
A Principled Approach to
Reasoning about the Specificity of

John Yen
Department of Computer Science

Texas A&M University
College Station, TX 77843
Yen@CSSUN.TAMU.EDU

Abstract

Even though specificity has been one of the most
useful conflict resolution strategies for selecting
productions, most existing rule-based systems use
heuristic approximation such as the number of
clauses to measure a rule’s specificity. This paper
describes an approach for computing a principled
specificity relation between rules whose conditions
are constructed using predicates defined in a ter-
minological knowledge base. Based on a formal
definition about pattern subsumption relation, we
first show that a subsumption test between two
conjunctive patterns can be viewed as a search
problem. Then we describe an implemented pat-
tern classification algorithm that improves the ef-
ficiency of the search process by deducing implicit
conditions logically implied by a pattern and by
reducing the search space using subsumption re-
lationships between predicates. Our approach en-
hances the maintainability of rule-based systems
and the reusability of definitional knowledge.

Introduction
Specificity is a classic conflict resolution heuristic used
by many rule languages from OPS through ART for
selecting productions [McDermott and Forgy 19’781. It
provides a convenient way for expert systems (such as
Rl) to describe general problem solving strategies as
well as strategies for handling exceptional cases. In a
similar spirit, common sense reasoning also relies on
the specificity of a rule’s antecedents to override con-
clusions drawn by more general rules when they con-
tradict the more specific rule.

Even though the specificity of rules has been long
recognized as an important information for the selec-
tion of rules, few efforts have been made to develop al-
gorithms for computing a principled measure of rules’
specificity. Instead, most existing rule systems use syn-
tactic information such as the number of clauses as
a heuristic approximation to the specificity of rules.
This has both encouraged, and. to some extent neces-
sitated, bad programming practices in which clauses

are placed in production rules solely to outsmart the
conflict resolution algorithm. As a result, it is hard
to explain rules and difficult to determine how to cor-
rectly add or revise them. Two other problems with
rule-based systems have often been identified by crit-
ics. First, the meaning of the terminology used by
rules is often ill-defined [Swartout and Neches 19861.
This makes it difficult to determine when rules are, or
should be, relevant to some shared abstraction - which,
in turn, makes it difficult to find and change abstrac-
tions. Third, it is difficult to structure large rule sets
[Fikes and Kehler 19851. This makes it difficult to de-
compose the set into smaller, more comprehensible and
maintainable subsets.

To address these problems with rule-based systems,
we have developed a production system, CLASP, where
the semantics of predicates used in rules are de-
fined using a term subsumption language (LOOM)’
[Yen et al. 19891. 0 ne of the major feature of CLASP
is a pattern classifier that organizes patterns into a
lattice where more specific patterns are below more
general ones, based on the definitions of predicates
in the patterns. Using the pattern classifier, CLASP
can compute a well-defined specificity relation between
rules.

Related Work
The idea of using the taxonomic structure of a
terminological knowledge base to infer specificity
relations between rules was first introduced by
CONSUL[Mark 19811. Because rules in CONSUL
mapped one description to another, the condition of
a CONSUL’s rule is just a concept. Specificity of

‘Term subsu m p tion languages refer to knowledge repre-
sentation formalisms that employ a formal language, with
a formal semantics, for the definition of terms (more com-
monly referred to as concept or classes), and that deduce
whether one term subsumes (is more general that) another
using a classifier [Patel-Schneider et al. 19901. These for-
malisms generally descend from the ideas presented in KL-
ONE [Brachman and Schmolze 19851. LOOM is a term
subsumption-based knowledge representation system devel-
oped at USC/IS1 [Gregor and Bates 19871.

YEN 701

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

rules can thus be obtained directly from the con-
cept subsumption lattice. To verify the consistency
and completeness of expert systems, researchers have
also developed algorithms for detecting subsumed rules
based on a subset test of clauses [Suwa et al. 1982,
Nguyen et al. 19851. M ore recently, the problem of
computing the subsumption relation between plan
classes has also been explored [Wellman 19881.

Defining Pattern Subsumption
Relations

Conceptually, a pattern P2 is more specific than (i.e.,
is subsumed by) a pattern Pl if, for all states of the
facts database, a match with P2 implies a match with
Pl. To define the subsumption of patterns more for-
mally, we need to introduce the following terminology.
A pattern is denoted by PX where x denotes the set
of variables in the pattern2. An instantiation of the
pattern is denoted as Px(Z) where Z is a vector of
variable bindings for x . For instance, the expression
PlIq+ ~~2 ?&John Angela Carl]) denotes an instan-
tiation of Pl that binds pattern variables ?xl, ?x2,
and ?x3 to John, Angela, and Carl respectively. Let
7 be a terminological knowledge base. Concepts and
roles (i.e., relations) are unary predicates and binary
predicates defined in 7. An interpretation 7~ of 7
is a pair (D, E) h w ere V is a set of individuals de-
scribed by terms in 7 and 6 is an extension function
that maps concepts in 7 to subsets of V and roles in 7
to subsets of the Cartesian product, V x V, denoted
as V2. PE (Z) denotes that Z satisfies the condition of
the pattern P under the extension function E, i.e.,
Vx,yEV

0 (C x)~ iff x E g(C)
* (R x Y)~ iff [x, y] E E(R)
e (I1 A 1~)~ iff lf A Zg
where C and R denote concepts and relations defined
in 7; Zr and 12 denote two literals.

is important for using the subsumption of patterns as
a useful measure of the specificity of rules, for the con-
dition of a specific rule often introduces extra variables
to test a situation that is more complicated than the
condition of a general rule. Enforcing that two sub-
suming patterns have same number of variables will
limit the usefulness of pattern subsumption taxonomy
for controlling the firing of rules. Second, a pattern
Ply subsumes a pattern P2x if and only if Equation
1 holds for all possible interpretations of 7. For
instance, suppose we define a House-owner to be a per-
son who owns at least a house. The pattern (Own-
house ?x ?y) does not subsume the pattern (House-
owner ?x) because a match with the latter does not
guarantee a match with the former due to incomplete-
ness of the knowledge base (e.g., the system may know
John owns some houses without knowing any specific
houses that are owned by him). Third, the definition
allows the parent pattern to contain extra conditions
that do not have counterparts in the child pattern.
For example, the pattern (robot ?x) V (animal ?x)
subsumes the pattern (super-robot ?robot) under
the substitution (?robot/?x) even though the condi-
tion about (animal ?x> does not have a more specific
counterpart in the child pattern.

To determine whether a pattern Ply subsumes an-
other pattern P2x, we need to find a substitution that
replaces variables in Ply by arguments in P2x such
that the latter terminologically implies the former un-
der the substitution. Terminological implication, de-
noted as 3, is defined as follows: P2x 3 Ply iff

v77 = (VJ)

[
V’I E V” (P2X” (5) * (plx,& (L??))] (2)

where the set of variables in x* is a subset of variables
in x , and hence the variable binding of x’ is directly
obtained from that of x . More formally, we have the
following Theorem.

Definition 1 Suppose Ply and P2x are two patterns Theorem 1 Suppose patterns Ply and P2x are
whose predicates are defined in a terminological knowl- boolean combinations of literals. The pattern Ply sub-
edge base 7. The pattern Ply subsumes P2x, denoted sumes P2x i$ there exists a subsumption substitution
as Ply? P2x, i$ S that replaces variables of Ply by P2x’s variables

VZT = (V, ~)vz’vn
or constants such that P2x terminologically implies
Ply/S based on the terminological knowledge base 7,

(P2xE(z)*3y’EvmPlyE(Y3) (1) i-e.,

where Z and y’ are vectors of elements in V, with di-
mension n and m respectively.

It is easy to verify that the pattern subsumption rela-
tion is reflexive and transitive.

Several important points about our definition of the
pattern subsumption relation are worth mentioning.
First, the definition allows patterns with different num-
ber of variables to be compared with each other. This

2When it is not important to refer to the variables of a
pattern, we denote patterns simply by P.

PlytP2x i$3S such that P2x 3 Ply/S. (3)

The proof of the theorem is based on skolemizing the
existentially quantified variable gin Equation 1. Detail
of the proof can be found in pen 19901.

The subsumption substitution S can also be viewed
as a mapping because it maps a variable of of pat-
tern Ply to a variable or a constant in pattern P2x.
We will use the terms “subsumption substitution” and
“subsumption mapping” interchangeably in our discus-
sion. Intuitively, it is easy to see that the existence of

702 KNOWLEDGEREPRESENTATION

Pl: (:and (father ?x ?y) (father ?x ?z))
P2: (father ?u ?v)

Figure 1: An Example of Two Indifferent Patterns

a subsumption mapping is a sufficient condition that
P2x is more specific than Ply because, for any in-
stantiation of Pax’s variables, we can construct an in-
stantiation of Ply’s variables from the subsumption
mapping. Thus, matching P2x implies matching Ply
if a subsumption mapping exists.

We further define the following relationships be-
tween patterns:

o Two patterns are indifferent, denoted
only if they subsume each other, i.e.,

bY -> if and

Pl - P2 u P&P2 A P2hPl.

Indifferent patterns are merged in the specificity lat-
tice. Conceptually, two patterns are indifferent if, for
any states of the fact database, either both patterns
match or neither of them matches the fact database.

e Two patterns are equivalent, denoted by E, if they
are indifferent and the subsumption mapping is a
one-to-one mapping between variables of the two
patterns. Two indifferent patterns may not be equiv-
alent. For instance, the patterns Pl and P2 in Fig-
ure 1 are indifferent because Pl subsumes P2 under
the substitution (?u/?x, ?v/?y, ?v/?z) and P2 sub-
sumes Pl under the substitution (?x/?u, ?y/?v)
or (?x/?u, ?z/?v). But the two patterns are not
equivalent because they have different instantiations
for a given facts database.

o Two patterns are equal, denoted by =, if they are
equivalent under a subsumption mapping that maps
each variable to a variable with the same name.

The subsumption substitution differs from substitu-
tion in unification in that it is directional. It substi-
tutes variables/constants of a child pattern for vari-
ables of a parent pattern, but not the other way. This
distinction is due to the fact that a subsumption test is
meant to test implications, which is directional, while
unification is meant to test equality, which is bidirec-
tional.

Classifying Conjunctive Patterns
This section describes an algorithm for classifying pat-
terns that are conjunctions of non-negated literals
(which we will refer to as conjunctive patterns). The
algorithm consists of two steps. First, each pattern is
normalized by making explicit in the pattern any un-
stated conditions logically implied by the patterns and
the terminological knowledge. Second, the algorithm
searches for a subsumption substitutions between pairs
of normalized patterns.

A General Strategy
The general strategy of CLASP’s pattern classification
algorithm is to simplify the subsumption test between
pairs of patterns by first normalizing them. This strat-
egy is analogous to completing a concept definition
before actually classifying the concept in KL-ONE’s
classifier[Schmolze and Lipkis 19831. To formally jus-
tify our approach, this section first defines normalized
patterns, then describes a theorem about the subsump-
tion test of normalized conjunctive patterns.

A pattern is normalized if it contains no implicit
conditions other than those that can be deduced eas-
ily from the subsumption lattice of concepts and of
roles, which has been precomputed by LOOM’s classi-
fier. More formally, we define a normalized pattern as
follows:
Definition 2 A pattern P is said to be normalized i$

Vl, if P 3 1, then 31’ in P such that 1’ 3 1 (4)
where 1 and l’s are literals with the same number of
arguments.
We say a pattern F is a normalized form of p if and
only if ‘Ti is normalized and P equals F (i.e., they are
equivalent without variable substitution).

The rationale behind normalizing patterns is to sim-
plify the subsumption test. Without the normaliza-
tion process, the search for a subsumption substitu-
tion would have to consider the possibility that a
condition in the parent pattern subsumes a conjunc-
tive subpattern of the child pattern. For example,
consider rules R2 and R3 in Figure 4. The condi-
tion (College-graduate ?y)in R2 subsumes thesub-
pattern (Successful-Father ?z) A (Child ?z ?w)
of R3’s condition under the substitution ?~/?a. Hav-
ing deduced the conditions implied by these conjunc-
tive subpatterns during the normalization process, the
subsumption test only needs to consider pairs of condi-
tions with the same arity (one from the parent pattern,
one from the child pattern) for testing subsumption
possibility of the two patterns. Thus, normalizing pat-
terns significantly reduces the complexity of the sub-
sumption test. The following theorem formally states
the impact of pattern normalization to the subsump-
tion test.
Theorem 2 Suppose Pl and P2 are two normalized
conjunctive patterns:

Pl = 1; A 1; A . ..r. (5)
P2 = 1; A 1; A . ..I& (6)

where 1: and 1; are literals without negations. The pat-
tern PI subsumes P2 if and only if there exists a sub-
sumption substitution S such that every literall! in PI
subsumes at least one literal in P2 with the same arity,
i.e.,

PIkP2 e

3s [Vlt in Pl, 3; in P2, such that 1; 3 1:/s] (7)

YEN 703

where li and lj have the same number of arguments.
To prove the theorem, we first introduce the following
lemma.
Lemma 1 Suppose PI is a conjunction of n literals,
i.e., Pl = 1: A 1: A I1 where I1 l1 *** nr 1, 2, . ..lA are literals
without negations. The pattern PI subsumes a pattern
P2 if and only if there exists a subsumption substitu-
tion such that each literals 1’ subsumes the pattern P2
under the substitution, i.e.,

PIhP2 e, 3s such that

(P2 5 l,lls) A (P2 3 l;ls) A . ..(P2 3 l;/S) (8)

Proof of Lemma 1 and Theorem 2 can be found in
pen 19901.

Comparing Equations 3 and 7, we can see imme-
diately that the complexity of the subsumption test
has been reduced significantly by first normalizing the
patterns. Based on Theorem 2, computing whether
P2 is more specific than Pl only requires searching for
a subsumption mapping such that each condition (i.e.,
literal) in Pl subsumes at least one condition (i.e., lit-
eral) in P2 under the mapping. We will refer to a P2’s
condition that is subsumed by a condition 1; in Pl
as Ii’s subsumee. The subsumption test between nor-
malized conjunctive patterns, thus, is a simpler search
problem. The following two sections describe the nor-
malization of patterns and the subsumption test be-
tween normalized patterns implemented in CLASP.

Normalizing Pat terns
The normalization step transforms each pattern into

an equivalent normalized pattern. Five kinds of nor-
malization steps have been implemented in CLASP: (1)
domain and range deductions, (2) normalizing unary
conditions, (3) normalizing binary conditions, (4) value
restriction deductions, and (5) at-least-one deductions.
Each normalization step will be described and illus-
trated with examples, based on Figures 3 and 4. These
normalization steps are correct because each one trans-
forms a pattern into an equivalent one based on the se-
mantics of LOOM’s term-forming expressions in Figure
2.
1. Domain and Range Deduction: This step deduces

unary conditions about variables that appear in
a binary condition using domains and ranges of
the condition’s predicate (i.e., a relation). For in-
stance, this step will infer an implicit condition of
R3 (Vehicle ?c> from the range of Has-car rela-
tion.

2. Normalizing Unary Conditions: Unary conditions
that involve the same variables are replaced by one
unary condition whose predicate is the conjunction
of the unary predicates (i.e., concepts) in the original
pattern. This ensures that all patterns are trans-
formed into a canonical form where each variable
has at most one unary condition. The condition-
side of R2 thus is normalized to combine two unary

704 KNOWLEDGE REPR~~~~~TATIoN

(defrule R2
: when (: and (College-graduate ?y>

(Child ?x ?y)
(Car-Owner ?y))

. . . 1

(defrule R3
:when (:and (Successful-Father ?z)

(Father ?f)
(Child ?z ?w)
(Son ?f Fred)
(Female ?w)
(Has-Car ?w ?c))

. . . 1

5.

Figure 4: Two Rules Before Normalization

conditions about the variable ?x. into one con-
dition (College-graduate&Car-Owner ?y> where
College-graduate&Car-Owner is the conjunct of
College-graduate and Car-Owner.

Normalizing Binary Conditions: Binary conditions
with the same arguments are collected, and replaced
by a new composite binary condition that takes into
account the unary conditions of its domain variable
and its range variable. This ensures that all normal-
ized patterns have at most two binary conditions
for each variable pair (the argument position of the
variables can be switched). For instance, the con-
ditions in R3 (Child ?z ?w) A (Female ?w) are
transformed to (Daughter ?z ?w> A (Female ?w).
Value Restriction Deduction: Suppose a pattern
contains conditions of the form
(:and (Cl ?x> (R ?x ?y) . . . -1 and the def-
inition of Cl in the terminological space has
a value restriction on R, say C2. Then the
pattern is equivalent to a pattern that has an
additional unary condition (C2 ?y). For ex-
ample, conditions (Successful-Father ?z> and
(Daughter ?z ?w) in R3 deduce an implicit con-
dition (College-graduate ?w) because successful-
father has been defined as a father all whose chil-
dren, which include daughters, are college graduates
as shown in Figure 3 .
At-least-one Deduction: A pattern containing two
conditions in the form of
(:and . . . (C ?x) . . . (R ?x a) . ..).
where LY is either a variable or a constant, is trans-
formed to one that replaces C by the concept C’
defined below, which has an additional at-least-one
number restriction on the relation R.
(def concept C J (:and C (:at-least 1 R)))
Following our example, the conditions (Female ?w>
and (Has-car ?w ?c) in R3 now can deduce an-
other implicit condition about ?w: (Car-owner ?w>,
for Car-Owner has been defined to be a person who

Expression
e

(:and Cl CZ)
(:and RI &)
(:at-least 1 R)
(:a11 R C)
(:domain C)
(:range C)

Interpretation

r4
X=[C1](2gA [C2](4

h/. [&1(x, Y) A [R21@9 Y)
Xx. 3. BRI(x> Y)
xx. b. I[Rl(x, Y) + [qb)
h/- [Cl(x)
h/- [Cl(Y)

Figure 2: Semantics of Some Term-Forming Expressions

(defconcept Person (:primitive))
(defconcept Hale (:and Person :primitive))
(defconcept Female (:and Person :primitive))
(defconcept College-graduate (:and Person :primitive))
(defrelation Child (:and :primitive (:domain Person) (:range Person)))
(defrelation Daughter (:and Child (:range Female)))
(defrelation Son (: and Child (: range Male)))
(defconcept Father (: and Male (:at-least 1 Child)))
(defconcept Successful-Father (:and Father (:a11 Child College-graduate)))
(defrelation Has-car (:and :primitive (:domain Person) (:range Vehicle)))
(defconcept Car-owner (:and Person (:at-least 1 Has-car)))

Figure 3: An Example of Terminological Knowledge

(defrule R2
: when

(:and (Person ?x)
(College-graduate&Car-Owner ?y)
(Child ?x ?y))

. . . >

(defrule R3
: when

(:and (Successful-Father ?z)
(Female&Co11 ege-graduate&Car-owner ?w)
(Daughter ?z ?w)
(Father ?f)
(Vehicle ?c)
(Son ?f Fred)
(Has-Car ?w ?c))

. . . 1

Figure 5: Two rules after normalization

has at least one car.

Figure 5 shows the condition-sides of R2 and R3 af-
ter they have been normalized. It is easier to see that
R3 is actually more specific than R2, which was not
obvious prior to normalization.

Testing Subsumption of Normalized
Conjunctive Pat terns

Reducing the Search Space Although an exhaus-
tive search that considers all possible mappings can
not be avoided in the worst case, the search space of
possible subsumption mapping can be significantly re-
duced in most cases by considering the subsumption
relationship between predicates. Normally, the condi-
tion pattern of a rule consists of several different pred-
icates, only a small percentage of which are subsumed
by a predicate in another pattern. Thus, using the
subsumption relationships between predicates, we can
significantly reduce the the search space for finding a
subsumption mapping.

Our strategy is to identify potential subsumees for
all literals in the parent pattern Pl. A literal 12 is a
potential subsumee of a literal 11 if there exists a sub-
sumption substitution S such that 12 $11/S. The set
of potential subsumees of a unary literal determines
a set of potential candidates (which we call potential
images) that a variable can map to under a subsump-
tion mapping. The set of potential subsumees of a
binary literal generates mapping constraints on how
pairs of variables should be mapped. Potential images
are used to reduce the branching factor of the search
space, and mapping constraints are used to prune the
search tree. This is illustrated using the example in
Figure 5. Only two conditions in R3, (Son ?x Fred)
and (Daughter ?z ?w), can potentially be subsumed
by (Cdhild ?x ?y) in R2. Since (Child ?x ?y) must
have a subsumee under a subsumption mapping, we
can infer that any subsumption mapping that proves

YEN 705

R3 is more specific than R2 has to satisfy one of the fol-
lowing two mapping constraints: (1) If (Child ?x ?y)
subsumes (Son ?f Fred), then the variable ?x should
map to ?f and the variable?y should map to Fred. (2)
If (Child ?x ?y) subsumes (Daughter ?z ?w), then
the variable ?x should map to ?z and the variable ?y
should map to ?w. Similarly, potential subsumees of
a parent pattern’s unary condition restrict the candi-
date images a variable can map to. Using the exam-
ple in Figure 5 again, (Successful-father ?z) and
(Father ?f) are the only two unary conditions in R3
that can potentially be subsumed by (Person ?x> in
R2. Hence, the potential images of ?x are ?z and ?f.

The process of reducing the search space can also
detect early failure of the subsumption test. The sub-
sumption test terminates and returns false whenever
(1) it fails to find any potential images for a variable
in P2; or (2) a b inary condition in Pl fails to find any
binary condition in P2 as a potential subsumee.
Searching for a Subsumption Substitution A
subsumption mapping between two normalized pat-
terns is constrained by the potential images of each
variables in the parent pattern and the mapping con-
straints imposed by binary conditions of the parent
pattern Pl. To search for a subsumption mapping that
satisfies these constraints, which are generated by algo-
rithms discussed in previous sections, the pattern clas-
sifier first sorts the parent variables in increasing order
of the number of their potential images, then performs
a dependency-directed backtracking. The position of a
variable in the sorted list corresponds to the level it’s
images are assigned in the search tree. At each node,
the current assignment of variables’ images are checked
to see if it satisfies the mapping constraints. If it does
not satisfy any of the mapping constraint, the algo-
rithm backtrack to the closest node whose assignment
causes a constraint violation.

Discussion

We have shown elsewhere that CLASP’s pattern clas-
sification algorithm is sound [Yen 19901. It is also
complete for a simple term subsumption language
whose expressiveness is equivalent to that of FCC- in
[Brachman and Levesque 19841. In general, an imple-
mentation of our pattern classification algorithm is
sound if (1) th e normalization step transforms an in-
put pattern to an equivalent one, and (2) all identi-
fied potential subsumees are correct (which requires
the classifier to be sound). An implementation of the
general algorithm is complete if (1) the normalization
step transforms an input pattern into its normalized
equivalent form, and (2) the complete set of potential
subsumees are identified for each literals of the par-
ent pattern (which requires the classifier to be com-
plete). A more detailed discussion on the issues regard-
ing soundness and completeness of the pattern classi-
fication algorithm can be found in [Yen 19901.

Determining the subsumption of normalized con-
junctive patterns is NP-complete, for it can be re-
duced from the problem of determining subgraph iso-
morphism for directed graphs, which is known to be
NP-complete. However, worst case rarely occur in
practice. To analyze the behavior of an algorithm in
reality, we have defined normal cases 3 and have shown
that the complexity of the algorithm for normal cases
is polynomial pen 19901.

Brachman and Levesque have demonstrated that
there is an important tradeoff between the expressive-
ness of a terminological language and the complexity
of its reasoner [Brachman and Levesque 19841. A sim-
ilarly tradeoff between the computational complexity
of the normalization process and the expressiveness of
the terminological language has also been investigated
[Yen 19901.

Summary
We have presented a principled approach to computing
the specificity of rules whose conditions are constructed
from terms defined using a terminological language.
Based on a formal definition of pattern subsumption
relation, we first show that the subsumption test be-
tween conjunctive patterns can be viewed as a search
problem. Then we describe a pattern classification al-
gorithm that improves the efficiency of the search pro-
cess in two ways. First, implicit conditions logically
implied by a pattern is made explicit before the search
step. Second, the algorithm attempts to reduce the
search space using information about the subsumption
relation between predicates.

Our approach offers several important benefits to the
developers of rule-based systems. First, the pattern
classifier makes it possible to provide, for the first time,
a principled account of the notion of rule-specificity as
a guide to conflict resolution. This will greatly im-
proves the predictability of rule-based systems, and
thus alleviate the problems in maintaining them. Sec-
ond, using pattern classifier to compute the specificity
of methods, CLASP is able to generalize methods in
object-oriented programming for describing a complex
situation to which the method applies. Third, sepa-
rating definitional knowledge from rules enhances the
reusability of knowledge and the explanation capabil-
ity of the system. Finally, the pattern classifier is also
the enabling technology for our future development of
a rule base organizer, which automatically determines
groupings of a large set of rules based on the semantics
of rules and rule classes.

Acknowledgements
I would like to thank Robert Neches for his encourage-
ment and support of this research. I am also grate-

3Using normal cases to analyze the complexity of in-
tractable algorithm has been suggested by Bernard Nebel
[Nebel 19891.

706 KNOWLEDGEREPRESENTATION

ful to Robert MacGregor, Bill Swartout, and David
Benjamin for their fruitful ideas regarding the the pat-
tern classification algorithm. Finally, the research on
CLASP has benefited from many discussions with Paul
Rosenbloom and John Granacki. Part of the work de-
scribed in this paper was supported by Engineering
Excellence Fund at Texas A&M University.

References
[Brachman and Levesque, 19841 Ronald J. Brachman

and Hector J. Levesque. The tractability of
subsumption in frame-based description languages.
In Proceedings of AAAI-84, pages 34-37, Austin,
Texas, August 1984.

[Brachman and Schmolze, 19851 R.J. Brachman and
J .G. Schmolze. An overview of the kl-one knowledge
representation system. Cognitive Science, pages
171-216, August 1985.

[Fikes and Kehler, 19851 R. Fikes and T. Kehler. The
role of frame-based representation in reasoning.
Communication ofthe ACM, 28(g), September 1985.

[Gregor and Bates, 19871 Robert Mac Gregor and
Raymond Bates. The loom knowledge represen-
tation language. Technical Report ISI/RS-87-188,
USC/Information Sciences Institute, 1987.

[Mark, 19811 W 11 i iam Mark. Representation and in-
ference in the consul system. In Proceedings of the
Seventh International Joint Conference on Artificial
Intelligence, pages 375-381. IJCAI, Morgan Kauf-
man, 1981.

[McDermott and Forgy, 19781
J. McDermott and C. Forgy. Production system con-
flict resolution strategies. In D. A. Waterman and
F. Hayes-Roth, editors, Pattern-Directed Inference
Systems. Academic Press, New York, 1978.

[Nebel, 19891 Bernhard Nebel. Terminological reason-
ing is inherently intractable. Technical Report IWBS
Report 82, IWBS, IBM Deutschland, W. Germany,
October 1989.

[Nguyen et al., 19851 T. A. Nguyen, W. A. Perkins,
and T. J. Laffey. Checking an expert system knowl-
edge base for consistency and completeness. In Pro-
ceedings of IJCAI-85, pages 375-378, Los Angeles,
CA, August 1985.

[Patel-Schneider et al., 19901
Peter F. Patel-Schneider, Bernd Owsnicki-Klewe,
Alfred Kobsa, Nicola Guarino, Robert MacGregor,
William S. Mark, Deborah McGuinness, Bernhard
Nebel, Albrecht Schmiedel, and John Yen. Report
on the workshop on term subsumption languages in
knowledge representation. to appear in AI Maga-
zine, 1990.

[Schmolze and Lipkis, 19831 James
Schmolze and Thomas Lipkis. Classification in the

kl-one knowledge representation system. In Proceed-
ings of the Eighth International Joint Conference on
Artifkial Intelligence. IJCAI, 1983.

[Suwa et al., 19821 Motoi Suwa, A. Carlisle Scott, and
Edward H. Shortliffe. An approach to verifying com-
pleteness and consistency in a rule-based expert sys-
tem. AI Magazine, 3(4):16-21, Fall 1982.

[Swartout and Neches, 19861 William Swartout and
Robert Neches. The shifting terminological space:
An impediment to evolvability. In AAAI-86, Pro-
ceedings of the National Conference on Artificial In-
telligence, Philadelphia, PA, August 1986. AAAI.

[Wellman, 19881 Michael P. Wellman. Formulation of
Tradeofls in Planning Under Uncertainty. PhD the-
sis, Massachusetts Institute of Technology, Depart-
ment of Electrical Engineering and Computer Sci-
ence, 1988. Also distributed as a Computer Science
Laboratory technical report MIT/LCS/TR-427.

pen et al., 19891 John Yen, Robert Neches, and
Robert MacGregor. Using terrninological models to
enhance the rule-based paradigm. In Proceedings
of the Second International Symposium on Artifi-
cial Intelligence, Monterrey, Mexico, October 25-27
1989.

ven, 19901 John Y en. Reasoning about specificity of
patterns in term subsumption-based systems. Tech-
nical Report TAMU 90-003, Department of Com-
puter Science, Texas A&M University, February
1990.

YEN 707

