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Abstract 
Most geometric models are quantitative, making it diffiiult to abstract the 

underlying spatial information needed for tasks such as planning, learning or vision. 
Furthermore, the precision used in a typical quantitative system often exceeds the 
actual accuracy of the data. 

In this work we describe a systematic representation that builds spatial maps 
based on local qualitative relations between objects. It derives relations that are 
more “functionally relevanr - i.e. those that involve acckfental aiignments. or can be 
described based on such alignments. In one dimension, interval logic (Allen 331 
provides a mechanism for representing these type of relations; in this work we 
propose a formalism that enables us to perform aiignment-based reasoning in two 
and higher dimensions with objects at angles. The principal advanmges of this 
representation is that 

a) it is free of subjective bias, and 

b) it is complete in the qualitative sense of distinguishing all overlap/ tangency/no- 
contact geometries. 

In addition, the model is capable of handling uncertainty in the initial system 
(e.g. “the fuse box is somewhere behind the compressor) by constructing bounded 
inferences from disjunctive input dam. Two kinds of uncertainty can be handled - 
those arising from deliberate imprecision in the interest of compactness (“down the 
road from”), or those caused by an inadequacy of data (sensors, spatial 
descriptions, or maps). 
Keywords: Spatial reasoning, qualitative vision, path planning, natural language. 

1. INTRODUCI’ION 

In this paper, we present a systematic method for extracting 
meaningful symbolic descriptions from geometric data. For 
example, for the map in figure 1, consider the query “How do I 
get from the Post office to the Civic Auditorium?“. While 
conventional geometric modeling systems can represent this 
map with great precision, the problem of reasoning requires a 
measure of abstraction which is difficult to obtain from these 
large databases of geometric coordinates. In this paper we 
propose a abstraction for spatial relations based on the 
hypothesis that relations involving tangency are “more 
important” than others in the categorization of spatial 
relations, and we show how the representation can be used to 
successfully generate many of the predicates that have been 
used in modeling space. 

Very often, one assumes that the problem of spatial 
abstraction can be solved somehow, and the input to the 
model is a list of carefully chosen symbolic descriptors. The 
difficulty of this problem has long been known [McCarthy 
77,epistemological problem 41: 

“A robot must be able to express knowledge about space, 
and the locations, shapes and layouts of objects in space. 
Present programs treat only very special cases. Usually 
locations are discrete - block A may be on block B but the 
formalisms do not allow anything to be said about where 
block on B it is, and what shape space is left on block B...A 
formalism capable of representing the geometric 
information that people get from seeing and handling 
objects has not, to my knowledge, been approached.“ 

Figure 1. A map of Bryan. TX. 

1.1 What is functionally important? 

This paper is concerned mostly with spatial representation 
itself, rather than with any particular application. A new and 
powerful representation is developed that can be used to de- 
scribe and infer geometric relations under conditions of 
complete or partial information. The principal thrust is to de- 
scribe positions relative to other objects, as opposed to 
descriptions in terms of global coordinates. Such descriptions 
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arise naturally in human spatial reasoning, and many cognitive 
models are based on some particular orientation of the viewer One of the more useful aspects of this representation is the 

or in relation to other objects (e.g. ‘behind the tree”) [Dennett ability to model uncertainties in the description of the model - 

751. situations where spatial knowledge is not precise enough to 
quantify through coordinates. Two kinds of uncertainty can be 

precision/detail flexibility/abstraction 
4 c 

handled - those arising from deliberate imprecision in the in- 
terest of compactness (“down the road from the laundrv“). or 

QUANTITAllVEh4ODELS ABSlRACI'MODEfS 
hnbk h Popplestone 761 wineton 751 
lxequicha801 Kuipers dc ByunW 

~~P=-=-;s~~J - . 

Fiaure a. Given two objects, their position and orienmtion with respect to each 
other can bs described either in terms of a series of numbers (coordinates), or in 
terms of some less quantitative measure (e.g. %ross the Safeway store and veer 
right at the fork”). The two descriptions involve a tradeoff between precisiorVdetail 
and flexibility/ abstraction. 

path planning a number of qualitative systems have been 
developed, such as sequence of view-frames [Kuipers & Byun 
881, and polyhedral approximations [Ernest 861. In all these 
instances, the carefully selected domain-specific vocabulary is 
likely to result in brittle behavior when exposed to broader 
problems. 

The formal representation developed here can describe 
one, two, and three-dimensional models, involving orthogonal 
or angular relations. In the past, spatial relations have been 
developed with specific domains in mind. A large body of work 
has dealt with the orthogonal domains in the blocks world (e.g. 
[Winston 751). Geographic data systems need to be able to 
answer spatial queries [Peuquet & Ci-Xiang 871. Natural 
language generators and interpreters need to be able to 
reason about spatial prepositions [Retz-Schmidt 881. In robot 

Another motivation behind a formal theory of spatial 
relations is to provide an objective set of spatial primitives, so 
that one can remove the influence associated with selecting 

In order to define a systematic approach towards this 

the predicates used in a spatial inference system (e.g., in 
learning arches, “touches” is more important than “overlaps”). 

abstract yet comprehensive representation, we begin by 

At the same time, a formal representation, by providing a 
known domain over which it is complete, unburdens the 

identifying the qualitatively different aspects of the relative 

designer of many of the problems involved in ensuring that 
his/her vocabulary is powerful enough to describe all the 

positions of two objects in space, i.e. the basic vocabulary of 

possible descriptions that can arise. This is particularly 
appropriate 

binary spatial relations. 

for acquiring new concepts, where the 
completeness of the vocabulary and capability of hierarchical 
abstraction become important. 

contact). 

Our approach differs from these prior attempts in that we 
obtain the set of spatial primitives based on a categorization of 

Figure 4 shows some examples to illustrate the 

all possible configurations that are qualitatively distinct; this is 

importance of this kind of reasoning in human thinking. 

the sense in which it is complete. The concepts that we focus 
on involve tangency - Are the given objects are aligned at some 
face, line, or point? If not, then where is one object with respect 
to the other? At the same time, there are spatially relevant 
concepts such as “near” and “far” which we cannot model, 
since these are both in the same qualitative category (no- 

2. ONE4XMENSIONAL RELATIONS : 
LOGIC 

Let us first consider objects along a single dimension. This 
case has been investigated in depth in the study of time. We 
consider here only one of the formalisms proposed, the 
interval logic model [Allen 831 and [Malik & Binford 831 in 

The description predicates are chosen by a simple, 

which relations are typically defined only between locally 

comprehensive process. To start with, we realize that obiects in 

related events. 

No Pamild block. 
no&~ 

Topbbdcmt 
p-ud. but 4li~~fmd 

oneaimension -can be either points or intervals. Also, we 
assume that the points are ordered along some direction, 
which may be due to a physical fact (e.g. time), due to some 
abstract notion (e.g.positive numbers), or some object feature 
(e.g.direction of motion). There are three possible cases for 
relations between two objects A and B: 

i) Both A and B are points. In this case there can be only three 
W- 

FFe 4a: These arrangements of blocks are distinguished by the accidental 
alignments between face, edge, and vertices. Usually, such alignments indicate a 
functional aspect: either the alignment was artificially created, or it is the result of 
some physical process in accordance with physical laws. For example, along the 
z-axis, all the objects shown have a face tangency relation, indicating the physical 
reality of support. In addition to alignments, the other issue that is immediately 
apparent is that of size - in all three images, the blocks are graded in size. 

relations - A can be behind B (-), it can be the same 
point as B (=), or it is ahead of B (+). 

ii) A is a point and B is an interval. In this case. there are five 
qualitatively distinct cases: A is behind B (-), A is at the 
same point as the back of B (b), A is inside B (i), A is at 
the front of B (fl, and A is ahead of B (+). 

iii) Both A and B ure interaals. This is the most interesting 
case, and has been dealt with in some detail in the study 
of temporal events [Allen 831. In general thirteen 
relations are possible. These are discussed below. 

Figure 4b: A number of psychdogical tests bear wimess to the fact that the human 
cognitive process emphasizes accidental alignments. A well known example is that 
of the hexagonal cube, where the accidental alignment precludes us from seeing 
the three-dimensional shape. 

In the two-interval case, if we consider an endpoint of an 
interval C then this point can be before, inside or after B. In 
addition, there are two more cases of interest - coincidence 

722 KNOWLEDGEREPRESENTATION 



with either the front or the back boundary of B, which 
constitute the tangency cases. Altogether there are five 
regions of interest for this endpoint of C: +, f, i, b, - (ahead, front, 
interior, back, and posterior respectively). Each endpoint of C 
may be at one of these five qualitative positions, subject to the 
constraint that the front endpoint (or head) must be ahead of 
the rear endpoint (tnil), leading to a total of thirteen 
(5+3+3+1+1) positions for C with respect to B. The relation 
between two intervals C and B can then be expressed for 
example, as C (++) B, which would mean that C is lifter B. 
These relations are shown along the left hand margin of figure 
5. 

+ f i b - 

B 
- c 

- % 

Cq?-B ++ ? - 

B - 
-C l&by f+ > b 

B 
Be. < - - 

* - - 

7  - - 
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i b - 

i b - 

i i < 

i i < 

> i < 

+ b < 

+ + 7 

Figure 5. One-dimensional interval relations and the transitive inference table. 
The diagrams on the left show the relations between the intervals C and B as C 
moves leftwards from -after B to “before” B. The graph next to it shows the pro 
gression of relations during the movement: the three branches in the continuum 
represent the cases where C is longer than, equal to, or shorter than B. The table 
on the riiht shows the relationshii of an endpoint of A with respect to the interval C 
if the relations of both A end C are known with respect to another interval 8. The 
symbol ? denotes that the relation AK3 can be any of the five possible relations, + 
implies that NC can be one of (i.f,+), and * implies that the relation is in (-,b.i). 

Given the local relations between “neighboring” intervals 
(A/B) and (B/C), the transitive relation (A/C) is often 
disjunctive. The inference relations shown in figure 5 are more 
compact than Allen’s: 5x13 instead of 13x13 since they exploit 
the independence between the two ends of an interval. For 
example if A was an interval and we knew that A was overZap- 
by B {A/B = i+) and that C starts B, {C/B = bi) then we can 
conclude based on the transitivity table that with respect to C, 
the rear end of A is > or {i,f,+) and the front end of A is +. 
Therefore the relation A/C is either i+ (ot~lap-by), f+ (met-by), 
or ++ (@erJ. This establishes a constraint in the possible posi- 
tions of A with respect to C. 

This decomposition also depicts a continuum that exists be- 
tween relations, shown in the elongated vertical graph in the 
figure. C is initially ahead of B (++I, and as it moves towards B, 
it intersects B, and can have relations along one of three. 

branches, e.g., if C is smaller than B, then only the relations (if, 
ii, bi} are possible. This notion allows us to compare and 
represent the relative size of objects, which is an important 
qualitative distinction. Thus if we define a flush-translation 
opmfor $ for moving A until it is flush with B, then by observ- 
ing the relation between (PA and B one can determine whether 
A is longer, equal or shorter than B. Another benefit of the 
continuum concept is that it lets us define hierarchical 
relations, which can be used, e.g., as a measure for inductive 
bias in learning (see section 6). 

3. MULTI-DIMENSIONAL SPACES : ORTHOGONAL 
DOMAINS 

One-dimensional interval logic can be easily extended to 
multi-dimensional cases where each object is either oriented 
with the axes, or is enclosed in a box which is so oriented (if the 
axes are orthogonal, then the box becomes a cuboid). Here we 
represent the relations along each of N axes as one element in 
a N-dimensional relation. For objects that are not rectangular, 
one can associate a “front” direction, which can be used to 
determine the enclosing rectangle. 

In this logic, the “atomic element” is the triple (X,Y,reln), 
where X and Y are objects with finite extent in each dimension 
and reln is a n-vector each element of which is in the set of 
one-dimensional relations outlined above. The “disjunctive 
element” is the triple (X,Y,complex-rein), where complex-reln is 
an n-vector where each element is a disjunction from the same 
relation-set. The interpretation for this syntax is fairly 
straightforward. Figure 6 shows an example of a transitive 
inference. 

Orthogonality arises quite “naturally” in human thought 
(e.g. left, right, front, back, east, north). One problem is that 
each object often has a different “natural” orthogonal system, 
so that no one representation can model all of them. Another 
significant problem is that for non-aligned objects, the 
rectangular enclosures often overlap when the actual objects 
are disjoint. 

Figure 6. Given the twodimensional qualitative relations between the post office 
(A) and Texas Avenue (B) and Texas Avenue and the Police Station (C), we can 
transitively obtain the disjunctive relation (B,C): 

Given only its position with respect to Texas Avenue, one cannot determine the y- 
relation of the Police Station w.r.t. the post office. Thus without knowing which side 
of 25th St the police station is, one would not be able to decide which direction to 
turn into Texas Avenue. However, adding the 25th St information results in the 

output ( AC) = 
( > 

: : , which contains sufficient information to make this 

decision.. 

Nonetheless, the orthogonal representation system is 
actually quite powerful. By adding operators into the system, 
many qualitatively interesting questions can be answered. For 
example, let us consider a reflection operator p which reflects 
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the object about a +45 degree line through its bottom left 
y comer. Now, by comparing pA with A, one can answer a query 

of the form “Is it a square?“. Earlier we introduced a flush- 
translation operator; by repeating translations equal to an 
object’s own dimensions, we can define a “integer-multiple” 

n 
vector operator A; e.g. 3x 

0 
A would imply a rectangle twice as 

large as A in x and thrice as large in y, and with the same 
bottom left corner. This can be used, along with the flush- 
translate operator described earlier to compare the relative 
sizes of two objects: “A is three times as large as B in x”. We 
can also build a simple model for shape. For example, we can 

compare A with p 
n 

0 
h A to establish if “the aspect ratio for A is 

greater than 2 or less than 1”. It is clear that even concepts 
such as near and far can be actually represented in terms of 
this extended system. 

Finally, the axes of reference for these objects need not be 
perpendicular at all, indeed, they need not be straight even. 
Thus, lines of latitude and longitude, sectors on a polar plot, 
patches defined by parametric functions on a family of curves, 
can all be represented by the orthogonal model, since in each 
case, there are two clearly independent axes along which the 
interval relations can be used. 

4. OBJECTS AT ARBITRARY ANGLES 

When objects are not oriented orthogonally, relationships 
become more complex. One of the primary problems is that 
the relationships are no longer meaningful with respect to 
some absolute coordinate frame but must be expressed in 
terms of one object or the other. The road veers to the left; it 
does not “make an angle of 25.77 degrees to the 59th parallel of 
longitude”. 

We begin by constructing a comprehensive mapping of the 
relations between two objects at an angle, in the qualitative 
contact sense. Since angular relations of B w.r.t A are 
dependent on A’s direction, which is generally not related to 
B’s direction, the operators in this formalism are non- 
commutative and do not have well-defined inverses, i.e., given 
the position (A/B), the (B/A) position cannot be determined. 

Let us consider the relations with respect to a single object 
A, which has a designated front. This defines four angular 
quadrants with respect to A, and the “front” for the other object 
may be oriented in any of these quadrants. 

The spatial relation between two objects at an angle has two 
attributes: 

a. the relative direction (internal angle), and 
b. the relative positioning. 

In this representation, we have tried to determine a 
naturally arising set of attributes for capturing the qualitative 
description for both of these attributes. 

4.1. Representing direction 

When moving from the orthogonal domain into the 
angular domain, a mechanism is needed for the 
representation of the angular information. In our approach, 

we base all angular relations from a .predefined 
direction, called the “front” (figure 7). 

“Special” 

21 

+ 3 4 

(3 

Figure 7. C&&&VW &ecfMs. Based on a speciel direcdon of a Vronr dlrection, 
we can define four principal directions (front,left,right,back) as well as four 
quadrants. The cat, for example, is behind the mouse and facing in the mouse’s 
first quadrant. 

Most objects have a special direction or a front. A car, 
chair, cat, person, house, etc. all have a “front” direction. 
Where an object is symmetrical and has no “special” direction, 
one can assign a front to it. This “front” direction is crucial to 
our modelling of orientation, since it provides a reference 
direction for all other objects and their “fronts.” For example, 
the church @es the library-signifies that their fronts are at 
180°; the cat pounced on the mouse from the behind and to 
the right implies that the front of the cat was in the mouse’s 
first quadrant (figure 7(b)). 

In two dimensions, the assignment of a single “front” 
direction enables us to immediately identify several 
qualitatively different zones. First of all, “front” defines the 
orthogonal directions “left,” “right,” and ‘back.” In addition, it 
defines four possible quadrants (e.g. quadrant I is from front to 
left), thus defining eight qualitative angular relations between 
any two directions. In three-dimensions, one would need to 
define a second “special” direction, one that could perhaps be 
called “up.” This defines twenty-six qualitative regions based 
on an octant decomposition. 

In figure 7(b) above, the cat is pointing in the mouse’s 
quadrant I. This information can be written as dir(Cat/Mouse) 
= I where the dir0 relation is a representation of the direction 
information. Note that dir0 is invertible, i.e. given dir(A/B), 
dir(B/A) is uniquely defined. 

4.2. Representing size/position 

Another consideration of spatial relations is the relative 
sizes and positions of objects. One method for modeling this 
may be to construct an enclosing box around the objects based 
on the “front” direction, and then extend the boundaries of this 
box to create 8 regions and 8 boundaries as in figure &a). The 
extensions of the lines in the forward direction are called the 
“lines of travel” as shown in figure 8(b). The representation 
shown in (a) is somewhat more powerful than that in 00, but is 
significantly more complex, and does not add any extra 
information regarding the actual intersection of objects. 
Furthermore, representation fb) collapses into the orthogonal 
representation when the two directions are orthogonal, or the 

(a) 0’4 

Figure 8 The extension of the sides parallel to the front direction fofms the 
two lines of travel. 
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linear case when the two directions are parallel. In this 
research therefore we have adopted the representation based 
on the lines of travel and ignored the width lines. This 
representation is much more compact yet preserves 
information with respect to the front direction of the object. 

As in the linear case, we consider each object as defined by 
the two endlines instead of the interval; eventually this leads to 
a smaller transitivity table. 

4.3. Positional Relations: The Collision Parallelogram 

The support lines of two objects, when intersecting at an 
angle, will form a parallelogram, called the collision 
parallelogram (CP), which defines the area that is common to 
the lines of travel of both B and A. 

As an endline of A slides along its line of travel from 
‘behind” the CP to “after” the CP, it passes through the “inside” 
of the CP and also two important qualitative points-“back” of 
the CP and the “front” of the CP (figure 9(a)). 

Altogether there are three pieces of information needed to 
completely describe the relationship of two objects (A and B): 
1)the quadrant information of dir(A/B), 
2)where object A is located with respect to object 8: pos(A/B), 

and 
3)where object B is located with respect to object A: pos(B/A). 

Figure 9. The /%&km Relehn. The endline in (a) is located in the l -- region. The 
relations for two such endlines define the position relation for an object. In (b). the 
relation between A and B is defined as dir(AIB) I IV. pos(A/B) - -, and pos(WA) I 
-. Note that pos(B/A) is computed based entirely on the collision parallelogram, 
and is independent of pas (A/B); therefore it is necessary to maintain both pieces of 
information. 

Note that once the quadrant information of A/B is known 
then the quadrant information of B/A can be derived. To 
derive the relationship between two objects, each endline is 
considered one at a time. Finding the relationship between 
two objects is similar to one-dimensional intervals. The face of 
an object is labeled depending on which region it is located in 
with respect to the parallelogram formed by the travel lines of 
another object. 

Another aspect of this representation is the interrelations 
between the direction relation dir0 and the position relation 
pos(). In particular, the front directions of the objects are key 
to the position relations obtained - changing A’s front direction 
can affect the pos(A/B) as well as the dir0 relation. However, 
note that pos(B/A) is not affected by changing A’s direction 
since the CP remains the same. In the next section we exploit 
the interrelations between the dir0 and pos0 predicates to 
reduce the size of the transitivity tables. 

5. TRANSITIVE RELATIONS . 

If the relations between (A,B) and (B,C) are known, what 
type of information can be inferred about the relationship 
between objects A and C? Figure 10 shows an example of such 
a transitive operation. Let us now investigate the nature of the 
transitive table for arbitrarily angular objects, which is seen to 

be significantly larger and more complex than the 
representation of the one-dimensional transitive table of figure 
5. 

dir(B/Q=W 

pm(A~= -- 
pdC/A)=minfumla Q 
(WA/Q=UlorW 

Figure 10. TransitMy. An example of transitive inference given the relation 
between (BA) and (B,C). we infer that A must be - - with respect to C. The 
position of C w.r.t A is uncertain since C’s position w.r.t B “- -O does not constrein it in 
anyway w.r.t. the lines of travel of A. In many human contexts also, such decisions 
ere difficult to make in the absence of local information between A and C. 

The transitive information relates known information about 
the spatial relations (A,B) and (C,B) to make inferences about 
(A,C). Again, by using only the endline information, we can 
achieve a S/13 savings. Figure 11 shows a sample entry in the 
tables. Each quadrant group (e.g. dir(B/A) = I, dir(B/C) = I) 
contains 13x13 such tables. 

In this formalism, there is a 90° uncertainty in each angular 
relation, so when we perform a transitive operation, the 
uncertainty in the output is 1800 or two quadrants. This is seen 
in the chart of figure 11, where two quadrants rows are shown 
for each of A/C and C/A. 

4 3 

+ 1 2 

43 

+ 1 2 

Figure 11. An entry from the transitive table. This represents the case where 
pos(WA) I ++, dir(BIA) I I, pcs(B/C) I -, dir(BIC) - I. The A/B and AIC positions are 
indicated by their endline position in the top row of the table. 

To use this table five parameters have to be known: 1) 
pos(B/A), 2) dir(B/A), 3) pos(B/C), 4) dir(B/C), and 5)the 
relationship of one endline of A or C with respect to B. Note 
that the resulting relations inferred from the transitive table 
may be disjunctive: 

e.g. if the input tuules are: 
B/A = <I, ++#i+> 
B/C = <I,-,bf> 

what is inferred from the table is: 
A/C = I: -? = c-,-b,-i,-f,+> 5 

IV: >+ = <i+#f+,++> 3 
C/A= I: 

IV: z 
= c-,&-i> 3 
= <++> 1 

which is actually a disjunction of (5*1) + (3*3) = 14 possible 
relations between A and C (since when dir(A/C) = I, dir(C/A) = 
IV). The number of disjunctions can be reduced if additional 
constraints are placed on A and C, e.g. via fourth object D. 

5.1. Size of the transitive table 

(1 
Each relation between two objects has 676 possible results 

3x13~4). Therefore, for two objects, there are 676 x 676 = 
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456,976 entries in the table. However, the number of entries in 
the table can be reduced by realizing that the quadrant 
information and the position information are interrelated - for 
example, if the direction of any object is reversed, the position 
changes in a certain manner. Similarly certain properties are 
preserved when we consider configurations that are related by 
reflection. Another point to note is that pos(A/C) is 
independent of pos(C/A) and vice versa. In particular, 
pos(A/B) affects only pos(A/C) while pos(C/B) affects only 
pos(C/A). This permits the transitive table to partition C/A 
and A/C into two spaces. 

Formally, the set of quadrants in the transitive tables form 
two groups under the operations of reflection and direction 
inversion defined below. The arrangement of the groupings 
illustrates the structure of the relationship that exists between 
the groupings. For example, the group dir(B/A) = I and 
dir(B/C) = I, when reflected, results in dir(B/A) = III and 
dir(B/C) = III. Thus by determining the effects of the 
reflection operator, it becomes sufficient to maintain only one 
of these two quadrant groups. 

cmupet1 Groupset 
Fiiure 12. Ouackarrt hwelatfons. Each node retxesents the transitivity tabks for 
W< auadrants for B/A and B/c. The arcs b&een the nodes r&resent the 
oper&ions that map one quadrant group into another. (R = reflecti&; A.B,C = 
direction change on A, B and C). As a result of these interrelations it is sufficient to 
maintain tha tables for only two quadrants, say (1.1) and (IIJ). 

First let us consider the operation of reflection. For 
example, if we consider the table in figure 13, then under 
reflection (looking from behind the page), the configuration is 
the same as that in figure 11. Clearly the transitive tables are 
not independent; in this instance the position relations are 
essentially the same (since reflection does not affect the pos() 
relations), but the rows are interchanged (it does affect the 
quadrants). 

14 

+ 2 3 

14 

+ 2 3 

Figure 13. Retecfed version of ahe table in Figure 11. The positional information 
remains unchanged. whii is reflected in the fact that rows 1 and 3 of this table is 
the same as rows 2 and 4 of Figure il. The quadrants are switched due to 
reflection. 

Another operation that reduces table size is directional 
inversion. When an object reverses direction, the physical 
location of the object does not change. In a transitive 
relationship involving objects A, B, and C, any one of the 
objects can perform a directional change. The directional 
change of two objects (e.g. A and B) will result in the same 
quadrant group as that obtained by changing the direction of 
the third object alone (i.e. C). Thus, directional changes form a 
cycle of operations in the group. 

a. Quadrants I I b. Quadrants ill Ill 

Figure 14. Dbcfib &an@?. when the direction of B is reversed, four relations are 
affected: dir(B/A) and dir(W). pos(B/A) and pas(B/c). The pos() relations are 
reversed, e.g. (I- -* becomas ‘++“. Tha changes in dir() result in going from one 
quadrant grwp to another, (e.g. from I I to Ill Ill). 

Let us consider a transitive inference involving A, B, and C. 
When the direction of B is changed to its opposite direction, 
the physical locations of objects A, B, and C remain exactly the 
same with respect to each other. The only things that change 
are the quadrant relations of B/A and B/C and B’s positional 
relations with respect to A and C. Since there has been a 
quadrant change for B/A and B/C, the result is a movement 
from one quadrant group to another. In this case, from 
quadrant group I I to III III. This type of quadrant group 
interrelation allows us to store only two quadrant tables, a 
saving of 216, or oneeighth. 

This representation has also been extended to three 
dimensions, where a nominal frame can be attached to each 
object based on the “front” and “up” directions mentioned 
earlier. Rectangular enclosures do not represent sufficient 
feature information, and a generalized cylinder model is used 
to represent shape, with the cross-section being modeled with 
a qualitative version of the medial-axis transform. This model 
has been used to construct qualitative geometric models for 
visualization and recognition tasks [King and Mukerjee 901. 

6. CONCLUSION 

In this paper we have presented a spatial representation 
scenario that is useful for extracting symbolic representations 
from geometric models. It can be used to represent relations 
in any dimensions for objects that are either aligned to the 
reference frame, or are at arbitrary angles. 

The essence of this approach is that it preserves the 
information of contact, no-contact and tangency. Given two 
objects, one can determine if they are flush along some face or 
line, and this contains all the information required to identify 
accidental alignments and relative positions of objects. Such 
relations, which describe the properties at the boundaries of an 
object, are critical in the analysis of many systems such as 
VLSI, circuits, mechanisms, structures - indeed almost 
anywhere geometrical relations are important. The 
representat& has been applied to generating directions in 
city maps, acquiring data from graph diagrams in texts, to path 
planning for an indoor mobile robot and for learning concepts 
related to spatial knowledge. 

6.1. Explanation-Based Learning 

Another capability inherent in the system is building 
commonsense theories for explanation-based learning. One 
can define “naive” notions such as the need for support against 
gravity, and that solids cannot physically intersect. The 
following predicate formulation in this logic can be used to 
ensure that every relationship in the model passes the no- 
intersection condition: 
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gravity rule: 

no-intersection rule: y) 

where INT = (-i, bi, ii, -f, bf, if, 4, b+, i+), and implies a degree of 
overlap. 

In essence, the gravity rule states that if an object A is not 
lying on the floor,<hen there must be some other object such 
that it overlaps A in the x and y directions, and supports it (“W) 
in z. Similarly the no-intersection rule prohibits two objects 
from overlapping in all three axes. Note that the INT relation 
(-i, bi, ii, -f, bf, if, 4, b+, i+) is a hierarchical abstraction for the 
nine relations contained in it and can be thought of as a 
generalized overlap. Many similar conceptual clusterings are 
possible, for example: A smaller-than B = (bi,ii,fi); touch- 
contact = I-b, +f); nocontact= (++, -); flush-overlap = (-f, b+, bi, 
ifl, etc. 

Furthermore, there are built-in continuities that can be 
used to formulate powerful “inductive bias”es for learning. 
This is shown in the continuum graph of figure 5, which shows 
the progression of states as objects move relative to one 
another. One could use inductive bias to conclude, for 
example for the well-known arch structure, that if A owZaps B 
and A contained-in B are both valid rules, then all in-between 
relations are also valid rules: At-i, bi, ii)B are all valid 
constructs, and A(bf, -f, 4, b+)B, etc., are invalid rules (since A 
is on the smaller-than-B branch of the continuum). 

This model has been used for spatial learning using a 
robot/teach pendant setup for recognizing the structure of 
geometric assemblies (with a overhead camera to obtain the 
part geometry information). Three-dimensional structures are 
created using the teach pendant and these are identified by 
the user as positive or negative examples. The system then 
obtains the underlying concept behind the examples shown 
[Mukerjee and Bratton 901. II 

The discussion on transitivity, and the very nature of binary 
spatial relations raises the spectre of combinatorial explosion. 
A little consideration reveals several ameliorating aspects. 
One of the motivating factors behind this model is that all 
relations should be Iocally relevant. If Galveston is near 
Houston and Richardson is a suburb of Dallas, then the 
relation between Richardson and Galveston does not need to 
be represented directly. For simple path planning problems, it 
can be shown that for non-contact relations, only nearest 
neighbors need be modeled, and objects such as roads, three 
relations need to be stored. Thus the total number of relations 
is sharply reduced proportional to the number of neighbors 
and intersections (ml. Occasionally, one may store additional 
information- for example, global as well as local orientation, to 
constrain the angle further. As the number of objects (N) 
increases, the number of nearest neighbors per object remains 
constant. While the n umber of intektions may increase, it 
is usually small, and is bounded by the resolution in the 
domain . This 
O(mNL and if m 

means that the storage requirements 
can be bounded, we obtain O(N) storage. 

are 

be represented well using this mechanism. One such instance 
is that of “near” or “large”, which require some degree of 
quantitative information which this model does not provide for, 
although one can extend the logic with the notion of operators 
that would permit one to model such attributes also. However, 
it must be realized that for these two predicates at least, there 
is considerable ambiguity involved in the semantics, and to 
model these may introduce a degree of arbitrariness that 
would defeat one of the principal objectives of this work. More 
precise definitions can be obtained by representing concepts 
such as these as a predicate in terms of the translation and 
rotation operators mentioned above. 

In conclusion, we have discussed a simple yet powerful 
mechanism for representing the spatial relations between 
objects. This technique offers expressive power and logical 
transitivity, and is capable of dealing with imprecision in the 
spatial knowledge. 
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At this point it would be appropriate to note that clearly 
there are a number of spatial relations of interest that cannot 
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