
algorithms more constraining than arc consistency (Dechter and
Pearl, 1988). it is possible to introduce limited equality tests
across value fields of conditions of productions. Such new
formulations may perform better along the expressive adequacy
dimension than the unrestricted-tree formulation, but require a
higher polynomial bound. Other formulations that are based on
the tree and unique-identifier working memory representations
from Figure 5-l are also possible (Tambe and Rosenbloom,
1990). All these formulations are competitors for the unique-
attribute formulation. Further investigations of these new
formulations is another key issue for future work.
8. Relationship to Marker Passing Systems

This section develops a mapping between the unrestricted-
tree formulation and marker passing systems. This mapping
illustrates the generality of the framework presented in this
paper for alternative production system formulations - it
manages to capture a fairly different production system
formulation. This mapping is illustrated using the NETL
parallel marker passing system (Fahlman, 1979).

Conceptually, NETL is composed of a large collection of
object nodes, like semantic nets, and a large collection of bi-
directional links or arcs organized so that each object node can
be linked arbitrarily to any number of other nodes in the system.
Markers (signals) may be propagated along different links in
parallel. Queries are posed to the NETL system, and answers are
retrieved by passing markers between nodes. (No cancellation
links are assumed, hence the problems from (Touretzky,
1986) associated with marker passing systems are not relevant

698 KNOWLEDGEREPRESENTATION

here.)
The mapping onto NETL relies on describing each symbol in

the working memory as an object node of NETL. The attributes
in working memory are links between nodes. The production to
be matched is the query to the NETL system. Match is
performed by passing markers between symbols. Matching a
single condition is equivalent to sending a marker from a symbol
bound to the identifier field of the condition (since the identifier
of a condition is bound before matching the condition) to the
symbols linked via the attribute in the condition. The result of
passing this marker is a set of bindings in the value field of the
condition. This allows bindings to be obtained for the next
condition via marker passing. Again, the result of the match is a
set of variable bindings, without the token information.

E M4

connected-to

I connected-to connected-to

current-position connected-to B
/

Ml M2

Figure 8-1: Mapping onto marker passing.

Figure 8-l shows this mapping with the help of the simple
example from Figure 2-l. The figure shows the structure
described by the working memory in Figure 2-l-b, with the
addition of the wme (current-position A). This working
memory is to be matched with the production in Figure 2-l-a.
Matching the first condition results in the marker Ml being sent
to the symbol A. This binds the variable <x> to A. Matching the
second condition results in marker M2 being sent to the symbols
B and C, which become the bindings for the variable cz> in the
value field of the second condition. Matching the third
condition results in passing marker M3 and obtaining binding D
for the variable cy>. Note that when two M3 markers from B
and C reach D, they are ORed together. Finally, passing marker
M4 obtains bindings for variable cw>. The result of the match
is the same as the result of the arc consistency match:ex> = A;
<z>=B,C;cy>=D;<w,=E,F.

As in the previous modification to the definition of arc
consistency, markers actually have to be passed in a
bidirectional manner to achieve complete consistency in tree-
structured productions. That is, once the markers have reached
the leaves of the production, they are transmitted back toward
the root. In this example, the backward marker propagation
phase would begin by sending marker M4 back and then
continuing onwards with M3, M2 and MI. (In an actual
implementation, correctness requires that the backward marker
propagation be done first. However, for expository purposes, we
have reversed the order of marker propagation.)

The bidirectional marker passing results in the following:
suppose there is a binding x for a variable <x> in the identifier
field of a condition with attribute Al. Now, with marker passing
in the forward direction along the Al link, bindings from the
value fields of wmes with attribute Al are obtained for the

variable cy> in the value field of the condition. Symmetrically,
if there is a binding y for its variable <y> in the condition’s
value field, then with marker passing in the reverse direction
along the Al link, bindings from the identifier fields of the
wmes with attribute Al are obtained for the variable cx> in the
identifier field of the condition. This is exactly what the arc
consistency match achieves.

Why are tree-structured productions (queries) needed in this
mapping? In parallel marker passing systems, the particular
equality test issues are well known as the copy confusion
problems. That is, only tree-structured productions can be
matched accurately.
9. Summary and Relevance to Other Work

A combinatorial production match is problematical for Soar
for several reasons. This paper was focused on eliminating these
combinatorics by introducing alternative production system
formulations. The contributions of this paper can be
summarized as follows: (1) it introduces absolute and relative
requirements for evaluating alternative formulations; (2) it
introduces a framework for generating alternative formulations;
(3) using the framework it shows that the unique-attribute
formulation is the best within the dimensions investigated,
assuming a token match; (4) it introduces the tokenless match
and maps it onto constraint satisfaction; (5) it shows that with
tokenless match, other formulations may fit the absolute and
relative requirements better than the unique-attributes; (6) it
shows how an entirely different formulation - the marker-
passing formulation - maps onto a formulation generated via
the dimensions introduced in this paper, providing some
evidence for the generality of the formulations considered here.

An important question is the relevance of this research for the
non-Soar community. The combinatorial production match is
not a Soar speciality. It is observed in various other systems -
OPSS-based systems (Brownston, Farrell, Kant, and Martin,
1985) and rule-based systems like Prodigy (Minton, 1988a). In
all these systems, there is continuing research on achieving real
time performance (Barachini and Theuretzbacher, 1988, Parson
and Blank, 1989), on eliminating expensive learned rules (Chase
et al., 1989, Minton, 1988b) and load balancing schemes for
attaining high parallelism (Acharya and Tambe, 1989, Miranker,
1987, Tambe and Acharya, 1989) However, in general, the area
of alternative production system formulations for solving the
problems facing these systems has not been investigated. The
representations in these systems are based on attribute-values,
very similar to Soar’s representation - allowing a mapping
between the results based on Soar’s representation to those
systems. For instance, the utility of the distinction between
unique- and multi-attributes for Prodigy is shown in (Etzioni,
1990). Furthermore, representations in frame-based systems
like Theo (Mitchell et. al., 1989) map quite well into attribute-
values, in fact, the version used by Theo already corresponds to
the unique-attributes (Tambe and Rosenbloom, 1989). Thus, the
results derived in this paper would appear to be relevant to all
these systems. In particular, the idea of a tokenless match, that
would eliminate a significant amount of combinatorics, appears
to be very relevant to these systems. We hope that our research
in Soar and related research in these other systems will allow us
to gain a better understanding of the tradeoffs in knowledge
representation, efficiency and learning.

TAMBEANDROSENBLOOM 699

Acknowledgements
We thank Allen Newell, Brian Milnes, Anurag Acharya, Dirk

Kalp and Gary Pelton for useful comments on earlier drafts of
this paper. We also thank Kathy Swedlow for technical editing.
References
Acharya, A. and Tambe, M. (1989). Production systems on
message passing computers: Simulation results and analysis.
Proceedings of the International Conference on Parallel
Processing. pp. 246-254.

Barachini, F. and Theuretzbacher N. (1988). The challenge of
real-time process control for production systems. Proceedings of
the National Conference on Artificial Intelligence. pp. 705-709.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985).
Programming expert systems in OPSS: An introduction to rule-
based programming. Reading, Massachusetts: Addison-
Wesley.

Chase, M. P., Zweben, M., Piazza, R. L., Burger, J. D., Maglio,
P. P. and Hirsh, H. (1989). Approximating learned search
control knowledge. Proceedings of International Workshop on
Machine Learning. pp. 218-220.

Dechter, R., and Pearl., J. (1988). Network-Based Heuristics
for Constraint-Satisfaction Problems. Artificial Intelligence,
34(l), l-38.

Etzioni, 0. (1990). A structural theory of search control Ph.D.
diss., School of Computer Science, Carnegie Mellon University.
In preparation.

Fahlman, S. E. (1979). Representing and using real-world
knowledge. In Winston, P. H. and Brown, R. H. (Eds.), Artificat
Intelligence, An MIT perspective. Cambridge, Massachusetts:
MIT Press.

Forgy, C. L. (1981). OPSS User’s Manual (Tech. Rep. CMU-
CS-81-135) Computer Science Department, Carnegie Mellon
University.

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pat&n/many object pattern match - problem. Artificial
Intelligence, 19(l), 17-37.

Gupta, A., Tambe, M., Kalp, D., Forgy, C. L., and Newell, A.
(1989). Parallel implementation of OPS5 on the Encore
Multiprocessor: Results and analysis. Internationat Journal of
Parallel Programming, Vol. 17(2).

Laird, J. E., Newell, A. and Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial Intelligence,
33(l), l-64.

Laird, J. E., Rosenbloom, P. S. and Newell, A. (1986).
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning, 1 (l), 11-46.

Levesque, H. J., and Bra&man, R. J. (1985). A fundamental
tradeoff in knowledge representation and reasoning. In
Bra&man, R. J., and Levesque, H. J. (Eds.), Readings in
knowledge representation and reasoning. Morgan Kaufmann
Publishers, Inc.

Ma&worth, A. K. (1977). Consistency in Networks of
Relations. Artificial Intelligence, 8(l), 99-l 18.

Ma&worth, A. K., and Freuder, E. C. (1985). The Complexity

of Some Polynomial Network Consistency Algorithms for
Constraint Satisfaction Problems. Artificial Intelligence, 25(1).
65-74.

Minton, S. (1988). Learning Eflective Search Control
Knowledge: An explanation-based approach. Ph.D. diss.,
Computer Science Department, Carnegie Mellon University.

Minton, S. (1988). Quantitative results concerning the utility of
explanation-based learning. Proceedings of the Seventh National
Conference on Artijicat Intettigence. pp. 564-569.

Miranker, D. P. (1987). Treat: A New and Eficient Match
Algorithm for AI Production Systems. Ph.D. diss., Computer
Science Department, Columbia University.

Mitchell, TM., Allen, J., Chalasani, P., Cheng, J., Etzioni, O.,
Ringuette, M., and Schlimmer, J.C. (1989). Theo: A
framework for self-improving systems. In VanLehn, K. (Ed.),
Architectures for Intelligence. Hillsdale, New Jersey: Lawrence
Erlbaum Associates.

Newell, A. (1989). The Quest for Architectures for Integrated
Intelligent Systems. Talk at IJCAI 89 on Recieving the
Research Excellence Award.

Newell, A. (1990). Unified theories of cognition. Cambridge,
Massachusetts: Harvard University Press. In press.

Parson, D. E., and Blank, G. D. (1989). Constant-time pattern
matching for real-time production systems. SPIE Vol. 1095
Applications of Artificial Intetligence VII. pp. 97 1-982.

Patel-Schneider, P. F. (1989). A four-valued semantics for
terminological logics. Artificial Intelligence, 38(3), 319-35 1.

Polk, T.A., Newell, A., and Lewis, R.L. (1989). Toward a
unified theory of immediate reasoning in Soar. Proceedings of
the Annuat Conference of the Cognitive Science Society. pp.
506-513.

Rosenbloom, P. S. and Laird, J. E. (1986). Mawh
explanation-based generalization onto Soar. Proceedings of the
Fifth National Conference on Artificial Intelligence. pp.
561-567.

Tambe, M. and Acharya, A. (1989). Parallel implementations
of production systems. VIVEK: A quarterly in artificial
intelligence, 2(2), 3-22.

Tambe, M. and Newell, A. (1988). Some chunks are expensive.
Proceedings of the Fifth International Conference on Machine
Learning. pp. 451-458.

Tambe, M. and Rosenbloom, P. (1989). Eliminating expensive
chunks by restricting expressiveness. Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence. pp. 731-737.

Tambe, M. and Rosenbloom, P. (1990). Investigating alternative
production system formulations. School of Computer Science,
Carnegie Mellon University, In preparation.

Tambe, M., Newell, A., and Rosenbloom, P. S. (1990). The
problem of expensive chunks and its solution by restricting
expressiveness. Machine Learning, Vol. 5. (To appear).

Touretzky, D. S. (1986). The mathematics of -inheritence
system. Los Altos, California: Morgan Kaufmann Publishers,
ITlC.

700 KNOWLEDOEREPRESE~ATI~N

