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Abstract 

Real time constraints on AI systems require guaranteeing bounds on 
these systems’ performance. However, in the presence of sources of 
uncontrolled combinatorics, it is extremely difficult to guarantee such 
bounds on their performance. In production systems, the .prirnary source 
of uncontrolled combinatorics is the production match. To eliminate 
these combinatorics, the unique-attribute formulation was introduced in 
(Tambe and Rosenbloom, 1989). which achieved a linear bound on the 
production match. This formulation leads to several questions: is this 
unique-attributes formulation the best conceivable production system 
formulation? In fact, are there other alternative production system 
formulations? If there are other formulations, how should these 
alternatives be compared with the unique-attribute formulation? 

This paper attempts to address these questions in the context of Soar. It 
identifies independent dimensions along which alternative production 
system formulations can be specified. These dimensions are based on the 
fiied class of match algorithms currently employed in production 
systems. These dimensions create a framework for systematically 
generating alternative formulations. Using this framework we show that 
the unique-attribute formulation is the best one within the dimensions 
investigated. However, if a new class of match algorithms is admitted, 
by relaxing certain constraints, other competitor fonnulations emerge. 
The paper indicates which competitor formulations are promising and 
why. Although some of the concepts, such as unique-attributes, are 
introduced in the context of Soar, they should also be relevant to other 
rule-based systems.’ 

1. Introduction 
Soar is an architecture for a system that is intended to be 

capable of general intelligence. It is based on formulating all 
symbolic goal-oriented behavior as search in problem spaces 
(Laird, Newell, and Rosenbloom, 1987). The primitive acts of 
the system, called decisions, are those required to pursue this 
search: the selection of problem spaces, states, and operators, 
plus the application of operators to states to generate new states. 
The information necessary for the performance of these 
primitive acts can be provided in one of two ways: from Soar’s 
knowledge base, which is implemented as a production system, 
or by the recursive use of problem space search in subgoals. 
Both can result in adding new working memory elements 
(wmes) to the system’s existing working memory. Soar learns 
by converting subgoal-based search into productions that 
generate comparable results under similar conditions (Laird, 
Rosenbloom, and Newell, 1986). The actions of the new 
productions are based on the results of the subgoals. The 
conditions are based on those wmes in parent goals upon which 
the results depended. This chunking process is a form of 
explanation-based learning (Rosenbloom and Lair-d, 1986). 

‘This mearch was sponsored by the Defense Advanced Research Projects Agency (DOD) under 
contract numbers F33615-87-C-1499 and NOOO39-86CXO33 (via subcontract from the Knowledge 
Systems Laboratory, Stanford University), by the Nathal Aeronautics and Space Adminktration 
under cooperative agmcmmt number NCC 2-538. 

Paul S. Rosenbloom 
Information Sciences Institute 

University of Southern California 
4676 Admiralty Way 

Marina de1 Rey, CA 90292 

This paper is focused on providing Soar with an efficient and 
non-combinatorial (polynomially bounded) production match, 
particularly in the presence of continuous chunking. Production 
match in Soar is a key performance bottleneck. Soar’s current 
production match is OPSS-based (Forgy, 1981), i.e., it is NP- 
hard (Tambe and Newell, 1988). Production match occurs at 
every decision in problem solving in Soar, and unpredictable 
combinatorial processing can occur in the match at any such 
decision. 

This combinatorial match leads to various problems in Soar: 
(1) It prevents Soar from operating in real time (Newell, 1989). 
(2) It leads to the problem of expensive chunks, i.e., productions 
learned in the course of problem solving that can cause a severe 
degradation in Soar’s performance (Tambe and Newell, 1988). 
(3) It is problematical for Soar’s quest of modeling human 
cognition (Newell, 1990). (4) It leads to load-balancing 
problems in parallelization (Acharya and Tambe, 1989, Gupta, 
et. al., 1989, Tambe and Acharya, 1989). An efficient and 
bounded production match could alleviate all these problems. 

In (Tambe and Rosenbloom, 1989), the unique-attribute 
formulation was introduced to guarantee an efficient and 
bounded production match. This formulation eliminated 
combinatorics from the match by trading off some expressive 
power. This formulation leads to several questions: is this 
unique-attributes formulation the best conceivable alternative to 
the current production system formulation? Are there any other 
alternative production system formulations? If there are, how 
should they be compared with the unique-attribute formulation? 

This paper attempts to address these questions in the context 
of Soar. The paper identifies different dimensions along which 
alternative production system formulations can be specified. 
These dimensions are based on the fixed class of match 
algorithms currently employed in production systems. These 
dimensions create a framework for systematically identifying 
the different production system formulations. This paper shows 
how the unique-attribute formulation fits into the framework 
presented. Using this framework the paper shows that unique- 
attributes are the best possible formulation within the 
dimensions investigated. However, if a new class of match 
algorithms is admitted, other competitor formulations emerge. 
The paper indicates which competitor formulations are 
promising and why. Although these results are introduced in the 
context of Soar, Section 9 discusses their relevance to other 
systems. 

All alternative formulations investigated in this paper tradeoff 
expressive power for production match complexity, thus 
providing some additional data points in understanding the 
general tradeoff in knowledge representation and reasoning 
(Lcvesque and Bra&man, 1985, Patel-Schneider, 1989). 
Additionally, Soar’s chunking provides a unique opportunity to 
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(Production Length-3 /** The working memory **/ gain a better understanding of how learning interacts with this 
tradeoff. 

The paper is organized as follows: Section 2 provides an 
implementation-independent model of the production match, 
since this paper depends on a deeper understanding of 
production match. Section 3 presents the unique-attribute 
formulation. Section 4 discusses issues in evaluating alternative 
production system formulations. Section 5 introduces the 
framework for generating alternative formulations and shows 
how unique-attributes fit in the framework. Section 6 introduces 
tokenless match, the basis for the new class of match algorithms. 
Section 7 shows how promising new alternative formulations 
emerge with the introduction of tokenless match. Section 8 
provides some evidence about the generality of the formulations 
presented here, by showing how marker passing - a 
formulation quite different from the standard production match 
- maps onto it. Section 9 outlines the contributions of this 
paper and its relevance to other research. 
2. Modeling Soar’s Production Match 

The k-search model (Tambe and Newell, 1988) of production 
match covers match algorithms that find all possible solutions, 
without the aid of heuristics. This includes widely used match 
algorithms such as Rete (Forgy, 1982) and Treat (Miranker, 
1987). The k-search model is based on the notion of tokens, or 
partial instantiations. Consider the (simplified) production 
Length-3 shown in Figure 2-l-a. In the figure, up-arrow (A) 
indicates an attribute, and angeled bracket (<>) indicates a 
variable. Figure 2-l-b shows the working memory of the 
production system, which describes the graph in Figure 2-l-c. 
On the creation of the wme (current-position A), the 
production Length-3 will match the working memory, 
generating tokens, e.g., (2; cx> = A, <z> = B). The first 
number in the token indicates the number of conditions matched 
and the other elements indicate the bindings for the variables. 
Thus, tokens indicate what conditions have matched and under 
what variable bindings. These tokens can be represented in the 
form of a k-search tree, as shown in Figure 2-l-d. This k-search 
tree represents the search conducted by the matcher, using 
tokens, to match the production. The result of the k-search is the 
four tokens (instantiations) shown at the leaves of the k-search 
tree. The time/token is approximately constant (Tambe and 
Newell, 1988). Therefore, for Soar productions, the number of 
tokens in the k-search tree is a reasonable estimate of the time 
spent in match. 

The causes of Soar’s combinatorial production match can 
now be explained. All the wmes in Soar’s production system 
are a priori candidates to match a condition, leading to a k- 
search tree with a number of tokens greater than wmesconditions. 
However, variables bound in the conditions prior to the current 
condition, and constants, can provide a strong filter on the 
match. Soar conditions have four fields: (CZUSS identifier 
attribute value). The class and attribute fields are constant 
(almost always), the identifier field is prebound (almost always) 
and the value field can be a constant, a prebound variable, or an 
unbound variable. Thus, an unbound variable should only occur 
in the value fieZd, and multiplicity only occurs in matching a 
Soar condition if there are multiple possible values 
corresponding to the three already fixed fields, i.e., there is more 
than one value for an attribute. This is referred to as a 
multi-attribute. For instance, in Figure 2-1-b, connected-to is a 
multi-attribute of the objects A and D - point A is 
connected-to both B and C, while D is connected-to to both E 
and F. As shown in Figure 2-1-d, the k-search tree branches out 
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Figure 2-1: An example production system. 

in matching the multi-attributes with conditions 2 and 4. Thus, 
combinatorics can occur in Soar’s production match only in the 
presence of multi-attributes. (Preferences - special control 
Lrnents in Soar - 

* 
can also contribute to the combinatorics. 

However, their impact is much smaller than multi-attributes, and 
they are ignored here. See (Tambe, Newell and Rosenbloom, 
1990) for details.) 
3. Unique-attributes 

If multi-attributes are eliminated completely, the branching of 
the k-search tree is also eliminated. This will then limit-the 
number of tokens in the k-search tree to the number of 
conditions in the production. Thus, the cost of a production will 
be linear in the number of conditions, i.e., the-match cost will be 
bounded linearly rather than being NE-hard. For productions 
containing variables, this O(conditions) match bound is optimal, 
since all the conditions of a Droduction must be examined for the 
match in any event. The new formulation is referred to as the 
unique-attribute formulation (Tambe and Rosenbloom, 1989). 
In contrast, Soar’s current production system formulation will be 
henceforth referred to as the unrestricted formulation, i.e., a 
formulation with no representational restrictions. (This 
unrestricted formulation was referred to as the multi-attribute 
formulation in (Tambe and Rosenbloom, 1989, Tambe, Newell 
and Rosenbloom, 1990)). 

The principle computational impact of going with unique- 
attributes is the removal of the combinatorial k-search from the 
match - all combinatorics will now occur as search in problem 
spaces. In (Tambe and Rosenbloom, 1989). detailed 
experiments on unique-attributes demonstrated the ability of the 
unique-attributes to eliminate the combinatorics from the 
production match, and to outperform the unrestricted Soar 
formulation in various tasks. 

Basically, the unique-attribute formulation trades off some 
expressive power to gain efficiency in the production match. 
This loss in expressive power is not inconsequential. It 
manifests itself in three issues. First, multi-attributes are used in 
encoding unstructured sets in working memory. For instance, in 
Figure 2-1-b, points B and C are an unstructured set of points 
connected to point A. With unique-attributes, all sets in working 
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memory have to be structured (e.g., lists), which may not always 
be easy (Tambe and Rosenbloom, 1989). Second, the loss of 
multi-attributes causes a loss in chunk generality. A much larger 
number of unique-attribute chunks may be required to gain the 
same amount of coverage as an unrestricted chunk. Until such 
coverage is obtained, the unique-attributes have to perform 
potentially expensive problem-space search. So far, in the tasks 
encoded in the unique-attribute formulation, these two issues 
have not been a major problem (Tambe and Rosenbloom, 1989). 

The third implication of the unique-attributes is the inability 
to process arbitrary sets in a single decision, which is important 
in cognitive modeling tasks such as syllogisms (Polk, Newell, 
and Lewis, 1989). The unrestricted formulation allows this type 
of processing. With unique-attributes, sets are structured and 
have to be processed in multiple decisions (or a large number of 
chunks have to be learned to allow the processing to occur in a 
single decision) (Tambe and Rosenbloom, 1989). These three 
issues imply that the unique-attribute formulation is not the best 
conceivable alternative to the current formulation - its 
expressive power can potentially be improved. 
4. Evaluating Alternative Formulations 

The unique-attribute formulation is not the best conceivable 
formulation. But, in practice, is it the best possible?, i.e., is the 
tradeoff in unique-attributes the best rrcrdeo#? This is a difficult 
question. As shown later, different formulations, which 
polynomially bound the match, restrict the production system in 
different ways and engage in different tradeoffs. The concept of 
the best @a&o#is imprecise. 

Thus, it is impossible to devise an independent test to 
determine if the unique-attribute, or any other formulation is the 
best possible in practice, without a comparison with other 
formulations. That is, to determine the best, different 
formulations have to be compared and ranked. Even this 
comparison is quite difficult. However, we can enumerate a set 
of requirements, which will help in comparing different 
formulations. These requirements can be divided into absolute 
and relative. Absolute requirements allow formulations to be 
evaluated independent of each other, while relative requirements 
only enable comparative evaluations. The absolute requirements 
are: 
1. Polynomial bound on match complexity: The match 

complexity of the desired re resentation should be 
polynomially bounded (in num er of conditions in a g 
production and wmes in the s 

f 
stem). 

2. Closure under chunking: f the productions and the 
workin 
particu ar P 

memory meet the restrictions imposed by a 
re 

$ 
esentation 

chunks 
scheme before chunking, the 

shou d also meet the restriction. If chunking 
violates the restrictions and creates expensive chunks, 
clearly that defeats the purpose of this exercise. 

3. zure;tness of match: The match should provide correct 
. 

The relative requirements are: 
1. Expressive adequacy: How easy/difficult is it to encode 

various existing Soar tasks in a given representation? The 
prevrous section discussed this issue with respect to 
unique-attributes. Schemes that allow easier encoding of 
various Soar tasks are referred. 

2. Relative e rciency: 
fff 

fv ithin the space of polynomially 
bounded ormulations, schemes with smaller polynomial 
bounds are preferred. 

- _ 
3. Chunk&g generality: This refers to the number of chunks . 

it%:-i! 
-.- 
?ia F 

articular representation to cover a given 
ormulation providing higher chunking 

4.5 - 
enerality is preferred. 
rrnciple of uniformity: Formulations that do not introduce 

arbitrary divisions in productions or working m.em+ory are 
f-ke;l. Soar strongly *adheres to the. prmct Fwe;f 

1990). l%i 
m varrous archnectural mechamsms d 
s re urrement extends that principle to th; q - 

production system formulation. 
These are diverse requirements, possibly conflicting with 

each other. Hence these requirements have to be prioritized: the 
requirements are listed above in their order of priority. Given 
the goals of the current research, we adopt the position that the 
absolute requirements must be met by any candidate 
formulation. Even with this, the candidate formulations are not 
well ordered. First, the relative requirements are quite 
subjective. Second, there are interesting tradeoffs/interactions 
among these requirements, e.g., it may be possible that a 
formulation with an O(n2) match bound may provide better 
chunking generality than a formulation with a O(n) match 
bound. Even with these shortcomings, the requirements and 
priorities outlined above are of great help in the search for 
alternative formulations. 

As an example of the use of these requirements, consider a 
combination of unique- and multi-attributes that attempts to 
introduce limited amounts of multi-attributes to gain 
expressibility without sacrificing efficiency. First, suppose this 
formulation adheres to the principle of uniformity and does not 
explicitly separate out multi- and unique-attributes from each 
other. Then, it has no way of controlling the number of multi- 
attributes matching a production - it is exactly like the 
unrestricted Soar system. The match cost of productions 
becomes unpredictable and the polynomial match bound 
requirement is violated. 

Now, suppose the violation of the principle of uniformity is 
accepted: the system explicitly labels and separates unique- and 
multi-attributes. It can then bound the number of multi-attribute- 
matching conditions in any single production - thus controlling 
the match cost. However, it is possible for such a system to 
create chunks where the number of multi-attribute-matching 
conditions in the production exceeds the specified bound - 
generating expensive chunks. This violates the requirement of 
closure under chunking. Thus, this unique- and multi-attribute 
combination does not work. 

Note that in this paper, schemes that impose arbitrary time- 
based cutoffs on the match or those that require Soar to chunk 
selectively, are rejected as possibilities. Such schemes do not 
integrate well with the rest of the Soar architecture, i.e., they do 
not conform with the assumptions underlying the Soar 
architecture (Tambe, Newell and Rosenbloom, 1990). 
5. Formulations Based on Existing Match 

Algorithms 
The previous section showed that the combination of unique- 

plus multi-attributes does not meet all the absolute and relative 
requirements. Generating a formulation that satisfies all the 
requirements is difficult - there is no method that, given the 
requirements, will directly provide a formulation satisfying 
them. Combined with the need for comparing different 
formulations to determine the best among them, this situation 
dictates a strategy for exhaustively searching the space of 
alternative formulations; then for each formulation, testing if it 
meets the requirements, and then comparing its properties with 
other formulations to test if it is better. 

Although part of the search has already been conducted 
(Section 3 and 4), how should the exhaustive search proceed 
further? The problem here is the absence of a device to 
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systematically generate required alternatives. Without such a 
device, we cannot understand and usefully exploit the structure 
of the space of alternative formulations. Therefore, this paper 
introduces a framework for systematically generating alternative 
production system formulations. To specify the framework, it is 
necessary to first identify the independent dimensions of this 
framework. Roughly, these dimensions can be divided into two 
categories: (1) those that do not require any modification to the 
current set of token-based match algorithms (introduced in 
Section 2) (2) those that require some modification. Section 6 
introduces dimensions from the second category. This section 
introduces dimensions only from the first category. These 
dimensions are based on restrictions on Soar’s working memory 
format: (class identifier attribute value). They are: 
1. Forward-attribute: Given a fixed identifier, this dimension 

imposes restrictions on the number of attributes for that 
identifier. For examule, sunuose the number of attributes is 
restricted to one. If B-1 ii-an identifier, then (class1 Bl 
attribute-l vail) and (class1 Bl attribute-2 val2) are not 
allowed simulta&ously to exist in working memo ’ 

7 
. 

2. Values-per-attribute: Given a fixed identi XX, this 
dimension imposes restrictions on the number of values- 
per-attribute for that identifier. If the number of values-per- 
attribute is restricted to one, the unique-attributes 
formulation is obtained. Multi-attributes refer to multiule 
values-per-attribute. 

1 
3. Reverse-attribute: Given a fixed value. this dimension 

im oses restrictions on the number of attributes for that 
v ue. This is symmetrical to the forward-attribute a! 
dimension. Thus, if vall is a value, then (class1 Bl 
attribute-l vall) and (class1 B2 attribute-2 vall) are not 
allowed simultaneous1 

iY 
to exist in working memo 

‘i: 
, as 

attribute-l and attri ute-2 are two different attri utes 
with the same value vall. 

4. Identifiers-per-attribute: Given a fixed value, what are the 
restrictions on. the number pf identifiers-per-attribute for 
thghyo; Thrs 1s symmetrical to the values-per-attribute 

. 
(The class slot in Soar’s wmes does not serve any semantic 

role. Hence the paper does not refer to the class slot.) Figure 5-l 
shows the four dimensions in a tabular format. There are two 
co-ordinates along each of the four dimensions - 1 and *. Here, 
an asterisk (*) refers to an arbitrary number of values, i.e., no 
restrictions on the values. In the figure, to lay out these four 
dimensions in two dimensions, the forward-attribute and values- 
per-attribute dimensions are paired. Similarly, the reverse- 
attribute and identifiers-per-attribute dimensions are paired. The 
figure shows that different combinations of co-ordinates along 
these dimensions identify different working memory 
representations. 

The choice of 1 and * for the co-ordinates is an interesting 
issue. This choice of co-ordinates covers both the unique- 
attribute and the unrestricted working memory and yields 
semantically meaningful representations like the Tree 
representation (introduced below). Furthermore, if the number 
of values-per-attribute are increased to two or more, match 
becomes combinatoric and does not admit the linear bound of 
unique-attributes. However, whether no other co-ordinates 
besides 1 and * are useful, remains unclear. 

In the unrestricted working memory representation, with a 
fixed identifier, it is possible to have an arbitrary number of 
forward-attributes and values-per-attribute. Similarly, with a 
fixed value, it is possible to have an arbitrary number of reverse- 
attributes and identifiers-per-attribute. Therefore, the 
unrestricted working memory occupies the square in the center 
of the table, where all four dimensions have a value of *. For 
unique-attributes, the restriction is only on the values-per- 

attribute - for a fixed identifier, there can be only one value- 
per-attribute. Its other dimensions are unrestricted and take the 
value of *. 
cua Indicates more restrictive l Indicates an arbitrary number 

than unique-attributes 
<ts Indicates more restrictive 

than the tree-structures 
Cl21 Indicates more restrictive 

than unique-identifiers e Indicates increasing 

restrictiveness 

(reverse- 

attribute, 

identifiers- 

per-attribute) 

(forward-attribute, values-per-attribute) 

(1, 1) 

(1, 1) 

<ua 
CUi 
eta 

(', 1) ('# '1 (1, '1 

[Multi- [Multi- 
Attr] Attr] 

<ua Tree 
<Ui <ui <Ill 
Ct.8 <ts 

(1, 1) 

<ua 
<III 
Ct.8 

(', 1) 
<ua 
<Ui 

cua Unique- 

<Ui ident 
-3l.i <ua 

<Ui 

;.;T 

4 > 

Figure 5-1: Dimensions of alternative representations. 

In Figure 5-1, the square marked as Tree restricts the reverse- 
attributes and identifiers-per-attributes to one and leaves the 
other dimensions unrestricted. This representation implies that 
two different working memory elements cannot have the same 
value in their value fields. More semantically, this 
representation corresponds to a tree-structured organization of 
the working memory. The square marked as unique-identifiers 
restricts the identifiers-per-attribute to one, but does not restrict 
any other dimension. The table shows that the Tree and unique- 
identifiers allow an arbitrary number of values-per-attribute, i.e., 
they allow multi-attributes. In fact, all the working memory 
representations in two of the cohunns allow multi-attributes; 
these columns are labeled with Wulti-attr]. 

The table shows the unrestricted working memory as the least 
restrictive form of representation. It occupies the center square 
in the table. The other representations form a restriction lattice. 
The fmt column and the first row are repeated to show the 
symmetry in this lattice. The most restrictive working memory 
representation is the one where all the dimensions have the value 
1. The table also shows that the Tree structures are more 
restrictive than the unique-identifiers; but unique-attributes are 
unrelated in terms of restrictions to either one of these. 

The important conclusion that can be made from the table is: 
unique-attributes provide the best possibie formulation within 
the four dimensions investigatz?hat is, the unique-attributes 
provide the best fit to all the absolute and relative requirements. 
All other formulations are either combinatoric, so that they 
violate the absolute requirement of a polynomial match bound; 
or they are more restrictive than the unique-attributes, so that 
unique-attributes fit the relative requirements better. First, 
consider the formulations in the third and fourth columns of the 
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table. They include the Tree and unique-identifiers, which constraint-graph where the variables are represented by nodes 
restrict the identifiers-per-attribute. These representations allow and the constraints by arcs. Each constraint specifies the set of 
multi-attributes. As described in Section 2, the match in the permitted pairs of values for the two variables involved. Thus, 
presence of multi-attributes is combinatoric: thus, all these 
formulations violate the polynomial match bound requirement. 

if Xi and Xj are two variables with domains Di and Dj 
respectively, then the constraint Rij between Xi and Xj is a 

Second, consider the formulations in the first and second subset of the Cartesian product of their domains, i.e., 
columns of the table. This includes the unique-attributes and the R, c Di x Di 
formulations more restrictive than the unique-attributes. The 
formulations that are more restrictive than the unique-attributes 
do not reduce the match bound: it is optimal to begin with. 
Furthermore, these formulations are guaranteed to not be better 
than unique-attributes along the expressive adequacy or 
chunking generality requirements, since they are more 
restrictive. 

More generally, we can also conclude that if a given 
formulation meets all the absolute requirements, then more 
restrictive formulations, which do not reduce the match bound, 
need not be investigated. If the more restrictive formulations 
possess the same match bound as the given formulation, only the 
remaining relative requirements like expressive adequacy, 
choose the better among them. However, the more restrictive 
formulations are guaranteed to not meet these remaining relative 
requirements better than the given formulation. 

Thus, the unique-attribute formulation is the best possible one 
in practice, within the four dimensions investigated. The 
general conclusions drawn here illustrate the power of the 
&amework: the conclusions exploit the structure of the search 
space made explicit by the framework. Thus, the need for 
detailed evaluation of each formulation is eliminated. 

The match for a single Soar production maps on to the 
constraint satisfaction problem as follows. The variables in the 
conditions form the variables in the constraint satisfaction 
problem. For example, the production in Figure 2-l-a can be 
represented as the constraint network in Figure 6-l. The symbols 
in working memory, i.e., symbols occupying the identifier and 
value fields of working memory elements, form the domains of 
the variables. A condition containing two variables is a 
constraint between the two variables. The condition specifies 
(or selects) the wmes with its attribute, so that each wme 
represents a permitted pair of values for the variables linked by 
the condition. If a condition contains Al as an attribute, it 
specifies all the wmes with the attribute Al. Thus, the conditions 
from Figure 6-l with the attribute connected-to specify all the 
wmes from Figure 2-l-b. Finding all possible solutions of the 
constraint satisfaction problem formed by a production will 
result in finding all possible instantiations of the production. 

current-position 

connected-to connected-to connected-to 

cx> <LT.> 9’ <w> 
6. Tokenless Match: A New Match Scheme 

The formulations introduced in the previous section were 
based on the the token-based match scheme (henceforth called 
token match). The conclusion about unique-attributes being the 
best among these formulations is based on this token match. In 
a token match, a single token indicates what variable bindings 
go together. For example, the token (2; cx> = A, cz> = C) 
from Figure 2-l-d indicates that the binding A for cx> and C for 
cz> go together. The outcome of the match is a set of 
instantiations, indicating which bindings go together. 

If a tokenZess match is allowed, then new formulations 
emerge: the unique-attribute formulation is no longer 
guaranteed to be the best. In a tokenless match, each variable 
obtains a list of bindings, independent of the bindings of other 
variables. The outcome of this match is a set of bindings for 
each variable, rather than the separate instantiations. If the 
production Length-3 in Figure 2-l-a is matched with the 
working memory from Figure 2-1-b, the result is a set of 
bindings for the variables as follows:cx> = A; cz> = B, C; cy> 
= D; cw> = E, F. The matcher guarantees that these bindings 
are consistent with each other; however, it does not explicitly 
create tokens and instantiations. This consistency requirement is 
explained in the subsection below with the help of a mapping. 
This mapping also provides ready-made algorithms to perform 
tokenless match. 
6.1. Tokenless Match and Constraint Satisfaction 

A constraint-satisfaction problem is defined as follows: given 
a set of N variables each with an associated domain and a set of 
binary constraining relations between the variables, find all 
possible N-tuples such that each N-tuple is an instantiation of 
the N variables satisfying the constraining relations (Mackworth 
and Freuder, 1985). This problem can be represented as a 

Figure 6-1: Mapping tokenless match to constraint satisfaction. 

The constraint satisfaction literature distinguishes between 
obtaining consistent bindings and forming an instantiation 
(Dechter and Pearl, 1988). Once consistent bindings are 
obtained, individual instantiations from the bindings are 
obtained separately. The tokenless match achieves a similar 
consistent set of bindings, without forming any instantiations. 
Thus, there is a mapping between the tokenless match and 
obtaining consistent bindings in constraint satisfaction problems. 
6.2. Implications of the Mapping 

The mapping between the tokenless match and constraint 
satisfaction problems provides an important notion: the relation 
between the structure of a production and the effort required in 
obtaining consistent bindings for that production. The structure 
of the production refers to the equality tests across the value 
fields of the production’s conditions. For instance, if a Soar 
production admits no equality tests between two variables in the 
value fields of its conditions, then the production has a tree 
structure. (To understand why such productions are tree- 
structured, consider a graph where the variables in the identifier 
and value fields of the production’s conditions are nodes; and 
the attributes in the conditions are links bctwcen the nodes. This 
graph is tree-structured.) Figure 2-l-a presents one such 
production without any equality tests across its value flclds. To 
demonstrate how the production structure can be exploited, we 
need the concept of arc consistency in constraint-satisfaction 
problems. 

In constraint-satisfaction problems, arc-consistency is a form 
of local consistency. Arc-consistency does not solve the general 
constraint-satisfaction problem. A constraint graph is arc- 
consistent if each of its arcs is arc-consistent. An arc between 
variables Xi and Xj is arc-consistent iff for any value n E Di 
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there is a value y E Dj such that Rij(x, y) (Mackworth, 1977). 
Here Rij(x, y) stands for the assertion that (x, y) is permitted by 
the explicit constraint Ri.. We add the following small 
symmetric requirement to d e situation above: if there is a value 
y E Di then there is a value x E Di such that Rij(x, y). 

In terms of the production match mapping, the following has 
to be satisfied for a condition with an attribute Al to be arc 
consistent: If there is a binding x for the variable <x> in its 
identifier field, then there is a binding y for its variable <y> in 
its value field, such that there exists a wme with attribute Al, 
identifier x and value y. Symmetrically, if there is a binding y 
for its variable <y> in the condition’s value field, then there 
exists a binding x for the variable cx> in its identifier field such 
that there exists a wme with attribute Al, identifier x and value 
Y- 

Arc consistency is used along with the production structure in 
the following result based on an important result from (Dechter 
and Pearl, 1988): 

If a production is tree structured, and it is made arc- 
consistent, then the bindings obtained for its variables are 
consistent. Furthermore, this arc-consistency can be achieved in 
O(wmes*conditions). 

Here, wmes refers to the number of working memory 
elements. Thus, if productions are tree-structured, then a 
tokenless match can be obtained in polynomial time, i.e., the 
match guarantees consistent bindings for the variables in the 
production using arc consistency. Note that the tokenless match 
is important in achieving this bound. A token match, despite 
tree structured 
o(wmesconditions 

productions, is still exponential - 
) (see section 4 of (Tambe and Rosenbloom, 

1989) for a demonstration of this effect). 
Note, however, that if a production is not tree structured, i.e., 

it has an equality test across the value fields of its conditions, arc 
consistency may provide a wrong result. That is, it might 
provide a binding for a variable, when a token match for the 
same production would have provided none (Tambe and 
Rosenbloom, 1990). Thus, there is a tradeoff in the complexity 
of the tokenless match and the restrictions on the equality tests. 
By restricting the structure of the production in specific ways, 
different (and increasingly complex) bounds on the tokenless 
match can be obtained (Dechter and Pearl, 1988). With this 
result, the structure of the productions emerges as an important 
dimension. Thus, two new dimensions are now available in the 
framework: tokenless match and production structure. 

7. Tokenless Match: New Formulations Emerge 
The token/tokenless match and production structure 

dimensions, along with the four dimensions introduced 
previously (see Figure 5-l), provide us with a total of six 
dimensions. From this expanded space, new formulations 
emerge, and unique-attributes are no longer guaranteed to be the 
best fit to the absolute and relative requirements. To illustrate 
this, consider a specific formulation, called the unrestricted-tree 
formutation, that works with an unrestricted working memory 
representation (from Figure 5-l) and a tokenless match, but 
restricts productions to be tree-structured. This formulation 
satisfies all of the absolute requirements. First, polynomial 
match bound is guaranteed because of the use of a tokenless 
match and tree-structured productions. As noted in Section 6.2, 
this combination yields polynomial match bound - 
O(wmes*conditions) - irrespective of the representation used 
in working memory. Second, with a small modification to 

chunking - disallowing introduction of new equality tests 
across value fields of conditions - this formulation provides 
closure under chunking. That is, only tree-structured productions 
will be chunked. Third, due to the consistency requirements 
imposed, this formulation provides correct results. Therefore, 
all the absolute requirements are satisfied. 

When the relative requirements are compared for the 
unrestricted-tree and unique-attribute formulations, it becomes 
clear that neither formulation dominates the other, and hence 
neither can be pruned a priori. In particular, in terms of 
expressive adequacy, in the unrestricted-tree formulation, 
working memory restrictions are absent (compared to unique- 
attributes); however, since equality tests across value fields of 
conditions are not available, productions have to be written in a 
fairly different manner. (If such tests become absolutely 
necessary, productions can directly test constants.) Therefore, 
we need to implement a set of tasks with this new formulation, 
and compare its performance with unique-attributes. Initial 
analysis seems to indicate some promising results for the 
unrestricted-tree formulation. For example, in the grid task 
(Tambe and Rosenbloom, 1989), the unrestricted-tree 
formulation should be able to outperform the unique-attribute 
and unrestricted formulations. The unrestricted-tree formulation 
would provide chunks with polynomial match cost, where 
similar chunks in the unrestricted formulation require an 
exponential match cost (see Section 4 of (Tambe and 
Rosenbloom, 1989)); but simultaneously it would avoid the loss 
in chunk generality that afflicts the unique-attributes (Tambe 
and Rosenbloom, 1990). The work of implementing tasks in 
this new formulation is currently in progress and remains a key 
issue for future work. 

Besides the unrestricted-tree formulation, other formulations 
based on tokenless match are also possible pambe and 
Rosenbloom, 1990). For instance, by adopting consistency 
algorithms more constraining than arc consistency (Dechter and 
Pearl, 1988). it is possible to introduce limited equality tests 
across value fields of conditions of productions. Such new 
formulations may perform better along the expressive adequacy 
dimension than the unrestricted-tree formulation, but require a 
higher polynomial bound. Other formulations that are based on 
the tree and unique-identifier working memory representations 
from Figure 5-l are also possible (Tambe and Rosenbloom, 
1990). All these formulations are competitors for the unique- 
attribute formulation. Further investigations of these new 
formulations is another key issue for future work. 
8. Relationship to Marker Passing Systems 

This section develops a mapping between the unrestricted- 
tree formulation and marker passing systems. This mapping 
illustrates the generality of the framework presented in this 
paper for alternative production system formulations - it 
manages to capture a fairly different production system 
formulation. This mapping is illustrated using the NETL 
parallel marker passing system (Fahlman, 1979). 

Conceptually, NETL is composed of a large collection of 
object nodes, like semantic nets, and a large collection of bi- 
directional links or arcs organized so that each object node can 
be linked arbitrarily to any number of other nodes in the system. 
Markers (signals) may be propagated along different links in 
parallel. Queries are posed to the NETL system, and answers are 
retrieved by passing markers between nodes. (No cancellation 
links are assumed, hence the problems from (Touretzky, 
1986) associated with marker passing systems are not relevant 
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here.) 
The mapping onto NETL relies on describing each symbol in 

the working memory as an object node of NETL. The attributes 
in working memory are links between nodes. The production to 
be matched is the query to the NETL system. Match is 
performed by passing markers between symbols. Matching a 
single condition is equivalent to sending a marker from a symbol 
bound to the identifier field of the condition (since the identifier 
of a condition is bound before matching the condition) to the 
symbols linked via the attribute in the condition. The result of 
passing this marker is a set of bindings in the value field of the 
condition. This allows bindings to be obtained for the next 
condition via marker passing. Again, the result of the match is a 
set of variable bindings, without the token information. 

E M4 

connected-to 

I connected-to connected-to 

current-position connected-to B 
/ 

Ml M2 

Figure 8-1: Mapping onto marker passing. 

Figure 8-l shows this mapping with the help of the simple 
example from Figure 2-l. The figure shows the structure 
described by the working memory in Figure 2-l-b, with the 
addition of the wme (current-position A). This working 
memory is to be matched with the production in Figure 2-l-a. 
Matching the first condition results in the marker Ml being sent 
to the symbol A. This binds the variable <x> to A. Matching the 
second condition results in marker M2 being sent to the symbols 
B and C, which become the bindings for the variable cz> in the 
value field of the second condition. Matching the third 
condition results in passing marker M3 and obtaining binding D 
for the variable cy>. Note that when two M3 markers from B 
and C reach D, they are ORed together. Finally, passing marker 
M4 obtains bindings for variable cw>. The result of the match 
is the same as the result of the arc consistency match:ex> = A; 
<z>=B,C;cy>=D;<w,=E,F. 

As in the previous modification to the definition of arc 
consistency, markers actually have to be passed in a 
bidirectional manner to achieve complete consistency in tree- 
structured productions. That is, once the markers have reached 
the leaves of the production, they are transmitted back toward 
the root. In this example, the backward marker propagation 
phase would begin by sending marker M4 back and then 
continuing onwards with M3, M2 and MI. (In an actual 
implementation, correctness requires that the backward marker 
propagation be done first. However, for expository purposes, we 
have reversed the order of marker propagation.) 

The bidirectional marker passing results in the following: 
suppose there is a binding x for a variable <x> in the identifier 
field of a condition with attribute Al. Now, with marker passing 
in the forward direction along the Al link, bindings from the 
value fields of wmes with attribute Al are obtained for the 

variable cy> in the value field of the condition. Symmetrically, 
if there is a binding y for its variable <y> in the condition’s 
value field, then with marker passing in the reverse direction 
along the Al link, bindings from the identifier fields of the 
wmes with attribute Al are obtained for the variable cx> in the 
identifier field of the condition. This is exactly what the arc 
consistency match achieves. 

Why are tree-structured productions (queries) needed in this 
mapping? In parallel marker passing systems, the particular 
equality test issues are well known as the copy confusion 
problems. That is, only tree-structured productions can be 
matched accurately. 
9. Summary and Relevance to Other Work 

A combinatorial production match is problematical for Soar 
for several reasons. This paper was focused on eliminating these 
combinatorics by introducing alternative production system 
formulations. The contributions of this paper can be 
summarized as follows: (1) it introduces absolute and relative 
requirements for evaluating alternative formulations; (2) it 
introduces a framework for generating alternative formulations; 
(3) using the framework it shows that the unique-attribute 
formulation is the best within the dimensions investigated, 
assuming a token match; (4) it introduces the tokenless match 
and maps it onto constraint satisfaction; (5) it shows that with 
tokenless match, other formulations may fit the absolute and 
relative requirements better than the unique-attributes; (6) it 
shows how an entirely different formulation - the marker- 
passing formulation - maps onto a formulation generated via 
the dimensions introduced in this paper, providing some 
evidence for the generality of the formulations considered here. 

An important question is the relevance of this research for the 
non-Soar community. The combinatorial production match is 
not a Soar speciality. It is observed in various other systems - 
OPSS-based systems (Brownston, Farrell, Kant, and Martin, 
1985) and rule-based systems like Prodigy (Minton, 1988a). In 
all these systems, there is continuing research on achieving real 
time performance (Barachini and Theuretzbacher, 1988, Parson 
and Blank, 1989), on eliminating expensive learned rules (Chase 
et al., 1989, Minton, 1988b) and load balancing schemes for 
attaining high parallelism (Acharya and Tambe, 1989, Miranker, 
1987, Tambe and Acharya, 1989) However, in general, the area 
of alternative production system formulations for solving the 
problems facing these systems has not been investigated. The 
representations in these systems are based on attribute-values, 
very similar to Soar’s representation - allowing a mapping 
between the results based on Soar’s representation to those 
systems. For instance, the utility of the distinction between 
unique- and multi-attributes for Prodigy is shown in (Etzioni, 
1990). Furthermore, representations in frame-based systems 
like Theo (Mitchell et. al., 1989) map quite well into attribute- 
values, in fact, the version used by Theo already corresponds to 
the unique-attributes (Tambe and Rosenbloom, 1989). Thus, the 
results derived in this paper would appear to be relevant to all 
these systems. In particular, the idea of a tokenless match, that 
would eliminate a significant amount of combinatorics, appears 
to be very relevant to these systems. We hope that our research 
in Soar and related research in these other systems will allow us 
to gain a better understanding of the tradeoffs in knowledge 
representation, efficiency and learning. 
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