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Abstract 

Even though specificity has been one of the most 
useful conflict resolution strategies for selecting 
productions, most existing rule-based systems use 
heuristic approximation such as the number of 
clauses to measure a rule’s specificity. This paper 
describes an approach for computing a principled 
specificity relation between rules whose conditions 
are constructed using predicates defined in a ter- 
minological knowledge base. Based on a formal 
definition about pattern subsumption relation, we 
first show that a subsumption test between two 
conjunctive patterns can be viewed as a search 
problem. Then we describe an implemented pat- 
tern classification algorithm that improves the ef- 
ficiency of the search process by deducing implicit 
conditions logically implied by a pattern and by 
reducing the search space using subsumption re- 
lationships between predicates. Our approach en- 
hances the maintainability of rule-based systems 
and the reusability of definitional knowledge. 

Introduction 
Specificity is a classic conflict resolution heuristic used 
by many rule languages from OPS through ART for 
selecting productions [McDermott and Forgy 19’781. It 
provides a convenient way for expert systems (such as 
Rl) to describe general problem solving strategies as 
well as strategies for handling exceptional cases. In a 
similar spirit, common sense reasoning also relies on 
the specificity of a rule’s antecedents to override con- 
clusions drawn by more general rules when they con- 
tradict the more specific rule. 

Even though the specificity of rules has been long 
recognized as an important information for the selec- 
tion of rules, few efforts have been made to develop al- 
gorithms for computing a principled measure of rules’ 
specificity. Instead, most existing rule systems use syn- 
tactic information such as the number of clauses as 
a heuristic approximation to the specificity of rules. 
This has both encouraged, and. to some extent neces- 
sitated, bad programming practices in which clauses 

are placed in production rules solely to outsmart the 
conflict resolution algorithm. As a result, it is hard 
to explain rules and difficult to determine how to cor- 
rectly add or revise them. Two other problems with 
rule-based systems have often been identified by crit- 
ics. First, the meaning of the terminology used by 
rules is often ill-defined [Swartout and Neches 19861. 
This makes it difficult to determine when rules are, or 
should be, relevant to some shared abstraction - which, 
in turn, makes it difficult to find and change abstrac- 
tions. Third, it is difficult to structure large rule sets 
[Fikes and Kehler 19851. This makes it difficult to de- 
compose the set into smaller, more comprehensible and 
maintainable subsets. 

To address these problems with rule-based systems, 
we have developed a production system, CLASP, where 
the semantics of predicates used in rules are de- 
fined using a term subsumption language (LOOM)’ 
[Yen et al. 19891. 0 ne of the major feature of CLASP 
is a pattern classifier that organizes patterns into a 
lattice where more specific patterns are below more 
general ones, based on the definitions of predicates 
in the patterns. Using the pattern classifier, CLASP 
can compute a well-defined specificity relation between 
rules. 

Related Work 
The idea of using the taxonomic structure of a 
terminological knowledge base to infer specificity 
relations between rules was first introduced by 
CONSUL[Mark 19811. Because rules in CONSUL 
mapped one description to another, the condition of 
a CONSUL’s rule is just a concept. Specificity of 

‘Term subsu m p tion languages refer to knowledge repre- 
sentation formalisms that employ a formal language, with 
a formal semantics, for the definition of terms (more com- 
monly referred to as concept or classes), and that deduce 
whether one term subsumes (is more general that) another 
using a classifier [Patel-Schneider et al. 19901. These for- 
malisms generally descend from the ideas presented in KL- 
ONE [Brachman and Schmolze 19851. LOOM is a term 
subsumption-based knowledge representation system devel- 
oped at USC/IS1 [Gregor and Bates 19871. 
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rules can thus be obtained directly from the con- 
cept subsumption lattice. To verify the consistency 
and completeness of expert systems, researchers have 
also developed algorithms for detecting subsumed rules 
based on a subset test of clauses [Suwa et al. 1982, 
Nguyen et al. 19851. M ore recently, the problem of 
computing the subsumption relation between plan 
classes has also been explored [Wellman 19881. 

Defining Pattern Subsumption 
Relations 

Conceptually, a pattern P2 is more specific than (i.e., 
is subsumed by) a pattern Pl if, for all states of the 
facts database, a match with P2 implies a match with 
Pl. To define the subsumption of patterns more for- 
mally, we need to introduce the following terminology. 
A pattern is denoted by PX where x denotes the set 
of variables in the pattern2. An instantiation of the 
pattern is denoted as Px(Z) where Z is a vector of 
variable bindings for x . For instance, the expression 
PlIq+ ~~2 ?&John Angela Carl]) denotes an instan- 
tiation of Pl that binds pattern variables ?xl, ?x2, 
and ?x3 to John, Angela, and Carl respectively. Let 
7 be a terminological knowledge base. Concepts and 
roles (i.e., relations) are unary predicates and binary 
predicates defined in 7. An interpretation 7~ of 7 
is a pair (D, E) h w ere V is a set of individuals de- 
scribed by terms in 7 and 6 is an extension function 
that maps concepts in 7 to subsets of V and roles in 7 
to subsets of the Cartesian product, V x V, denoted 
as V2. PE (Z) denotes that Z satisfies the condition of 
the pattern P under the extension function E, i.e., 
Vx,yEV 

0 (C x)~ iff x E g(C) 
* (R x Y)~ iff [x, y] E E(R) 
e (I1 A 1~)~ iff lf A Zg 
where C and R denote concepts and relations defined 
in 7; Zr and 12 denote two literals. 

is important for using the subsumption of patterns as 
a useful measure of the specificity of rules, for the con- 
dition of a specific rule often introduces extra variables 
to test a situation that is more complicated than the 
condition of a general rule. Enforcing that two sub- 
suming patterns have same number of variables will 
limit the usefulness of pattern subsumption taxonomy 
for controlling the firing of rules. Second, a pattern 
Ply subsumes a pattern P2x if and only if Equation 
1 holds for all possible interpretations of 7. For 
instance, suppose we define a House-owner to be a per- 
son who owns at least a house. The pattern (Own- 
house ?x ?y) does not subsume the pattern (House- 
owner ?x) because a match with the latter does not 
guarantee a match with the former due to incomplete- 
ness of the knowledge base (e.g., the system may know 
John owns some houses without knowing any specific 
houses that are owned by him). Third, the definition 
allows the parent pattern to contain extra conditions 
that do not have counterparts in the child pattern. 
For example, the pattern (robot ?x) V (animal ?x) 
subsumes the pattern (super-robot ?robot) under 
the substitution ( ?robot/?x ) even though the condi- 
tion about (animal ?x> does not have a more specific 
counterpart in the child pattern. 

To determine whether a pattern Ply subsumes an- 
other pattern P2x, we need to find a substitution that 
replaces variables in Ply by arguments in P2x such 
that the latter terminologically implies the former un- 
der the substitution. Terminological implication, de- 
noted as 3, is defined as follows: P2x 3 Ply iff 

v77 = (VJ) 

[ 
V’I E V” (P2X” (5) * (plx,& (L??))] (2) 

where the set of variables in x* is a subset of variables 
in x , and hence the variable binding of x’ is directly 
obtained from that of x . More formally, we have the 
following Theorem. 

Definition 1 Suppose Ply and P2x are two patterns Theorem 1 Suppose patterns Ply and P2x are 
whose predicates are defined in a terminological knowl- boolean combinations of literals. The pattern Ply sub- 
edge base 7. The pattern Ply subsumes P2x, denoted sumes P2x i$ there exists a subsumption substitution 
as Ply? P2x, i$ S that replaces variables of Ply by P2x’s variables 

VZT = (V, ~)vz’vn 
or constants such that P2x terminologically implies 
Ply/S based on the terminological knowledge base 7, 

(P2xE(z)*3y’EvmPlyE(Y3) (1) i-e., 

where Z and y’ are vectors of elements in V, with di- 
mension n and m respectively. 

It is easy to verify that the pattern subsumption rela- 
tion is reflexive and transitive. 

Several important points about our definition of the 
pattern subsumption relation are worth mentioning. 
First, the definition allows patterns with different num- 
ber of variables to be compared with each other. This 

2When it is not important to refer to the variables of a 
pattern, we denote patterns simply by P. 

PlytP2x i$3S such that P2x 3 Ply/S. (3) 

The proof of the theorem is based on skolemizing the 
existentially quantified variable gin Equation 1. Detail 
of the proof can be found in pen 19901. 

The subsumption substitution S can also be viewed 
as a mapping because it maps a variable of of pat- 
tern Ply to a variable or a constant in pattern P2x. 
We will use the terms “subsumption substitution” and 
“subsumption mapping” interchangeably in our discus- 
sion. Intuitively, it is easy to see that the existence of 
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Pl: (:and (father ?x ?y) (father ?x ?z) ) 
P2: (father ?u ?v) 

Figure 1: An Example of Two Indifferent Patterns 

a subsumption mapping is a sufficient condition that 
P2x is more specific than Ply because, for any in- 
stantiation of Pax’s variables, we can construct an in- 
stantiation of Ply’s variables from the subsumption 
mapping. Thus, matching P2x implies matching Ply 
if a subsumption mapping exists. 

We further define the following relationships be- 
tween patterns: 

o Two patterns are indifferent, denoted 
only if they subsume each other, i.e., 

bY -> if and 

Pl - P2 u P&P2 A P2hPl. 

Indifferent patterns are merged in the specificity lat- 
tice. Conceptually, two patterns are indifferent if, for 
any states of the fact database, either both patterns 
match or neither of them matches the fact database. 

e Two patterns are equivalent, denoted by E, if they 
are indifferent and the subsumption mapping is a 
one-to-one mapping between variables of the two 
patterns. Two indifferent patterns may not be equiv- 
alent. For instance, the patterns Pl and P2 in Fig- 
ure 1 are indifferent because Pl subsumes P2 under 
the substitution ( ?u/?x, ?v/?y, ?v/?z ) and P2 sub- 
sumes Pl under the substitution ( ?x/?u, ?y/?v ) 
or ( ?x/?u, ?z/?v ). But the two patterns are not 
equivalent because they have different instantiations 
for a given facts database. 

o Two patterns are equal, denoted by =, if they are 
equivalent under a subsumption mapping that maps 
each variable to a variable with the same name. 

The subsumption substitution differs from substitu- 
tion in unification in that it is directional. It substi- 
tutes variables/constants of a child pattern for vari- 
ables of a parent pattern, but not the other way. This 
distinction is due to the fact that a subsumption test is 
meant to test implications, which is directional, while 
unification is meant to test equality, which is bidirec- 
tional. 

Classifying Conjunctive Patterns 
This section describes an algorithm for classifying pat- 
terns that are conjunctions of non-negated literals 
(which we will refer to as conjunctive patterns). The 
algorithm consists of two steps. First, each pattern is 
normalized by making explicit in the pattern any un- 
stated conditions logically implied by the patterns and 
the terminological knowledge. Second, the algorithm 
searches for a subsumption substitutions between pairs 
of normalized patterns. 

A General Strategy 
The general strategy of CLASP’s pattern classification 
algorithm is to simplify the subsumption test between 
pairs of patterns by first normalizing them. This strat- 
egy is analogous to completing a concept definition 
before actually classifying the concept in KL-ONE’s 
classifier[Schmolze and Lipkis 19831. To formally jus- 
tify our approach, this section first defines normalized 
patterns, then describes a theorem about the subsump- 
tion test of normalized conjunctive patterns. 

A pattern is normalized if it contains no implicit 
conditions other than those that can be deduced eas- 
ily from the subsumption lattice of concepts and of 
roles, which has been precomputed by LOOM’s classi- 
fier. More formally, we define a normalized pattern as 
follows: 
Definition 2 A pattern P is said to be normalized i$ 

Vl, if P 3 1, then 31’ in P such that 1’ 3 1 (4) 
where 1 and l’s are literals with the same number of 
arguments. 
We say a pattern F is a normalized form of p if and 
only if ‘Ti is normalized and P equals F (i.e., they are 
equivalent without variable substitution). 

The rationale behind normalizing patterns is to sim- 
plify the subsumption test. Without the normaliza- 
tion process, the search for a subsumption substitu- 
tion would have to consider the possibility that a 
condition in the parent pattern subsumes a conjunc- 
tive subpattern of the child pattern. For example, 
consider rules R2 and R3 in Figure 4. The condi- 
tion (College-graduate ?y)in R2 subsumes thesub- 
pattern (Successful-Father ?z) A (Child ?z ?w) 
of R3’s condition under the substitution ?~/?a. Hav- 
ing deduced the conditions implied by these conjunc- 
tive subpatterns during the normalization process, the 
subsumption test only needs to consider pairs of condi- 
tions with the same arity (one from the parent pattern, 
one from the child pattern) for testing subsumption 
possibility of the two patterns. Thus, normalizing pat- 
terns significantly reduces the complexity of the sub- 
sumption test. The following theorem formally states 
the impact of pattern normalization to the subsump- 
tion test. 
Theorem 2 Suppose Pl and P2 are two normalized 
conjunctive patterns: 

Pl = 1; A 1; A . ..r. (5) 
P2 = 1; A 1; A . ..I& (6) 

where 1: and 1; are literals without negations. The pat- 
tern PI subsumes P2 if and only if there exists a sub- 
sumption substitution S such that every literall! in PI 
subsumes at least one literal in P2 with the same arity, 
i.e., 

PIkP2 e 

3s [Vlt in Pl, 3; in P2, such that 1; 3 1:/s] (7) 
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where li and lj have the same number of arguments. 
To prove the theorem, we first introduce the following 
lemma. 
Lemma 1 Suppose PI is a conjunction of n literals, 
i.e., Pl = 1: A 1: A I1 where I1 l1 *** nr 1, 2, . ..lA are literals 
without negations. The pattern PI subsumes a pattern 
P2 if and only if there exists a subsumption substitu- 
tion such that each literals 1’ subsumes the pattern P2 
under the substitution, i.e., 

PIhP2 e, 3s such that 

(P2 5 l,lls) A (P2 3 l;ls) A . ..(P2 3 l;/S) (8) 

Proof of Lemma 1 and Theorem 2 can be found in 
pen 19901. 

Comparing Equations 3 and 7, we can see imme- 
diately that the complexity of the subsumption test 
has been reduced significantly by first normalizing the 
patterns. Based on Theorem 2, computing whether 
P2 is more specific than Pl only requires searching for 
a subsumption mapping such that each condition (i.e., 
literal) in Pl subsumes at least one condition (i.e., lit- 
eral) in P2 under the mapping. We will refer to a P2’s 
condition that is subsumed by a condition 1; in Pl 
as Ii’s subsumee. The subsumption test between nor- 
malized conjunctive patterns, thus, is a simpler search 
problem. The following two sections describe the nor- 
malization of patterns and the subsumption test be- 
tween normalized patterns implemented in CLASP. 

Normalizing Pat terns 
The normalization step transforms each pattern into 

an equivalent normalized pattern. Five kinds of nor- 
malization steps have been implemented in CLASP: (1) 
domain and range deductions, (2) normalizing unary 
conditions, (3) normalizing binary conditions, (4) value 
restriction deductions, and (5) at-least-one deductions. 
Each normalization step will be described and illus- 
trated with examples, based on Figures 3 and 4. These 
normalization steps are correct because each one trans- 
forms a pattern into an equivalent one based on the se- 
mantics of LOOM’s term-forming expressions in Figure 
2. 
1. Domain and Range Deduction: This step deduces 

unary conditions about variables that appear in 
a binary condition using domains and ranges of 
the condition’s predicate (i.e., a relation). For in- 
stance, this step will infer an implicit condition of 
R3 (Vehicle ?c> from the range of Has-car rela- 
tion. 

2. Normalizing Unary Conditions: Unary conditions 
that involve the same variables are replaced by one 
unary condition whose predicate is the conjunction 
of the unary predicates (i.e., concepts) in the original 
pattern. This ensures that all patterns are trans- 
formed into a canonical form where each variable 
has at most one unary condition. The condition- 
side of R2 thus is normalized to combine two unary 
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(defrule R2 
: when ( : and (College-graduate ?y> 

(Child ?x ?y) 
(Car-Owner ?y)) 

. . . 1 

(defrule R3 
:when (:and (Successful-Father ?z) 

(Father ?f) 
(Child ?z ?w) 
(Son ?f Fred) 
(Female ?w) 
(Has-Car ?w ?c)) 

. . . 1 

5. 

Figure 4: Two Rules Before Normalization 

conditions about the variable ?x. into one con- 
dition (College-graduate&Car-Owner ?y> where 
College-graduate&Car-Owner is the conjunct of 
College-graduate and Car-Owner. 

Normalizing Binary Conditions: Binary conditions 
with the same arguments are collected, and replaced 
by a new composite binary condition that takes into 
account the unary conditions of its domain variable 
and its range variable. This ensures that all normal- 
ized patterns have at most two binary conditions 
for each variable pair (the argument position of the 
variables can be switched). For instance, the con- 
ditions in R3 (Child ?z ?w) A (Female ?w) are 
transformed to (Daughter ?z ?w> A (Female ?w). 
Value Restriction Deduction: Suppose a pattern 
contains conditions of the form 
( :and (Cl ?x> (R ?x ?y) . . . -1 and the def- 
inition of Cl in the terminological space has 
a value restriction on R, say C2. Then the 
pattern is equivalent to a pattern that has an 
additional unary condition (C2 ?y). For ex- 
ample, conditions (Successful-Father ?z> and 
(Daughter ?z ?w) in R3 deduce an implicit con- 
dition (College-graduate ?w) because successful- 
father has been defined as a father all whose chil- 
dren, which include daughters, are college graduates 
as shown in Figure 3 . 
At-least-one Deduction: A pattern containing two 
conditions in the form of 
(:and . . . (C ?x) . . . (R ?x a) . ..). 
where LY is either a variable or a constant, is trans- 
formed to one that replaces C by the concept C’ 
defined below, which has an additional at-least-one 
number restriction on the relation R. 
(def concept C J (:and C (:at-least 1 R))) 
Following our example, the conditions (Female ?w> 
and (Has-car ?w ?c) in R3 now can deduce an- 
other implicit condition about ?w: (Car-owner ?w>, 
for Car-Owner has been defined to be a person who 



Expression 
e 

(:and Cl CZ) 
(:and RI &) 
(:at-least 1 R) 
(:a11 R C) 
(:domain C) 
(:range C) 

Interpretation 

r4 
X=[C1](2gA [C2](4 

h/. [&1(x, Y) A [R21@9 Y) 
Xx. 3. BRI(x> Y) 
xx. b. I[Rl(x, Y) + [qb) 
h/- [Cl(x) 
h/- [Cl(Y) 

Figure 2: Semantics of Some Term-Forming Expressions 

(defconcept Person (:primitive)) 
(defconcept Hale (:and Person :primitive)) 
(defconcept Female (:and Person :primitive)) 
(defconcept College-graduate (:and Person :primitive)) 
(defrelation Child (:and :primitive (:domain Person) (:range Person))) 
(defrelation Daughter (:and Child (:range Female))) 
(defrelation Son ( : and Child ( : range Male)) ) 
(defconcept Father (: and Male (:at-least 1 Child ))) 
(defconcept Successful-Father (:and Father (:a11 Child College-graduate))) 
(defrelation Has-car (:and :primitive (:domain Person) (:range Vehicle))) 
(defconcept Car-owner (:and Person (:at-least 1 Has-car))) 

Figure 3: An Example of Terminological Knowledge 

(defrule R2 
: when 

(:and (Person ?x) 
(College-graduate&Car-Owner ?y) 
(Child ?x ?y)) 

. . . > 

(defrule R3 
: when 

(:and (Successful-Father ?z) 
(Female&Co11 ege-graduate&Car-owner ?w) 
(Daughter ?z ?w) 
(Father ?f) 
(Vehicle ?c) 
(Son ?f Fred) 
(Has-Car ?w ?c)) 

. . . 1 

Figure 5: Two rules after normalization 

has at least one car. 

Figure 5 shows the condition-sides of R2 and R3 af- 
ter they have been normalized. It is easier to see that 
R3 is actually more specific than R2, which was not 
obvious prior to normalization. 

Testing Subsumption of Normalized 
Conjunctive Pat terns 

Reducing the Search Space Although an exhaus- 
tive search that considers all possible mappings can 
not be avoided in the worst case, the search space of 
possible subsumption mapping can be significantly re- 
duced in most cases by considering the subsumption 
relationship between predicates. Normally, the condi- 
tion pattern of a rule consists of several different pred- 
icates, only a small percentage of which are subsumed 
by a predicate in another pattern. Thus, using the 
subsumption relationships between predicates, we can 
significantly reduce the the search space for finding a 
subsumption mapping. 

Our strategy is to identify potential subsumees for 
all literals in the parent pattern Pl. A literal 12 is a 
potential subsumee of a literal 11 if there exists a sub- 
sumption substitution S such that 12 $11/S. The set 
of potential subsumees of a unary literal determines 
a set of potential candidates (which we call potential 
images) that a variable can map to under a subsump- 
tion mapping. The set of potential subsumees of a 
binary literal generates mapping constraints on how 
pairs of variables should be mapped. Potential images 
are used to reduce the branching factor of the search 
space, and mapping constraints are used to prune the 
search tree. This is illustrated using the example in 
Figure 5. Only two conditions in R3, (Son ?x Fred) 
and (Daughter ?z ?w), can potentially be subsumed 
by (Cdhild ?x ?y) in R2. Since (Child ?x ?y) must 
have a subsumee under a subsumption mapping, we 
can infer that any subsumption mapping that proves 
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R3 is more specific than R2 has to satisfy one of the fol- 
lowing two mapping constraints: (1) If (Child ?x ?y) 
subsumes (Son ?f Fred), then the variable ?x should 
map to ?f and the variable?y should map to Fred. (2) 
If (Child ?x ?y) subsumes (Daughter ?z ?w), then 
the variable ?x should map to ?z and the variable ?y 
should map to ?w. Similarly, potential subsumees of 
a parent pattern’s unary condition restrict the candi- 
date images a variable can map to. Using the exam- 
ple in Figure 5 again, (Successful-father ?z) and 
(Father ?f) are the only two unary conditions in R3 
that can potentially be subsumed by (Person ?x> in 
R2. Hence, the potential images of ?x are ?z and ?f. 

The process of reducing the search space can also 
detect early failure of the subsumption test. The sub- 
sumption test terminates and returns false whenever 
(1) it fails to find any potential images for a variable 
in P2; or (2) a b inary condition in Pl fails to find any 
binary condition in P2 as a potential subsumee. 
Searching for a Subsumption Substitution A 
subsumption mapping between two normalized pat- 
terns is constrained by the potential images of each 
variables in the parent pattern and the mapping con- 
straints imposed by binary conditions of the parent 
pattern Pl. To search for a subsumption mapping that 
satisfies these constraints, which are generated by algo- 
rithms discussed in previous sections, the pattern clas- 
sifier first sorts the parent variables in increasing order 
of the number of their potential images, then performs 
a dependency-directed backtracking. The position of a 
variable in the sorted list corresponds to the level it’s 
images are assigned in the search tree. At each node, 
the current assignment of variables’ images are checked 
to see if it satisfies the mapping constraints. If it does 
not satisfy any of the mapping constraint, the algo- 
rithm backtrack to the closest node whose assignment 
causes a constraint violation. 

Discussion 

We have shown elsewhere that CLASP’s pattern clas- 
sification algorithm is sound [Yen 19901. It is also 
complete for a simple term subsumption language 
whose expressiveness is equivalent to that of FCC- in 
[Brachman and Levesque 19841. In general, an imple- 
mentation of our pattern classification algorithm is 
sound if (1) th e normalization step transforms an in- 
put pattern to an equivalent one, and (2) all identi- 
fied potential subsumees are correct (which requires 
the classifier to be sound). An implementation of the 
general algorithm is complete if (1) the normalization 
step transforms an input pattern into its normalized 
equivalent form, and (2) the complete set of potential 
subsumees are identified for each literals of the par- 
ent pattern (which requires the classifier to be com- 
plete). A more detailed discussion on the issues regard- 
ing soundness and completeness of the pattern classi- 
fication algorithm can be found in [Yen 19901. 

Determining the subsumption of normalized con- 
junctive patterns is NP-complete, for it can be re- 
duced from the problem of determining subgraph iso- 
morphism for directed graphs, which is known to be 
NP-complete. However, worst case rarely occur in 
practice. To analyze the behavior of an algorithm in 
reality, we have defined normal cases 3 and have shown 
that the complexity of the algorithm for normal cases 
is polynomial pen 19901. 

Brachman and Levesque have demonstrated that 
there is an important tradeoff between the expressive- 
ness of a terminological language and the complexity 
of its reasoner [Brachman and Levesque 19841. A sim- 
ilarly tradeoff between the computational complexity 
of the normalization process and the expressiveness of 
the terminological language has also been investigated 
[Yen 19901. 

Summary 
We have presented a principled approach to computing 
the specificity of rules whose conditions are constructed 
from terms defined using a terminological language. 
Based on a formal definition of pattern subsumption 
relation, we first show that the subsumption test be- 
tween conjunctive patterns can be viewed as a search 
problem. Then we describe a pattern classification al- 
gorithm that improves the efficiency of the search pro- 
cess in two ways. First, implicit conditions logically 
implied by a pattern is made explicit before the search 
step. Second, the algorithm attempts to reduce the 
search space using information about the subsumption 
relation between predicates. 

Our approach offers several important benefits to the 
developers of rule-based systems. First, the pattern 
classifier makes it possible to provide, for the first time, 
a principled account of the notion of rule-specificity as 
a guide to conflict resolution. This will greatly im- 
proves the predictability of rule-based systems, and 
thus alleviate the problems in maintaining them. Sec- 
ond, using pattern classifier to compute the specificity 
of methods, CLASP is able to generalize methods in 
object-oriented programming for describing a complex 
situation to which the method applies. Third, sepa- 
rating definitional knowledge from rules enhances the 
reusability of knowledge and the explanation capabil- 
ity of the system. Finally, the pattern classifier is also 
the enabling technology for our future development of 
a rule base organizer, which automatically determines 
groupings of a large set of rules based on the semantics 
of rules and rule classes. 
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