
Reasoning about Qualitative Temporal Information

Peter van Beek

Department of Computer Science1
University of Waterloo

Waterloo, Ontario, CANADA NZL 3Gl
pgvanbeek@dragon.waterloo.edu

Abstract
Interval and point algebras have been proposed for
representing qualitative temporal information about
the relationships between pairs of intervals and pairs
of points, respectively. In this paper, we address two
related reasoning tasks that arise in these algebras:
Given (possibly indefinite) knowledge of the relation-
ships between some intervals or points, (1) find one or
more scenarios that are consistent with the informa-
tion provided, and (2) find all the feasible relations
between every pair of intervals or points. Solutions
to these problems have applications in natural
language processing, planning, and a knowledge
representation language. We define computationally
efficient procedures for solving these tasks for the
point algebra and for a corresponding subset of the
interval algebra. Our algorithms are marked
improvements over the previously known algorithms.
We also show how the results for the point algebra
aid in the design of a backtracking algorithm for the
full interval algebra that is useful in practice.

Introduction
Much temporal information is qualitative informa-
tion such as “The Cuban Missile crisis took place
during Kennedy’s presidency,” where only the order-
ing of the end points of the two events is specified.
Allen [l] has proposed an interval algebra and Vilain
& Kautz [20] h ave proposed a point algebra for
representing such qualitative information. In this
paper, we address two fundamental reasoning tasks
that arise in these algebras: Given (possibly indefin-
ite) knowledge of the relationships between some
intervals or points,
1. find one or more scenarios that are consistent with

the information provided.
2. find all the feasible relations between every pair of

intervals or points2.
Specific applications of solutions to these tasks

1 Author’s current address: Department of Computing
Science, University of Alberta, Edmonton, Alberta, CANA-
DA T6G 2Hl.

2 The terminology is from 17). Other names for task 1 in-
clude consistent singleton labeling 118) and a satisfying as-
signment of values to the variables (121. Other names for
task 2 include deductive closure 1211, minimal labeling 1181
and, as it arises as a general constraint satisfaction prob-
lem, minimal network 1151.

728 KNOWLEDGEREPRESENTATION

include natural language processing (Allen [2]), plan-
ning (Allen & Koomen [4]), and a knowledge
representation language (Koubarakis et al. [lo]). As
well, the techniques developed here could be part of
a specialist in a general temporal reasoning system
that would have other specialists for other kinds of
temporal information such as quantitative informa-
tion about the distances between intervals or points
(Dechter et al. [?‘I, Dean [5]), or combinations of
qualitative and quantitative information (Allen &
Kautz [3], Ladkin [ll]).

The main results of the paper are as follows. For
the point algebra and for a corresponding subset of
the interval algebra, we give computationally effi-
cient procedures for solving both tasks 1 & 2. Our
algorithms are marked improvements over the previ-
ously known algorithms. In particular, we develop
an O(n’) time algorithm for finding one consistent
scenario that is an O(n) improvement over the pre-
viously known algorithm [12], where n is the number
of intervals or points, and we develop an algorithm
for finding all the feasible relations that is of far
more practical use than the previously known algo-
rithm [18].

For the full interval algebra, Vilain & Kautz [20,
211 show that both of these tasks are NP-Complete.
This strongly suggests that no polynomial time algo-
rithm exists. We show how the results for the point
algebra aid in the design of a backtracking algorithm
for finding one consistent scenario that, while
exponential in the worst case, is shown to be useful
in practice. A similar backtracking approach is
given for finding all the feasible relations. The
results here are less encouraging in practice and we
conclude that a better approach in this case is to, if
possible, accept approximate solutions to the prob-
lem (Allen [l], van Beck & Cohen [18, 191).

Background, Definitions, and Example
In this section we review Allen’s interval algebra and
Vilain & Kautz’s point algebra. We end with an
example from the interval algebra of the two reason-
ing problems we want to solve.

Definition. Interval algebra, IA (Allen [l]). There
are thirteen basic relations (including inverses) that
can hold between two intervals.

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

relation symbol inverse meaning

x before y
x meets y
x overlaps y

x during y

x starts y

x finishes y

x equal y

b bi
m mi
0 oi

d di

S si

f fi

eq eq

xxx YYY
XXXYYY
xxx

YYY
xxx

YYYYY
xxx
YYYYY

xxx
YYYYY
xxx
YYY

We want to be able to represent indefinite informa-
tion so we allow the relationship between two inter-
vals to be a disjunction of the- basic relations. We
use sets to list the disjunctions. Somewhat more for-
mally, let I be the set of all basic relations, {eq, b,
bi, m, mi, o, oi, d, di, s, si, f, fi}. IA is the algebraic
structure with underlying 2 jet 2I, the power set of I,
unary operator inverse, and binary operators inter-
section and composition (denoted “constraints” in
[l]; see that reference for the definition).

Definition. Point algebra, PA (Vilain & Kautz
[20]). There are three basic relations that can hold
between two points <, =, and >. As in the interval
algebra, we want to be able to represent indefinite
information so we allow the relationship between
two points to be a disjunction of the basic relations.
PA is the algebraic structure with underlying set
(0, <, 2, =9 >, 2, f, ?}, unary operator inverse,
and binary operators intersection and composition
(denoted addition and multiplication in [20] where
the operators are defined over bit vector representa-
tions of the underlying set; see that reference for the
definitions). Note that 2, for example, is an abbre-
viation of {<, =}, 0 is the inconsistent constraint,
and 2 means there is no constraint between two
points, {<, =, >}.

Vilain & Kautz show that a subset of the interval
algebra can be translated into their point algebra.
We denote as SIA the subset of the underlying set
of the interval algebra that can be translated into
relations between the endpoints of the intervals
using the underlying set of PA (see [19] for an
enumeration of SIA).

We will use a graphical notation where the ver-
tices represent intervals or points and the directed
edges are labeled with elements from the appropriate
algebra representing the disjunction of possible basic
relations between the two intervals or points. A
consistent scenario is a labeling of the graph
where every label is a singleton set (a set consisting
of a single basic relation) and it is possible to map
the vertices to a time line and have the single rela-
tions between vertices hold. The set of feasible
relations between two vertices consists of only the
elements (basic relations) in that label capable of

being part of a consistent scenario. Finding the
feasible relations involves removing only those ele-
ments from the labels that could not be part of a
consistent scenario.

Here is an example from the interval algebra of
our two reasoning tasks. Suppose interval A either
overlaps or starts interval B, but we are not sure
which, and interval B meets interval C. We
represent this as follows

where the label I, the set of all basic relations, shows
we have no direct knowledge of the relationship
between A and C. There are two possible answers
to problem 1: find a consistent scenario. Their map-
pings to a time line are shown below. In the map-
ping on the left, A overlaps B, in the one on the
right, A starts B, and in both mappings B meets C
and A is before C.

v-i F-i
B 1 c B 1 c

I I
It remains to answer problem 2: find all the feasible
relations between every pair of intervals. The one
change is that the set of feasible relations between A
and C is just {b}, the “before” relation. We see that
this is true in the mappings above. No other rela-
tion between A and C can be part of a consistent
scenario.

The Point Algebra and a
Subset of the Interval Algebra

In this section we examine the computational prob-
lems of finding consistent scenarios and finding the
feasible relations for the point algebra, PA, and the
corresponding subset of the interval algebra, SIA.

Finding Consistent Scenarios
Ladkin & Maddux [12] give an algorithm for finding
one consistent scenario that takes O(n3) time for PA
networks with n points. If no consistent scenario
exists, the algorithm reports the inconsistency.
Their algorithm relies on first applying the path con-
sistency algorithm [l3, 151 before finding a consistent
scenario.

Here we give an algorithm for finding one con-
sistent scenario that takes O(n2) time for PA net-
works with n points. Our starting point is an obser-
vation by Ladkin & Maddux 112, p.341 that topologi-
cal sort alone will not work as the labels may be any
one of the eight different PA elements, (0, <, 5,
=, >, 2, #, ?}, and th us may have less information
about the relationship between two points than is
required. For top sort we need all edges labeled

VAN BEEK 729

Input: A PA network represented as a matrix
C where element Cij is the label on edge
(i, j).

Output: A consistent scenario (a linear ordering of
the points).

Step 1. Identify all the strongly connected com-
ponents (SCCs) of the graph using only the edges
labeled with <, 5, and =.

Condense the graph by collapsing each strongly con-
nected component into a single vertex. Let
WI, s2, - - *J Sm} be the SCCs we have found (the
Si partition the vertices in the graph in that each
vertex is in one and only one of the Si). We con-
struct th^e condensed graph and its matrix represen-
tation, C, as follows. Each Si is a vertex in the
graph. The labels on the edges between all pairs of
vertices is given by

6ij + n Cvw, i, j= 1,. . .,m

v ES,
w ESj

If the empty label, 0, results
network is inconsistent.

on any edge, then the

Step 2. Replace any remaining < labels in 6 with
< and p$rform a topological sort using only the
edges in C labeled with <.

Fig. 1. Cons. Scenario Alg. for PA Networks

with <, >, or ? (see [9]). The “problem” labels are
then {=, 0, 5, 2, #}. The intuition behind the
algorithm is that we somehow remove or rule out
each of these possibilities and, once we have, we can
then apply top sort to give a consistent scenario.
Much of the discussion to follow relies on the
assumption that looking at paths (the transitivity
information) is sufficient for deciding the label on an
edge. The only exception to the truth of the
assumption is that looking at paths will sometimes
assign a label of <_ instead of < (see Fig. 3) but this
will not affect the discussion.

Step 1: The = relation. To remove the = rela-
tion from the network, we identify all pairs of points
that are forced to be equal and condense them into
one vertex. By forced to be equal, we mean that in
every consistent scenario the vertices are equal, so
no other relation will result in a consistent scenario.
More formally, we want to partition the vertices into
equivalence classes Si, 1 <_ i 5 m , such that vertices
u and w are in the same equivalence class if and
only if they are forced to be equal. But, the vertices
u and UI are forced to be equal precisely when there
is a cycle of the form

u+.J~-~- _ <w<u
where one or more of the < can be =. This is the
same as saying u and w arrin the same equivalence

4

=

8

=

5

s, = 0, 7, 8) S3 = (4, 5)
S2 = (2, 3) S4 = (6)

Fig. 2. Strongly Connected Components

class if and only if there is a path from w to w and a
path from w to v using only the edges labeled with
< or =. This is a well-known problem in graph
theory. Determining the equivalence classes is the
same as identifying the strongly connected com-
ponents of the graph and efficient algorithms are
known (Tarjan [IS]). An example is shown in Fig. 2.
Only < and = edges are shown except that self-loops
are aEo omitted (each vertex is equal to itself).
There are four strongly connected components.
Condensing the strongly connected components is
described in Step 1 of the algorithm shown in Fig. 1.

Step 1: The @ relatibn. To rule out the 0
relation we must determine if the the network is
inconsistent. The network is inconsistent if a vertex
is forced to be <, >, or # to itself. That is, when
there is a cycle of the form

or of the form
u<v< . . . <w<u

where all but one of the < can be < or =. It turns
out that we can identify these cases simply by also
looking at edges labeled with < when identifying the
strongly connected components. The inconsistencies
are then detected when the strongly connected corn-
ponents are condensed (Step 1 of Fig. 1). For exam-
ple, suppose the label on the edge (1, 7) in the graph
shown in Fig. 2 was < instead of the < shown. Con-
densing the strongly connected component Si gives

61 + cl7 n cIg n c71 n c78 n cgI n Cm
+ {<>n {>,=}n {>}n {<,=}n {<,=>n {>,=}
+0

where again we have omitted the self loops Cii.
Step 2: The 5, 2 relations. To remove the 5

relation from the network, we simply change all <
labels to <. This is valid because, as a result of Step
1, we know that a consistent scenario exists and that
no remaining edge is forced to have = as its label in
all consistent scenarios. So, for any particular edge
labeled with < there exists a consistent scenario with
< as the singleton label. But, changing a 5 to a <

730 KN~WLEDOEREPRESE~ATION

can only force other labels to become <; it cannot
force labels to become =. (Using the terminology of
the algorithm, no new strongly connected com-
ponents are introduced by this step; hence no new
labels are forced to be equal and no new inconsisten-
cies are introduced.) So, after all the changes, a con-
sistent scenario will still exist.

Step 2: The # relation. We can now perform
topological sort to find one consistent scenario. It
can be shown that, because of the previous steps of
the algorithm, the # relations will now be handled
correctly (and implicitly) by top sort. The output of
top sort is an assignment of numbers to the vertices
(a mapping of the vertices to a time line) that is con-
sistent with the information provided. As an exam-
ple, consider the algorithm in Fig. 1 applied to the
network in Fig. 3. Depending on the particular
implementation of top sort, one possible result of the
algorithm is the following assignment of numbers to
vertices: s t 0, v t 1, ~1 t 2, and t t 3.

Theorem 1. The algorithm in Fig. 1 correctly
solves the consistent scenario problem for PA and
SIA networks in O(n2) time, where n is the number
of points or intervals.

Note that for SIA networks we must first
translate the network into a PA network, solve,
then translate back. For the time boundd finding the
strongly connected components is O(n) [16], con-
densing the graph looks at each edge only once, and
topological sort is O(n2) 191. It is easy to see that
the algorithm is asymptotically optimal as we must
at least examine every edge in the network, of which
there may be as many as O(n2). If we do not, we
can not be sure that the label on that edge is not
involved in a contradiction by, for example, being
part of a loop that causes a vertex to be less than
itself.

Determining the Feasible Relationships
Ghallab & Mounir Alaoui [8] give an incremental
procedure, based on a structure called a maximal
indexed spanning tree, that is shown to work well in
practice. The path consistency algorithm (PC) [l3,
151 can be used to find approximations to the sets of
all feasible relations [l]. Much previous work are
efforts at identifying classes of relations for which
PC will give exact answers. Montanari [15] shows
that PC is exact for a restricted class of binary con-
straint relations. However, the relations of interest
here do not all fall into this class. ValdCs-Perez [l7]
shows that PC is exact for the basic relations of IA.
In 118, 211, we show that PC is exact for a subset of
PA and a corresponding subset of SLA. The new
point algebra differs from PA only in that # is
excluded from the underlying set. But we also give
examples there that show that, earlier claims to the
contrary, the path consistency algorithm is not exact

for PA nor for SXA networks and we develop an
O(n4) strong four-consistency algorithm that is
exact, where n is the number of intervals or points.

Here we give an algorithm for finding all feasible
relations that, while still O(n4) in the worst case for
PA networks with n points, is of far more practical
use than our previous algorithm (that algorithm is
still of importance as an approximation algorithm for
instances of the problem from the full interval alge-
bra; see [18, 211 for the details).

Our strategy for developing an algorithm for PA
networks is to first identify why path consistency is
sufficient if we exclude f -from the language and is
not sufficient if we include f. Fig. 3 gives the smal-
lest counter-example showing that the path con-
sistency algorithm is not exact for PA. The graph is
path consistent. But it is easy to see that not every
basic relation in the label between s and t is feasi-
ble. In particular, asserting s = t forces v and w to
also be equal to s and t. But this is inconsistent
with v # &. Hence, the = relation is not feasible as
it is not capable .of being part of a consistent
scenario. The label between-s and t should be <.

v t
Fig. 3. “Forbidden” Subgraph

This is one counter-example of four vertices. But
are there other counter-examples for n > 4? The
following theorem answer this question and is the
basis of an algorithm for finding all feasible relations
for PA networks.

Theorem 2 (van Beek & Cohen [19]). The network
in Fig. 3 is the smallest counter-example to the
exactness of path consistency for PA- networks
and, up to isomorphism, is the only counter-
example of four vertices. Also, any lar&r counter-
example must have a subgraph of four vertices iso-
morphic to the example.

We shall solve the feasible relations problem by
first applying the path consistency algorithm and
then systematically searching for “forbidden” sub-
graphs and appropriately changing the labels (see
Fig. 4; the path consistency algorithm is slightly sim-
plified because of properties of the algebras). The
algorithm makes use of adjacency lists, For

VAN BEEK 731

A PA network represented as a matrix
c where elemen t Cjj is the label on edge
(6 j)-

output: The set of feasible relations for Cij,
i, j = 1, . . . ,n.

procedure FEASIBLE
begin

PATHCONSISTENCY
FINDSUBGRAPHS

end

procedure PATHCONSISTENCY
begin

Qc u RELATEDJ’ATHS (a, j)
l<i<j<n

while (Q is not empty)
begin

select and delete a path (i, k, j) from Q
t + Ci,- n Cik * Ckj
if (t # Cij)
begin

C;j t t
Cji + INVERSE (t)
Q t Q U RELATED-PATHS (i, j)

end

end

procedure RELATED-PATHS (i, j)
return { (i, j, k), (k, i, j) I

I<k<n,k#i,k# j)

procedure FINDSUBGRAPHS
begin

for each v such that adj+(v) # 0
for each s E ad j>(v)

for each t E adjl(v)
if (ad&(s) n ad&(v) n ad&(t) # 0)
begin

Fig. 4. Feas. Relations Alg. for PA Networks

example, adj<(v) is the list of all vertices, w, for
which there iZ an edge from v to w that is labeled
with ‘5’.

Changing the label on some edge (s, t) from ‘<’ to
‘<’ may further constrain other edges. The question
immediately arises of whether we need to again
apply the path consistency algorithm following our
search for “forbidden” subgraphs to propagate the
newly changed labels? Fortunately, the answer is no.
Given a new label on an edge (s, t), if we were to
apply the path consistency algorithm, the set of pos-
sible triangles that would be examined is given by
{(s, t, k), (k, s, t) 1 1 5 k 5 n, k # s, k # t) (see

procedure RELATED-PATHS in Fig. 4). Thus
there are two cases. For both, we can show that
any changes that the path consistency algorithm
would make will already have been made by pro-
cedure FINDSUBGRAPHS.

Case 1: (s, t , k). Changing the label on the edge
(s, t) from ‘<’ to ‘<’ would cause the path con-
sistency algorithm to change the label on the edge
(s , k) only in two cases:

s < t, t < k, and s < k - -
s<t,t= k,ands zk

In both, the label on (s, k) will become ‘<‘. For
(s, t) to change we must have the situation depicted
in Fig 3., for some v and w . But v < t and w < t
together with t < k (or t = k) imply that v 5 k
and w < k (we can assume the relations were pro-
pagated because we applied the path consistency
algorithm before the procedure for finding “forbid-
den” subgraphs). Hence, (s , k) also belongs to a
“forbidden” subgraph and the label on that edge will
have been found and updated.

Case 2: (k, s , t). Similar argument as Case 1.

Theorem 3. 7lie algorithm in Fig. 4 correctly
solves the feasible relations problem for PA and
SIA networks.

Note that for SIA networks we must first
translate the network into a PA network, solve,
then translate back. For a time bound, the path
consistency procedure is O(n3) [14] and the find sub-
graphs procedure is easily shown to take O(n4) time
in the worst case, where n is the number of points.
This is the same as the previously known algorithm
[18]. However, this comparison is misleading, as the
algorithm in [18] always takes O(n4) time, no matter
what the input is. A desirable feature of procedure
FIND~SUBGRAPHS is that its cost is proportional
to the number of edges labeled #. The worst cases
for the algorithm are contrived and presumably
would rarely occur. As experimental evidence, the
algorithm was implemented in a straightforward way
and tested on random problems up to size 100. It
was found that about 90% of the time was spent in
the path consistency algorithm and only about 2% in
FINDXJBGRAPHS. Hence, the O(n3) path con-
sistency procedure dominates the computation.

The Full Interval Algebra
In this section we examine the computational prob-
lems of finding consistent scenarios and finding the
feasible relations between intervals for the full inter-
val algebra, IA. Vilain & Kautz [20, 211 show that
both of these problems are NP-Complete for the
interval algebra. Thus the worst cases of the algo-
rithms that we devise will be exponential and the
best we can hope for is that the algorithms are still
useful in practice. We discuss to what extent this is
achieved below.

732 KNOWLEDGEREPRESENTATION

Single:

(1’2) (1’3)
{es1

04

{oil
61

where I = {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi} WI

Fig. 5. Example IA Network

Finding Consistent Scenarios
Allen [l] proposes using simple backtracking search
to find one consistent scenario of an IA network or
report inconsistency. Valdes-Perez [17] gives a
dependency-directed backtracking algorithm. Both
search through the alternative singleton labelings.
As well, there has been much work on improving the
performance of backtracking that could be applied
to this problem (see [6] and references therein).

Here we show how the results for the point alge-
bra can be used to design a backtracking algorithm
for finding one consistent scenario that is shown to
be useful in practice.

The key idea is that the O(n2) decision procedure
for SIA networks (Step 1 of Fig. 1) can be used to
decide whether a partial solution found so far is con-
sistent (acceptable) and so might be part of a solu-
tion to the whole problem. The benefits go beyond
a fast test for acceptability. Whereas Allen and
ValdCs-Perez search through alternative singleton
labelings, we can now reduce the cardinality of the
domains we are searching through by decomposing
the labels into the largest possible elements of SIA.
For example, if the label on an edge is {b, bi, m, o,
oi, si}, there are six possible ways to label the edge
with a singleton label: {b}, {bi}, {m}, {o}, {oi}, {si},
but only two possible ways to label the edge if we
decompose the labels into the largest possible ele-
ments of SIA: {b, m, o} and {bi, oi, si}. It is easy to
see that this is guaranteed to be better since, for any
choice of a singleton label, we can choose a label of
larger (or equal) cardinality that is a superset of the
singleton label. If the singleton label is consistent, so
is the larger label. And, of course, there will be
times when the larger label is consistent and the sin-
gleton label is not.

Recall that what we want to find is a labeling of
the edges of the graph such that every label contains
a single basic relation and it is possible to map the
vertices to a time line and have the single relations
between vertices hold. Finding a consistent scenario
is now done in two stages: the output of the back-
tracking algorithm will be a consistent SIA network

.
(“II!j
01

(1’3)

WI

(2’3)

{bi,oi}

(24

Wil

(374

-tb)
Fig. 6. Backtrack Search

and the scenario algorithm for SIA networks (Fig. 1)
is then used to find a consistent scenario of this net-
work.

As an example, consider the network shown in Fig.
5. The backtrack search will look at the edges in
the order (1,2), (1,3), (2,3), (1,4), (2,4), and (3,4). A
record of both methods of search is shown in Fig. 6.
Moving to the right and downward in the figure
means a partial solution is being extended, moving to
the left and downward means the search is back-
tracking. Note that, for example, when searching
through alternative singleton labelings, much search
is done before it is discovered that no consistent
scenario exists with edge (1,2) labeled with {es}, but
when decomposing the labels into the largest possible
elements of SIA and searching through the decom-
positions, no backtracking is necessary.

The algorithm was implemented and tested on
random instances from a distribution designed to
approximate planning applications (as estimated
from a block-stacking example in [4]). In planning,
as formulated by Allen, and Koomen [4], actions are
associated with the intervals they hold over and the
full interval algebra is used. Finding one consistent
scenario corresponds to finding an ordering of the
actions that will accomplish a goal. Hence, the
results here are directly applicable. For a problem
size of n = 20, the average time to find a solution
was about seven seconds of CPU time (25 tests

VAN BEEK 733

performed). For n = 40, it was 74 seconds (average
over 21 tests). This seems surprisingly fast. How-
ever, it should be noted that four of the tests for
n = 40 were not included as they were stopped
before completion as a limit on the number of con-
sistency checks was exceeded.

n

Determining the Feasible Relationships
A similar backtracking algorithm as in the previous
section can be designed for finding all the feasible
relations. Again, instead of searching through the
alternative singleton labelings of the edges, we
decompose the labels into the largest possible ele-
ments of SIA and search through the decomposi-
tions. In the previous. section when finding a con-
sistent scenario we stopped the backtracking algo-
rithm after one consistent SIA network was found.
To determine the feasible relations we must find all
such consistent SIA networks. For each such con-
sistent SIA network we find the feasible relations
using the algorithm of Fig. 4. The feasible relations
for the IA network is then just the union of all such
solutions. Initial experience, however, suggests this
method is practical only for small instances of the
problem, or for instances where only a few of the
relations between intervals fall outside of the special
subset SIA. We conclude that in most cases a
better approach is to, if possible, accept approximate
solutions to the problem (Allen [l], van Beek &
Cohen [18, 191).

Acknowledgements. Many thanks to my supervi-
sor Robin Cohen and to Fahiem Bacchus, Charlie
Colbourn, Fei Song, Bruce Spencer, and Paul van
Arragon for help, advice, and encouragement and to
Peter Ladkin for fruitful discussions over the inter-
net.

PI

PI

PI

PI

PI

PI

References
Allen, J. F. 1983. Maintaining Knowledge
about Temporal Intervals. Comm. ACM 20,
832-843.
Allen, J. F. 1984. Towards a General Theory
of Action and Time. Artificial Intelligence 23,
123-154.
Allen, J. F., and H. Kautz. 1985. A Model of
Naive Temporal Reasoning. In Formal Theories
of the Commonsense World, J. Hobbs and R.
Moore (eds.), Ablex, 251-268.
Allen, J. F., and J. A. Koomen. 1983. Planning
Using a Temporal World Model. Proc. of the
8th IJCAI, 741-747.
Dean, T., and D. V. McDermott. 1987. Tem-
poral Data Base Management. Artificial Intel-
ligence 32, l-55.
Dechter, R., and I. Meiri. 1989. Experimental
Evaluation of Preprocessing Techniques in Con-
straint Satisfaction Problems. Proc. of the 11th

PI

PI

PI

PO1

Pll

PI

1131

WI

PI

PI

P71

PI

PI

PO1

Fl

IJCAI, 271-277.
Dechter, R., I. Meiri, and J. Pearl. 1989. Tem-
poral Constraint Networks. Proc. of the 1st
Int. Con f. on Principles of Knowledge
Representation and Reasoning, 83-93.
Ghallab, M., and A. Mounir Alaoui. 1989.
Managing Efficiently Temporal Relations
Through Indexed Spanning Trees. Proc. of the
11th IJCAI, 1297-1303.
Knuth, D. E. 1973. Sorting and Searching.
Addison-Wesley, 258-265.
Koubarakis, M., J. Mylopoulos, M. Stanley, and
A. Borgida. 1989. Telos: Features and Formali-
zation. Technical Report KRR-TR-89-4, Dept.
of Computer Science, University of Toronto.
Ladkin, P. B. 1989. Metric Constraint Satisfac-
tion with Intervals. Technical Report TR-89-
038, International Computer Science Institute,
Berkeley, Calif.
Ladkin, P. B., and R. Maddux. 1988. The
Algebra of Constraint Satisfaction Problems and
Temporal Reasoning. Technical Report, Kestrel
Institute, Palo Alto, Calif.
Mackworth, A. K. 1977. Consistency in Net-
works of Relations. Artificial Intelligence 8,
99-118.
Mackworth, A. K., and E. C. Freuder. 1985.
The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfac-
tion Problems. Artificial Intelligence 25,
65-74.
Montanari, U. 1974. Networks of Constraints:
Fundamental Properties and Applications to
Picture Processing. Inform. Sci. 7, 95-132.
Tarjan, R. 1972. Depth-First Search and
Linear Graph Algorithms. SIAM J. Comput. 1,
146-160.
ValdCs-Perez, R. E. 1987. The Satisfiability of
Temporal Constraint Networks. A-oc. of the
6th National Conf. on AI, 256-260.
van Beek, P. 1989. Approximation Algorithms
for Temporal Reasoning. Proc. of the 11th
IJCAI, 1291-1296.
van Beek, P., and R. Cohen. 1990. Exact and
Approximate Reasoning about Temporal Rela-
tions. Computational Intelligence. To appear.
Vilain, M., and H. Kautz. 1986. Constraint
Propagation Algorithms for Temporal Reason-
ing. Proc. of the 5th National Conf. on AI,
377-382.
Vilain, M., H. Kautz, and P. van Beek. 1989.
Constraint Propagation Algorithms for Tem-
poral Reasoning: A Revised Report. In Read-
ings in Qualitative Reasoning about Physical
Systems, D. S. Weld and J. de Kleer (eds.),
Morgan-Kaufman, 373-381.

734 KN~wLEDGEREPRJ~sENX~TI~N

