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Abstract 

Ladkin and Maddux [LaMa87] showed how to interpret 
the calculus of time intervals defined by Allen [AZ2831 in 
terms of representations of a particular relation algebra, 
and proved that this algebra has a unique countable 
representation up to isomorphism. In this paper, we 

. consider the algebra An of n-intervals, which coincides 
with Allen’s algebra for n=2, and prove that An has a 
unique countable representation up to isomorphism for 
all n2 1. We get this result, which implies that the first 
order theory of An is decidable, by introducing the 
notion of a weak representation of an interval algebra, 
and by giving a full classification of the connected weak 
representations of A n. We also show how the 
topological properties of the set of atoms of An can be 
represented by a n-dimensional polytope. 

I. Introduction 
In [AZ2831 James Allen introduced a calculus of time 

intervals conceived as ordered pairs of real numbers. He 
considered all possible relations between two intervals 
defined in this way and described the axioms governing 
the composition of two such relations. He showed that 
these axioms are summed up in a transitivity table with 
144 entries. 

In [LiBe88] Bestougeff and Ligozat introduce a 
geometrical object to describe the topological structure of 
the set of relations of Allen. By using the properties of 
symmetry of this structure, they improve on a result of 
[Zhu87] and show that the axioms of Allen can be 
described by a transitivity table with only 43 entries. 

Ladkin and Maddux [L&87, LaMa87j observed that the 
definitions given by Allen can be expressed as defining a 
particular relation algebra, in the sense of Tarski 
[JoTu52]. They showed that there is (up to isomorphism) 
a unique countable representation of this algebra. They 
also showed how to reformulate their results in terms of a 
first order theory, which is complete, countably 
categorical, and decidable. 

In this paper we concentrate on the algebraic point of 
view. We show how the results of Allen, Ladkin and 
Maddux fit into a more general setting, where the objects 

considered are n-intervals (for n 2 1). For each positive 
integer n, there is a corresponding relation algebra A,; in 
the special case where n=2, A2 is the Allen algebra. A 
geometrical object II,,,, which is a n-dimensional 
polytope, describes the topological structure of the set of 
relations between n-intervals. 

We then examine the general problem of describing the 
representations of A,, for an arbitrary n. Slightly more 
generally, we first examine what we call weak 
representations of A,, which are in fact the objects used 
in Artificial Intelligence. We show that basically the same 
result which is true for n=2 holds for any n. More 
precisely, extending the results cited in [LudWJ, we define 
canonical functors between the class of weak 
representations of A, and those of Al . Applying the 
classification to the special case of representations yields 
the uniqueness of the countable representation of An. 

Because this paper is mainly concerned with 
representations of interval algebras, we do not give here a 
complete characterization of the polytope I-I,,. We show 
in another paper how the topological constructions can be 
applied to the non convex intervals introduced by Ladkin 
and Maddux [Lad86J. 

2. Algebras and representations 

2.1. Binary relations 
A binary relation R on a set U is by definition a subset R 
of U x U. If R is a binary relation, the transpose Rt of R 
is defined by Rt = ((x,y) E U x U I (y,x) E R). Particular 
binary relations in U are the empty relation 0, the total 
relation U x U, and the identity relation A = ((x,x)1x E U} . 

The composition of two binary relations Rt, R2, noted 
R1 0 R2, is defined by 
R1 o R2 = ( (X,Y)E U x Ul@z~ U) (X,Z)E R1 and (Z,Y)E R2). 

2.2. Relation algebras 
An algebra A= (A,+, 0, ., 1, ; , l’, -I), where +, ., and ; 
are binary operations on A, -* is a unary operation on A, 
and 0, 1, and 1’ are elements of A is called a relation 
algebra if the following conditions are satisfied : 

- (A,+, 0, ., 1) is a Boolean algebra. 
- (x ;y); z = x; (y; z) for any x,y,z E A. 
- l’;x=x=x; 1’foreveryxE A. 

LIGOZAT 7 15 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



- The formulas (x ; y) . z = 0, (x-l ; z) . y = 0, and 
(z ; y-9. x = 0 are equivalent for any x,y,z E A [J07’0.52]. 

The prototypical example of a relation algebra is the set 
P(U x U) of binary relations in a set U, with its usual 
boolean structure, and where ; is composition, 1’ the 
identity relation, and ml is transposition . 

2.3. Weak representations 
A representation of a relation algebra A is a map Q, of A 
into a direct product of algebras of the form P&J x II), 
such that: 

(a) Q is one-to-one; 
(h) @ defines a homomorphism of boolean algebras; 
(cl w = 0 ; 
(d) @(l’) = A ; 
(e) @(-l) = * . 

Condition (c), in particular, means that for any a, /3 in A, 
we have: 

0 @ (a ; P> = wa O @CP>. 
More generally, a weak representation is defined by 

dropping condition (a) and replacing condition (I) by the 
weaker condition : 

@I @ (a ; P> 2 @@a O WP). 
If A is a simple algebra, we shall say that a weak 

representation of A into P(U x U) is connected if 
Q(l)=UxU. 

3. Interval algebras 

3. 1. n-intervals and (p,q)-positions 
Let (U,c) be any totally ordered set. A n-interval is by 
definition an ordered n-uple (xl,..,xn) of points of U, that 
is such that x~<x~<...cx,. A l-interval is just a point in 
U. A 2-interval is an interval in the sense of Allen. 

The consideration of n-intervals is motivated by several 
reasons: 

- they are the natural entities for describing processes 
with a finite number of consecutive phases; 

- they can be used to represent unions-of-convex 
intervals, as defined in Ladkin [La&Q; 

- they appear in a natural way for the representation of 
temporal data in natural language, cf. [BeLi8.5, BeLi891. 

We are primarily interested in the relative positions 
between two generalized intervals a and b. We define them 
abstractly as (p&-positions: 

Definition Let p,q be two positive integers. A (p,q)- 
position n: is a map 

7t:[l ,...,p+ql -e-e> N+ ( N+ is the set of strictly 
positive integers) subject to the two conditions: 

(i) the image of n; is an initial segment of N+; 
(ii) the restrictions of n: to [ 1 ,..., p] and [p+l,..., p+q] 

are strictly increasing (hence injective) maps. 
We denote by lIP,4 the set of (p,q)-positions. A 

convenient way of representing a given (p&position n: is 
by its associated sequence (IC( l),...,@+q)). 

Examples (1) Let p-91. Then a and b are two points in 
T. If a <b, we get the map associating 1 to 1, 2 to 2, 
which is represented by (1,2); if a=b, we get (1 ,l); if 
a > b, we get (2,l). 

(2) Let p=q=2. Then we get the 13 elements 
considered by Allen. One is equality represented by 
(1,2,1,2). Six others are: 

< = (1,2,3,4) (a strictly precedes b); 
m = (1,2,2,3) (a meets b); 
o = (1,3,2,4) (a overlaps b); 
d = (2,3,1,4) (a during b); 
e = (2,3,1,3) (a ends b); 
s = (1,2,1,3) (a starts b). 

Finally, we get six more relations by exchanging the 
roles of a and b. 

(3) The element l’P,P = (l,..., p,l,..., p) is called 
the unit position in IIP,P . 

Remark. It can be convenient in some cases to identify 
the initial segment [l ,...,p+q] with the sequence of 
variables (xl ,..., xP,yl ,..., ys); hence n; can be considered as 
mapping the set (xl ,..., xp,yl ,..., yY} into N+. 

More generally, for any fimte sequence (p,...,s) of 
integers, we can define the notion of a @,...,s)-position in 
a similar way. For example : 

Definition A (p,r,q)-position G is a map 
o:[l,...,p+r+q] -----> N+ subject to the conditions: 
(i) the image-of CJ is an initial segment of N+; 
(ii) consider the decomposition of [l ,...,p+r+q] into 

three subsegments: initial of length p, middle of length r, 
terminal of length q; then the restrictions of CT to each of 
the subsegments is strictly increasing. 

We denote by IIP,r,9 the set of (p,r,q)-positions. 
Clearly, we have canonical projections of lIp,r,9 onto 

$,r 9 I-I p,q 9 ZUd K,q l 

Associated inequations 
Let n: be a (p&position, where Im(n) = El,..., k]. We can 
associate to it a set Ea (x,y) of inequations in the 
following way: 

i) for each n such that n-*(n) contains two elements xi 
and yj, &(x,Y) contains the equation xi=yj; 

ii) for each n, llnlk, let u, be an element in z-* (n); 
&(x,y) contains the inequations ul < u2 <...<uk. 

Clearly En (x,y) is essentially uniquely defined: 
because of the equations in (i), different choices in (ii) do 
not really matter. 

Operations on (p,q)-positions 
The set of (p,q)-positions is naturally provided with a 
number of operations. We now examine the principal 
ones. 
Transposition 

If n: is an element of IIp,q, the transpose n;‘of 7r is an 
element of IIq,p , defined by: 

Itt(i) = rc(p+i) forllsq; 
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7+(i) = Z(i-q) for q+lSi++q. 
In terms of pairs (a,b) of generalized intervals,trans- 

position corresponds to exchanging the roles of a and b. 
Clearly, it is an involution, namely (z~)~ = n; for any n: . 

Composition 
Definition Let ~1 E lIp,r and 7~2 E IIr,q; then 
nl 0 x2 = Wp,q(oYfJ~ np,r,q 9 Prp,r(CO = lit19 Prr,&J) = x2) l 

We say that ~1 o7r2 is the composition of 7~1 and 7~ . 

Symmetries 
If n is an element of IIp,q with Im(7c) = { l,...k) , we 

get an element lich of I’Iq,p by setting 
nh(i) = (k+l) - Ic(p+q+l-i). 

This corresponds to reversing the order on T, and 
associating to each n-interval (tl,...,b) for the initial order 
the n-interval &,,,...$I) for the new order. 

The symmetry v = h o t is an involution on Qq, 
which commutes to transposition. 

Proposition The following properties obtain, for any 
~1 E Hp,r, ~2 E JJr,q and 7~3 E nq,s: 

i) (Icl o ~2 ) o x3 = 7cl o (7c2 oz3); 
ii) 7tlol’r,r=~l and l’p,p 07~1=~1; 
iii) 1’ p,p E Ic* 0 7Clf et 1 r,r E 7Cl’ 0 7Cl ; 
iv) n E (~1 o 7~2 ) implies n;l E (n: o nxt ) and 

7c2 E (n*’ 0 7c ); 
v) (7c*olQ)’ =.rc+ 07q’ ; 
vi) (7r1 oIc2)v=7rlv 07c2". 

3.2. Constructing interval algebras 
We can now use the preceding results to construct a 
family of relation algebras. Intuitively, As will be the 
algebra defining the calculus of n-intervals, for n in a 
fixed subset S of the integers. 

Let S be a non empty subset of N. We define IIs as 
the disjoint sum of all IIp, , where p and q belong to S. 
Let the product ZI ; ~2 o P two elements 1t1 E Qq and 
QE IIp~,q~ of IIs be defined as ~1 o ~2 if q = p’, as the 
empty set otherwise; let l’s be the set of l’p,p , where p 
belongs to S; let finally transposition on IIs be defined 
componentwise. Then we have: 

Theorem The system IIs = (I&, ; , Is, f, is a connected 
polygroupoid in the sense of Comer [Com83]; it is a 
polygroup if and only if S has a unique element. 

Applying to IIs the standard construction which 
associates to a polygroupoid its complex algebra, and 
using the results of [Com83], we get simple relation 
algebras: 

Theorem For any subset S of N, the complex algebra 
As of IIs is a complete, simple, atomic relation algebra, 
with 0 $1. Moreover, As is integral if and only S has a 
unique element. 

If S =(n), we write A, instead of A{,). 

In particular, Al is the point algebra with 3 atoms. 
A2 is Allen’s algebra. A ( 1,s) is a simple algebra with 26 
atoms implicitly considered by Vilain in [ViZ82]. 

3.3. Associated polytopes 
There is a canonical way of associating a labelled 

polytope HP,, to the set of (p&relations [BeLi89]. A 
complete description of the construction is given in 
[Lig9Ob]. Here we just consider the cases p=q=1,2,3. 
The l-dimensional case 

Here there are three possible relations between two 
points: c, >, and equality 6. H1.1 is the graph in Fig. 1. 

Figure 1: H1,1 

It can be interpreted 
-in “physical” terms: Suppose U is R (the reals); any 

point x in U defines three regions; two are l-dimensional, 
corresponding resp. to y < x and y > x; they meet in a O- 
dimensional one, corresponding to 6. 

- in terms of permutations: The relative positions of 
two points x and y are of two kinds; the first kind 
comprizes general positions < and >, corresponding to 
two permutations of the list (x,y); the two permutations 
are joined by a permutation of the adjacent elements x and 
y, corresponding to collapsing x and y. 
The 2-dimensional case 

Here H2,2, is as represented in Fig. 2. It is a 2- 
dimensional polygon, with 6 vertices (O-faces), 6 arcs (l- 
vertices) and one 2-face. Here again, it has two 
interpretations: 

-A physical interpretation: Suppose (x1,x2) and (yl,y2) 
are two intervals in R, with (x1,x2) entirely on the left of 
(yl,yz); then, the position is <; moving x to the right, we 
first get xz=yl; this is position m (meets); going further, 
we have ylcx2cy2; this is position o (overlaps); then, 
depending on whether x is shorter, longer, or of the same 
length as y, we either get position s (x starts y), or 
position et (x is ended by y), or 6 (x =y); in the first two 
cases, we then get d (x during y) or df (x contains y), 
respectively; then e or 9, resp. Going still further, we 
then get ot (x is overlapped by y), then mt, then finally >. 

- An interpretation in terms of permutations: Each 
general position, where all four points xl,x2,yl,y2, are 
distinct, corresponds to a permutation of the list 
(x~,x~,Y~,Yz); associate a vertex to each general position, 
and join two vertices if the two corresponding 
permutations are related by exchanging two adjacent 
points. In this manner, one gets the graph underlying 
H2.2. 
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Figure 2: Hz.2 

The 3-dimensional case 
The polyhedron associated to the relations between 3- 

intervals is represented in Fig. 3. 

Figure 3: H3,3 

The general case 
For any pair (p,q) of integers, H,,q, is a polytope of 

dimension d(p,q)=inf(p,q), which is a connected union of 
k-cubes, for k 5 d(p,q). In particular, H “,? is n 
dimensional. It contains one n-cube, correspondmg to 
equality, and (n-l) (n- I)-cubes (corresponding to 
collapsing n-l points of x with (n-l) points of y), etc. It 
has two canonical symmetries: one corresponds to 
transposition; the other one to “reversing the time axis”. 
For example, in the case of H2.2, this last symmetry 
corresponds to the vertical symmetry in Fig. 2. 

From general results (cf. [BeLi89], [LigSOu]), the total 
number of relations (ie. the total number of faces of H,,.J 
is h(n,n), where more generally h(p,q) is defined by: 

(ii) h(p,q) = Xrna (p+q-m)! / m!(p-m)! (q-m)! . 

Remarks 
By construction, A, has a canonical symmetry 

associated with “reversing the time axis”. 
Moreover, because of their interpretation as sets of faces 

in H.,, , the elements of A, can be considered as 
elements in the Euclidian n-space; so they inherit a 
topology and a dimension; a consequence of the physical 
interpretation is that all entries in the transitivity table 
defining the operation of composition have to be 
connected elements. More can be shown about them: they 
are in fact intervals in a suitable distributive lattice. 

For AZ, the transitivity table shown in Fig. 4, together 
with the action of symmetry and transposition, 
characterizes composition [LiBe88]. 

Figure 4: Transitivity table 

4. Weak representations of interval 
algebras 

In the remaining part of the paper, we consider the con- 
nected weak representations of the integral algebras A,. 

4.1. The l-dimensional case 
The general setup is already apparent in the one- 
dimensional case. Consider a connected weak repre- 
sentation 0 of At: a: Al----> &U x U). 

Let R be a(<), A = Q(6) the diagonal in U x U. Then: 
i) R,Rt and A are mutually disjoint, their union is U x U; 
ii) R o R c R; 

By (i) and (ii), R is a strict total order. 
If <f, is in fact a representation, we also have 

VI RoR 2 R; 
vi) R o Rf 2 A v R v Rt ; 
vii) Rt ,Rz AuRuR’. 

By (v), R is dense; by (vi) (resp. (vii)) it is unbounded 
on the right (resp. left). 

Conversely, given a strict total order relation R on U, 
we get a weak representation; if R is dense and 
unbounded, it is in fact a representation. 

A consequence of this fact and the countable categoricity 
of dense, unbounded total orders is that there exists a 
unique contable representation of Al up to isomorphism. 

Example Let U = R, and R = ((u,v) I u c v) . Then we get 
a representation, which deserves to be called Allen’s l- 
dimensional representation. The graph H1,1 is dual1 
associated to the set of three regions in the plane R 1 
representing R,Rt and A. 

4.2. The 2-dimensional case 
A weak representation of A2 is defined by a set U, 
together with six binary relations R, M, 0, D, E, S on it, 
satisfying the following conditions: 
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(i) the thirteen relations A, together with R,M,O,D,E,S 
and their transposes are a partition of U x U, ie. they are 
mutually disjoint and cover U x U, 

(ii) the composition of two relations is given by the 
transitivity table in Fig. 4 together with the identities 
(4.1) and (4.2). 

In [BeLi89] this data is called a connected system of 
intervals in the sense of Allen. 

Example Let U = (il,i2}, 0 = ((i&)), M =D=E=S=R= 0. 
This is a connected weak representation of AZ, as it is 
easy to verify. It corresponds to Fig. 5. It is not a 
representation. 

il 

i2 

Figure 5 

4.3. The general case 
Consider the general case of A,, with n 2 1. Let @ be a 

connected weak representation of A, into p&J x II) : 
iD: A,----> P(U x u). 

For each element n; of IIn,n, which can be considered as 
an atom of A,, @i(z) is a binary relation Rx on U. We 
have : 

(i) (RX), for n: E IInVn, is a partition of U x U . 
(ii) for any z, K’ E I&, RX o Rx* c R,;,? . 

Recall the interpretation of the elements of IIn,n in 
terms of maps from the set {xl ,..., x*,yl,..., yn) into N+. 
We consider the following elements in A,, for II ij < n: 

aid 
bij 

is the sum of all II: such that X(xi) = n(yj). 
is the sum of all n such that Z(xi) < x(y$. 

Proposition 

(iii) aij ; aj,k = ai,k . 
:;I “b’j ; b-.k ;Jg = aid . 

b (;i, bfj ; b’jf= oeisk - 

(vii) 1’: & :” b’ij + aij . 
(viii) if i < j, then l’,,, E bij . 

5. Classifying weak representations 

5.1. From weak representations of Al to weak 
representations of A, 

Let (B,<) be a weak representation of Al ie. a strict 
total order. Let U be the set of n-intervals of B, which is 
non empty if B has more than n elements; we define a 
weak representation Gn((B,<)) in the following way: 

For each atom n; of A,: 

R, = { (x,y) E U x U I x,y satisfy &(x,y)). 
Then associating R, to rc defines a connected weak 

representation of A,,. 
It is easily shown that 6, in fact defines a functor from 
the category (in a suitable universe) of strict total orders 
to the category of connected weak representations of A,. 

We now show how to define a functor F, in the 
opposite direction. 

5.2. From weak representations of Al to weak 
representations of A, 
The construction 

Let @ = (U,(R,J) be a connected weak representation of 
A,. Consider the disjoint sum u = Ul 0 . ..o un 
of n copies Ul,..., Un of U (indexed by i =l,...,n). 

a) Define on U the relation : 
u z V, where u E Ui , v E Uj iff (u,v) E Q(aij). 

Then, because of (i,ii,iii) of the proposition in 4.3 and 
the fact that Q is a weak representation, = is an equi- 
valence relation on U. Let B be the quotient set U / =. 

b) Define on U the relation: 
u < V, where u EU~ , v E Uj iff (u,v) E @(bid). 

Using the same proposition as before, we get by (iii) that 
< defines a binary relation on B; by (v,vi,vii), and (vii), 
this relation (still noted c) is transitive, irreflexive, and 
total. Hence (B,c) = F,(u,(R&) is a strict total order. 

Moreover, the canonical injection of U into each Ui 
defines a map pi of U into B. By (viii), the sequence 
@l(u)V.*Ad 1) u is a n-interval. Hence we have a canonical 
map from U into the set of n-intervals on B. In fact, this 
map defines a morphism of weak representations 

q, : WW3) ---->(Gn 0 Fn 1 (u,(Rd). 
In the opposite direction, it is easily seen that, starting 

with a total order (B,c) with at least n elements, applying 
G,, then F,, we get a canonical isomorphism of total 
orders: 

E, : (B,<) ----> (F, o G, ) (B,<). 

Theorem The situation (F, ,G, ,+TJ~ ,E~) is an adjunction 
between categories. The functor F,, is left-adjoint to F,, . 

In particular, the canonical map r\, is a closure 
operation. We can define: 

Definition A connected weak representation of A, is 
closed if and only if the canonical map Q, is an isomor- 
phism. The closure of (II,( is (G, o F, ) (II,&)). 

Intuitively, a closed weak representation is one which 
contains all the n-intervals it implicitly defines. For 
example, the weak representation of Fig. 5 is not closed, 
since it implicitly defines four boundaries, hence six 
intervals. If n= 1, every weak representation is closed. 

In the general case, a connected weak representation is 
canonically embedded into its closure by IJ,. 

Using general results about adjunctions, we get from 
the preceding theorem: 
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Corollary The pair of functors (F, ,G,) defines an 
equivalence of categories between the categories of closed 
connected weak representations of A, and the category of 
strict total orders with at least n elements. 

Hence, we can give a full classification of the connected 
weak representations of A,,; in summary: 

- the fact for weak representations of having isomorphic 
closures define classes of equivalence; 

- each class contains (up to isomorphism) a closed 
representative; 

- closed representatives are characterized by their 
underlying point sets, which are strict total orders. 

In the special case where n=2, this classification was 
obtained in [Lig86]. 

5. 3. Representations of A,, 

Representations are special cases of weak 
representations. Moreover: 

Proposition If Q, is a representation of A,, , then it is 
a closed connected weak representation of A,,. 

This is proved as follows: consider n elements ut,..., u,, 
in U such that Po(l)(ul),...,P,(,)(u~) is a n-interval in B, 
for some map cT of [l ,...,n] into itself. Using the fact that 
<P is a representation, we can find wl in U such that 
PI(Y) = Po(l)h) and P2W =Po(2)W; hence we cm 
replace ul and u2 by wl and get the same n-interval ; 
after (n-l) steps, we get w=w,_l in U such that 
Pl(w),...&(w) is the n-interval we started with. 

By the preceding results, F, and G, define an 
equivalence of categories between the representations of 
A, and those of Al, that is, dense, unbounded linear 
orders. That is, by Cantor’s theorem: 

Theorem There is a unique countable representation of 
An, up to isomorphism. 

Since Gn((Q,<)) is such a representation, any other one 
is isomorphic to it. 

This implies that the first order theory associated to A, 
is countably categorical. Since it is finitely 
axiomatisable, because A, is finite, it is in fact decidable: 

Corollary The first order theory of A, is decidable. 

This result was also obtained independently by Ladkin 
and McKenzie. 

6. Summary 
We have generalized the calculus of time intervals 

defined by Allen to a calculus of n-intervals. We have 
shown how this generalization can be expressed in terms 
of relation algebras As, whose atoms have a natural 
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topological structure representable by a polytopc H,,,. 
We introduce the notion of weak representation of an 
interval algebra, which are the objects of interest in 
Artificial Intelligence, and give a full classification of the 
connected weak representations of A,. We deduce from 
these results the fact that A, has a unique countable 
representation, and that its first order theory is decidable. 
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