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Abstract 
Interval and point algebras have been proposed for 
representing qualitative temporal information about 
the relationships between pairs of intervals and pairs 
of points, respectively. In this paper, we address two 
related reasoning tasks that arise in these algebras: 
Given (possibly indefinite) knowledge of the relation- 
ships between some intervals or points, (1) find one or 
more scenarios that are consistent with the informa- 
tion provided, and (2) find all the feasible relations 
between every pair of intervals or points. Solutions 
to these problems have applications in natural 
language processing, planning, and a knowledge 
representation language. We define computationally 
efficient procedures for solving these tasks for the 
point algebra and for a corresponding subset of the 
interval algebra. Our algorithms are marked 
improvements over the previously known algorithms. 
We also show how the results for the point algebra 
aid in the design of a backtracking algorithm for the 
full interval algebra that is useful in practice. 

Introduction 
Much temporal information is qualitative informa- 
tion such as “The Cuban Missile crisis took place 
during Kennedy’s presidency,” where only the order- 
ing of the end points of the two events is specified. 
Allen [l] has proposed an interval algebra and Vilain 
& Kautz [20] h ave proposed a point algebra for 
representing such qualitative information. In this 
paper, we address two fundamental reasoning tasks 
that arise in these algebras: Given (possibly indefin- 
ite) knowledge of the relationships between some 
intervals or points, 
1. find one or more scenarios that are consistent with 

the information provided. 
2. find all the feasible relations between every pair of 

intervals or points2. 
Specific applications of solutions to these tasks 

1 Author’s current address: Department of Computing 
Science, University of Alberta, Edmonton, Alberta, CANA- 
DA T6G 2Hl. 

2 The terminology is from 17). Other names for task 1 in- 
clude consistent singleton labeling 118) and a satisfying as- 
signment of values to the variables (121. Other names for 
task 2 include deductive closure 1211, minimal labeling 1181 
and, as it arises as a general constraint satisfaction prob- 
lem, minimal network 1151. 

728 KNOWLEDGEREPRESENTATION 

include natural language processing (Allen [2]), plan- 
ning (Allen & Koomen [4]), and a knowledge 
representation language (Koubarakis et al. [lo]). As 
well, the techniques developed here could be part of 
a specialist in a general temporal reasoning system 
that would have other specialists for other kinds of 
temporal information such as quantitative informa- 
tion about the distances between intervals or points 
(Dechter et al. [?‘I, Dean [5]), or combinations of 
qualitative and quantitative information (Allen & 
Kautz [3], Ladkin [ll]). 

The main results of the paper are as follows. For 
the point algebra and for a corresponding subset of 
the interval algebra, we give computationally effi- 
cient procedures for solving both tasks 1 & 2. Our 
algorithms are marked improvements over the previ- 
ously known algorithms. In particular, we develop 
an O(n’) time algorithm for finding one consistent 
scenario that is an O(n) improvement over the pre- 
viously known algorithm [12], where n is the number 
of intervals or points, and we develop an algorithm 
for finding all the feasible relations that is of far 
more practical use than the previously known algo- 
rithm [18]. 

For the full interval algebra, Vilain & Kautz [20, 
211 show that both of these tasks are NP-Complete. 
This strongly suggests that no polynomial time algo- 
rithm exists. We show how the results for the point 
algebra aid in the design of a backtracking algorithm 
for finding one consistent scenario that, while 
exponential in the worst case, is shown to be useful 
in practice. A similar backtracking approach is 
given for finding all the feasible relations. The 
results here are less encouraging in practice and we 
conclude that a better approach in this case is to, if 
possible, accept approximate solutions to the prob- 
lem (Allen [l], van Beck & Cohen [18, 191). 

Background, Definitions, and Example 
In this section we review Allen’s interval algebra and 
Vilain & Kautz’s point algebra. We end with an 
example from the interval algebra of the two reason- 
ing problems we want to solve. 

Definition. Interval algebra, IA (Allen [l]). There 
are thirteen basic relations (including inverses) that 
can hold between two intervals. 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



relation symbol inverse meaning 

x before y 
x meets y 
x overlaps y 

x during y 

x starts y 

x finishes y 

x equal y 

b bi 
m mi 
0 oi 

d di 

S si 

f fi 

eq eq 

xxx YYY 
XXXYYY 
xxx 

YYY 
xxx 

YYYYY 
xxx 
YYYYY 

xxx 
YYYYY 
xxx 
YYY 

We want to be able to represent indefinite informa- 
tion so we allow the relationship between two inter- 
vals to be a disjunction of the- basic relations. We 
use sets to list the disjunctions. Somewhat more for- 
mally, let I be the set of all basic relations, {eq, b, 
bi, m, mi, o, oi, d, di, s, si, f, fi}. IA is the algebraic 
structure with underlying 2 jet 2I, the power set of I, 
unary operator inverse, and binary operators inter- 
section and composition (denoted “constraints” in 
[l]; see that reference for the definition). 

Definition. Point algebra, PA (Vilain & Kautz 
[20]). There are three basic relations that can hold 
between two points <, =, and >. As in the interval 
algebra, we want to be able to represent indefinite 
information so we allow the relationship between 
two points to be a disjunction of the basic relations. 
PA is the algebraic structure with underlying set 
(0, <, 2, =9 >, 2, f, ?}, unary operator inverse, 
and binary operators intersection and composition 
(denoted addition and multiplication in [20] where 
the operators are defined over bit vector representa- 
tions of the underlying set; see that reference for the 
definitions). Note that 2, for example, is an abbre- 
viation of {<, =}, 0 is the inconsistent constraint, 
and 2 means there is no constraint between two 
points, {<, =, >}. 

Vilain & Kautz show that a subset of the interval 
algebra can be translated into their point algebra. 
We denote as SIA the subset of the underlying set 
of the interval algebra that can be translated into 
relations between the endpoints of the intervals 
using the underlying set of PA (see [19] for an 
enumeration of SIA). 

We will use a graphical notation where the ver- 
tices represent intervals or points and the directed 
edges are labeled with elements from the appropriate 
algebra representing the disjunction of possible basic 
relations between the two intervals or points. A 
consistent scenario is a labeling of the graph 
where every label is a singleton set (a set consisting 
of a single basic relation) and it is possible to map 
the vertices to a time line and have the single rela- 
tions between vertices hold. The set of feasible 
relations between two vertices consists of only the 
elements (basic relations) in that label capable of 

being part of a consistent scenario. Finding the 
feasible relations involves removing only those ele- 
ments from the labels that could not be part of a 
consistent scenario. 

Here is an example from the interval algebra of 
our two reasoning tasks. Suppose interval A either 
overlaps or starts interval B, but we are not sure 
which, and interval B meets interval C. We 
represent this as follows 

where the label I, the set of all basic relations, shows 
we have no direct knowledge of the relationship 
between A and C. There are two possible answers 
to problem 1: find a consistent scenario. Their map- 
pings to a time line are shown below. In the map- 
ping on the left, A overlaps B, in the one on the 
right, A starts B, and in both mappings B meets C 
and A is before C. 

v-i F-i 
B 1 c B 1 c 

I I 
It remains to answer problem 2: find all the feasible 
relations between every pair of intervals. The one 
change is that the set of feasible relations between A 
and C is just {b}, the “before” relation. We see that 
this is true in the mappings above. No other rela- 
tion between A and C can be part of a consistent 
scenario. 

The Point Algebra and a 
Subset of the Interval Algebra 

In this section we examine the computational prob- 
lems of finding consistent scenarios and finding the 
feasible relations for the point algebra, PA, and the 
corresponding subset of the interval algebra, SIA. 

Finding Consistent Scenarios 
Ladkin & Maddux [12] give an algorithm for finding 
one consistent scenario that takes O(n3) time for PA 
networks with n points. If no consistent scenario 
exists, the algorithm reports the inconsistency. 
Their algorithm relies on first applying the path con- 
sistency algorithm [l3, 151 before finding a consistent 
scenario. 

Here we give an algorithm for finding one con- 
sistent scenario that takes O(n2) time for PA net- 
works with n points. Our starting point is an obser- 
vation by Ladkin & Maddux 112, p.341 that topologi- 
cal sort alone will not work as the labels may be any 
one of the eight different PA elements, (0, <, 5, 
=, >, 2, #, ?}, and th us may have less information 
about the relationship between two points than is 
required. For top sort we need all edges labeled 
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Input: A PA network represented as a matrix 
C where element Cij is the label on edge 
(i, j). 

Output: A consistent scenario (a linear ordering of 
the points). 

Step 1. Identify all the strongly connected com- 
ponents (SCCs) of the graph using only the edges 
labeled with <, 5, and =. 

Condense the graph by collapsing each strongly con- 
nected component into a single vertex. Let 
WI, s2, - - *J Sm} be the SCCs we have found (the 
Si partition the vertices in the graph in that each 
vertex is in one and only one of the Si). We con- 
struct th^e condensed graph and its matrix represen- 
tation, C, as follows. Each Si is a vertex in the 
graph. The labels on the edges between all pairs of 
vertices is given by 

6ij + n Cvw, i, j= 1,. . .,m 

v ES, 
w ESj 

If the empty label, 0, results 
network is inconsistent. 

on any edge, then the 

Step 2. Replace any remaining < labels in 6 with 
< and p$rform a topological sort using only the 
edges in C labeled with <. 

Fig. 1. Cons. Scenario Alg. for PA Networks 

with <, >, or ? (see [9]). The “problem” labels are 
then {=, 0, 5, 2, #}. The intuition behind the 
algorithm is that we somehow remove or rule out 
each of these possibilities and, once we have, we can 
then apply top sort to give a consistent scenario. 
Much of the discussion to follow relies on the 
assumption that looking at paths (the transitivity 
information) is sufficient for deciding the label on an 
edge. The only exception to the truth of the 
assumption is that looking at paths will sometimes 
assign a label of <_ instead of < (see Fig. 3) but this 
will not affect the discussion. 

Step 1: The = relation. To remove the = rela- 
tion from the network, we identify all pairs of points 
that are forced to be equal and condense them into 
one vertex. By forced to be equal, we mean that in 
every consistent scenario the vertices are equal, so 
no other relation will result in a consistent scenario. 
More formally, we want to partition the vertices into 
equivalence classes Si, 1 <_ i 5 m , such that vertices 
u and w are in the same equivalence class if and 
only if they are forced to be equal. But, the vertices 
u and UI are forced to be equal precisely when there 
is a cycle of the form 

u+.J~-~- _ <w<u 
where one or more of the < can be =. This is the 
same as saying u and w arrin the same equivalence 

4 

= 

8 

= 

5 

s, = 0, 7, 8) S3 = (4, 5) 
S2 = (2, 3) S4 = (6) 

Fig. 2. Strongly Connected Components 

class if and only if there is a path from w to w and a 
path from w to v using only the edges labeled with 
< or =. This is a well-known problem in graph 
theory. Determining the equivalence classes is the 
same as identifying the strongly connected com- 
ponents of the graph and efficient algorithms are 
known (Tarjan [IS]). An example is shown in Fig. 2. 
Only < and = edges are shown except that self-loops 
are aEo omitted (each vertex is equal to itself). 
There are four strongly connected components. 
Condensing the strongly connected components is 
described in Step 1 of the algorithm shown in Fig. 1. 

Step 1: The @ relatibn. To rule out the 0 
relation we must determine if the the network is 
inconsistent. The network is inconsistent if a vertex 
is forced to be <, >, or # to itself. That is, when 
there is a cycle of the form 

or of the form 
u<v< . . . <w<u 

where all but one of the < can be < or =. It turns 
out that we can identify these cases simply by also 
looking at edges labeled with < when identifying the 
strongly connected components. The inconsistencies 
are then detected when the strongly connected corn- 
ponents are condensed (Step 1 of Fig. 1). For exam- 
ple, suppose the label on the edge (1, 7) in the graph 
shown in Fig. 2 was < instead of the < shown. Con- 
densing the strongly connected component Si gives 

61 + cl7 n cIg n c71 n c78 n cgI n Cm 
+ {<>n {>,=}n {>}n {<,=}n {<,=>n {>,=} 
+0 

where again we have omitted the self loops Cii. 
Step 2: The 5, 2 relations. To remove the 5 

relation from the network, we simply change all < 
labels to <. This is valid because, as a result of Step 
1, we know that a consistent scenario exists and that 
no remaining edge is forced to have = as its label in 
all consistent scenarios. So, for any particular edge 
labeled with < there exists a consistent scenario with 
< as the singleton label. But, changing a 5 to a < 
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can only force other labels to become <; it cannot 
force labels to become =. (Using the terminology of 
the algorithm, no new strongly connected com- 
ponents are introduced by this step; hence no new 
labels are forced to be equal and no new inconsisten- 
cies are introduced.) So, after all the changes, a con- 
sistent scenario will still exist. 

Step 2: The # relation. We can now perform 
topological sort to find one consistent scenario. It 
can be shown that, because of the previous steps of 
the algorithm, the # relations will now be handled 
correctly (and implicitly) by top sort. The output of 
top sort is an assignment of numbers to the vertices 
(a mapping of the vertices to a time line) that is con- 
sistent with the information provided. As an exam- 
ple, consider the algorithm in Fig. 1 applied to the 
network in Fig. 3. Depending on the particular 
implementation of top sort, one possible result of the 
algorithm is the following assignment of numbers to 
vertices: s t 0, v t 1, ~1 t 2, and t t 3. 

Theorem 1. The algorithm in Fig. 1 correctly 
solves the consistent scenario problem for PA and 
SIA networks in O(n2) time, where n is the number 
of points or intervals. 

Note that for SIA networks we must first 
translate the network into a PA network, solve, 
then translate back. For the time boundd finding the 
strongly connected components is O(n ) [16], con- 
densing the graph looks at each edge only once, and 
topological sort is O(n2) 191. It is easy to see that 
the algorithm is asymptotically optimal as we must 
at least examine every edge in the network, of which 
there may be as many as O(n2). If we do not, we 
can not be sure that the label on that edge is not 
involved in a contradiction by, for example, being 
part of a loop that causes a vertex to be less than 
itself. 

Determining the Feasible Relationships 
Ghallab & Mounir Alaoui [8] give an incremental 
procedure, based on a structure called a maximal 
indexed spanning tree, that is shown to work well in 
practice. The path consistency algorithm (PC) [l3, 
151 can be used to find approximations to the sets of 
all feasible relations [l]. Much previous work are 
efforts at identifying classes of relations for which 
PC will give exact answers. Montanari [15] shows 
that PC is exact for a restricted class of binary con- 
straint relations. However, the relations of interest 
here do not all fall into this class. ValdCs-Perez [l7] 
shows that PC is exact for the basic relations of IA. 
In 118, 211, we show that PC is exact for a subset of 
PA and a corresponding subset of SLA. The new 
point algebra differs from PA only in that # is 
excluded from the underlying set. But we also give 
examples there that show that, earlier claims to the 
contrary, the path consistency algorithm is not exact 

for PA nor for SXA networks and we develop an 
O(n4) strong four-consistency algorithm that is 
exact, where n is the number of intervals or points. 

Here we give an algorithm for finding all feasible 
relations that, while still O(n4) in the worst case for 
PA networks with n points, is of far more practical 
use than our previous algorithm (that algorithm is 
still of importance as an approximation algorithm for 
instances of the problem from the full interval alge- 
bra; see [18, 211 for the details). 

Our strategy for developing an algorithm for PA 
networks is to first identify why path consistency is 
sufficient if we exclude f -from the language and is 
not sufficient if we include f. Fig. 3 gives the smal- 
lest counter-example showing that the path con- 
sistency algorithm is not exact for PA. The graph is 
path consistent. But it is easy to see that not every 
basic relation in the label between s and t is feasi- 
ble. In particular, asserting s = t forces v and w to 
also be equal to s and t. But this is inconsistent 
with v # &. Hence, the = relation is not feasible as 
it is not capable .of being part of a consistent 
scenario. The label between-s and t should be <. 

v t 
Fig. 3. “Forbidden” Subgraph 

This is one counter-example of four vertices. But 
are there other counter-examples for n > 4? The 
following theorem answer this question and is the 
basis of an algorithm for finding all feasible relations 
for PA networks. 

Theorem 2 (van Beek & Cohen [19]). The network 
in Fig. 3 is the smallest counter-example to the 
exactness of path consistency for PA- networks 
and, up to isomorphism, is the only counter- 
example of four vertices. Also, any lar&r counter- 
example must have a subgraph of four vertices iso- 
morphic to the example. 

We shall solve the feasible relations problem by 
first applying the path consistency algorithm and 
then systematically searching for “forbidden” sub- 
graphs and appropriately changing the labels (see 
Fig. 4; the path consistency algorithm is slightly sim- 
plified because of properties of the algebras). The 
algorithm makes use of adjacency lists, For 
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A PA network represented as a matrix 
c where elemen t Cjj is the label on edge 
(6 j)- 

output: The set of feasible relations for Cij, 
i, j = 1, . . . ,n. 

procedure FEASIBLE 
begin 

PATHCONSISTENCY 
FINDSUBGRAPHS 

end 

procedure PATHCONSISTENCY 
begin 

Qc u RELATEDJ’ATHS (a, j) 
l<i<j<n 

while (Q is not empty) 
begin 

select and delete a path (i, k, j) from Q 
t + Ci,- n Cik * Ckj 
if (t # Cij) 
begin 

C;j t t 
Cji + INVERSE (t ) 
Q t Q U RELATED-PATHS (i, j) 

end 

end 

procedure RELATED-PATHS (i, j) 
return { (i, j, k), (k, i, j) I 

I<k<n,k#i,k# j) 

procedure FINDSUBGRAPHS 
begin 

for each v such that adj+(v) # 0 
for each s E ad j>(v) 

for each t E adjl(v) 
if (ad&(s) n ad&(v) n ad&(t) # 0) 
begin 

Fig. 4. Feas. Relations Alg. for PA Networks 

example, adj<(v) is the list of all vertices, w, for 
which there iZ an edge from v to w that is labeled 
with ‘5’. 

Changing the label on some edge (s, t) from ‘<’ to 
‘<’ may further constrain other edges. The question 
immediately arises of whether we need to again 
apply the path consistency algorithm following our 
search for “forbidden” subgraphs to propagate the 
newly changed labels? Fortunately, the answer is no. 
Given a new label on an edge (s, t), if we were to 
apply the path consistency algorithm, the set of pos- 
sible triangles that would be examined is given by 
{(s, t, k), (k, s, t) 1 1 5 k 5 n, k # s, k # t) (see 

procedure RELATED-PATHS in Fig. 4). Thus 
there are two cases. For both, we can show that 
any changes that the path consistency algorithm 
would make will already have been made by pro- 
cedure FINDSUBGRAPHS. 

Case 1: (s, t , k). Changing the label on the edge 
(s, t) from ‘<’ to ‘<’ would cause the path con- 
sistency algorithm to change the label on the edge 
(s , k) only in two cases: 

s < t, t < k, and s < k - - 
s<t,t= k,ands zk 

In both, the label on (s, k) will become ‘<‘. For 
(s, t) to change we must have the situation depicted 
in Fig 3., for some v and w . But v < t and w < t 
together with t < k (or t = k) imply that v 5 k 
and w < k (we can assume the relations were pro- 
pagated because we applied the path consistency 
algorithm before the procedure for finding “forbid- 
den” subgraphs). Hence, (s , k) also belongs to a 
“forbidden” subgraph and the label on that edge will 
have been found and updated. 

Case 2: (k, s , t ). Similar argument as Case 1. 

Theorem 3. 7lie algorithm in Fig. 4 correctly 
solves the feasible relations problem for PA and 
SIA networks. 

Note that for SIA networks we must first 
translate the network into a PA network, solve, 
then translate back. For a time bound, the path 
consistency procedure is O(n3) [14] and the find sub- 
graphs procedure is easily shown to take O(n4) time 
in the worst case, where n is the number of points. 
This is the same as the previously known algorithm 
[18]. However, this comparison is misleading, as the 
algorithm in [18] always takes O(n4) time, no matter 
what the input is. A desirable feature of procedure 
FIND~SUBGRAPHS is that its cost is proportional 
to the number of edges labeled #. The worst cases 
for the algorithm are contrived and presumably 
would rarely occur. As experimental evidence, the 
algorithm was implemented in a straightforward way 
and tested on random problems up to size 100. It 
was found that about 90% of the time was spent in 
the path consistency algorithm and only about 2% in 
FINDXJBGRAPHS. Hence, the O(n3) path con- 
sistency procedure dominates the computation. 

The Full Interval Algebra 
In this section we examine the computational prob- 
lems of finding consistent scenarios and finding the 
feasible relations between intervals for the full inter- 
val algebra, IA. Vilain & Kautz [20, 211 show that 
both of these problems are NP-Complete for the 
interval algebra. Thus the worst cases of the algo- 
rithms that we devise will be exponential and the 
best we can hope for is that the algorithms are still 
useful in practice. We discuss to what extent this is 
achieved below. 
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Single: 

(1’2) (1’3) 
{es1 

04 

{oil 
61 

where I = {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi} WI 

Fig. 5. Example IA Network 

Finding Consistent Scenarios 
Allen [l] proposes using simple backtracking search 
to find one consistent scenario of an IA network or 
report inconsistency. Valdes-Perez [17] gives a 
dependency-directed backtracking algorithm. Both 
search through the alternative singleton labelings. 
As well, there has been much work on improving the 
performance of backtracking that could be applied 
to this problem (see [6] and references therein). 

Here we show how the results for the point alge- 
bra can be used to design a backtracking algorithm 
for finding one consistent scenario that is shown to 
be useful in practice. 

The key idea is that the O(n2) decision procedure 
for SIA networks (Step 1 of Fig. 1) can be used to 
decide whether a partial solution found so far is con- 
sistent (acceptable) and so might be part of a solu- 
tion to the whole problem. The benefits go beyond 
a fast test for acceptability. Whereas Allen and 
ValdCs-Perez search through alternative singleton 
labelings, we can now reduce the cardinality of the 
domains we are searching through by decomposing 
the labels into the largest possible elements of SIA. 
For example, if the label on an edge is {b, bi, m, o, 
oi, si}, there are six possible ways to label the edge 
with a singleton label: {b}, {bi}, {m}, {o}, {oi}, {si}, 
but only two possible ways to label the edge if we 
decompose the labels into the largest possible ele- 
ments of SIA: {b, m, o} and {bi, oi, si}. It is easy to 
see that this is guaranteed to be better since, for any 
choice of a singleton label, we can choose a label of 
larger (or equal) cardinality that is a superset of the 
singleton label. If the singleton label is consistent, so 
is the larger label. And, of course, there will be 
times when the larger label is consistent and the sin- 
gleton label is not. 

Recall that what we want to find is a labeling of 
the edges of the graph such that every label contains 
a single basic relation and it is possible to map the 
vertices to a time line and have the single relations 
between vertices hold. Finding a consistent scenario 
is now done in two stages: the output of the back- 
tracking algorithm will be a consistent SIA network 

. 
(“II!j 
01 

(1’3) 

WI 

(2’3) 

{bi,oi} 

(24 

Wil 

(374 

-tb) 
Fig. 6. Backtrack Search 

and the scenario algorithm for SIA networks (Fig. 1) 
is then used to find a consistent scenario of this net- 
work. 

As an example, consider the network shown in Fig. 
5. The backtrack search will look at the edges in 
the order (1,2), (1,3), (2,3), (1,4), (2,4), and (3,4). A 
record of both methods of search is shown in Fig. 6. 
Moving to the right and downward in the figure 
means a partial solution is being extended, moving to 
the left and downward means the search is back- 
tracking. Note that, for example, when searching 
through alternative singleton labelings, much search 
is done before it is discovered that no consistent 
scenario exists with edge (1,2) labeled with {es}, but 
when decomposing the labels into the largest possible 
elements of SIA and searching through the decom- 
positions, no backtracking is necessary. 

The algorithm was implemented and tested on 
random instances from a distribution designed to 
approximate planning applications (as estimated 
from a block-stacking example in [4]). In planning, 
as formulated by Allen, and Koomen [4], actions are 
associated with the intervals they hold over and the 
full interval algebra is used. Finding one consistent 
scenario corresponds to finding an ordering of the 
actions that will accomplish a goal. Hence, the 
results here are directly applicable. For a problem 
size of n = 20, the average time to find a solution 
was about seven seconds of CPU time (25 tests 
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performed). For n = 40, it was 74 seconds (average 
over 21 tests). This seems surprisingly fast. How- 
ever, it should be noted that four of the tests for 
n = 40 were not included as they were stopped 
before completion as a limit on the number of con- 
sistency checks was exceeded. 

n 

Determining the Feasible Relationships 
A similar backtracking algorithm as in the previous 
section can be designed for finding all the feasible 
relations. Again, instead of searching through the 
alternative singleton labelings of the edges, we 
decompose the labels into the largest possible ele- 
ments of SIA and search through the decomposi- 
tions. In the previous. section when finding a con- 
sistent scenario we stopped the backtracking algo- 
rithm after one consistent SIA network was found. 
To determine the feasible relations we must find all 
such consistent SIA networks. For each such con- 
sistent SIA network we find the feasible relations 
using the algorithm of Fig. 4. The feasible relations 
for the IA network is then just the union of all such 
solutions. Initial experience, however, suggests this 
method is practical only for small instances of the 
problem, or for instances where only a few of the 
relations between intervals fall outside of the special 
subset SIA. We conclude that in most cases a 
better approach is to, if possible, accept approximate 
solutions to the problem (Allen [l], van Beek & 
Cohen [18, 191). 
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