
Generalization with Taxonomic Information

Alan M. fiisch and C. David Page Jr.

Dept. of Computer Science and Beckman Institute

University of Illinois
405 North Mathews Ave.

Urbana, IL 61801

Abstract

This paper studies sorted generalization-the gener-
alization, with respect to an arbitrary taxonomic the-
ory, of atomic formulas containing sorted variables. It
develops an algorithm for the task, discusses the al-
gorithm and task complexity, and presents semantic
properties of sorted generalization. Based on its se-
mantic properties, we show how sorted generalization
is applicable to such problems as abduction, induction,
knowledge base vivification, and analogical reasoning.
Significant distinctions between this work and related
work with taxonomic information arise from the gen-
erality of the taxonomic theories we allow, which may
be any first-order taxonomic theories, and the seman-
tic completeness properties of sorted generalization.

Introduction

Unification plays an important role in many auto-
mated deduction systems. It comes in many forms
including term unification, string unification, unifica-
tion with built-in equality, sorted unification, and fea-
ture structure unification, as well as variations of these.
The common feature of all these forms of unification
is that they compute maximal lower bounds in some
partially-ordered set of syntactic objects. Turning uni-
fication on its head yields an operation called “general-
ization,” or “anti-unification,” that computes minimal
upper bounds. As with unification, one can imagine
many forms of generalization. We conjecture that gen-
eralization will play a role in non-deductive reasoning
(e.g., abduction, induction and analogy) as important
as that played by unification in deductive reasoning.
(Unification has some non-deductive applications, and,
as we shall see, generalization can have deductive ap-
plications.) This paper studies sorted generalization,
the dual of sorted unification. Whereas ordinary gen-
eralization, which has been studied by Plotkin [1970;
19711, Reynolds [1970], Lassez, Maher and Marriott

‘This research was partially funded by a grant from Mc-
Donnell Douglas Corporation. The writing of the paper was
completed while the first author was on leave at IBM T. J.
Watson Research Center.

[1988], and Lassez and Marriott [1987], is a syntac-
tic operation that operates solely on the basis of ex-
pression structure, sorted generalization takes into ac-
count a body of taxonomic information. Giving special
treatment to taxonomic information has been a fruit-
ful approach to the construction of AI reasoning sys-
tems. For example, sorted logics distinguish taxonomic
information from other information, and their deduc-
tive systems can exploit this distinction by handling
the taxonomic information with special-purpose meth-
ods such as sorted unification. This paper formalizes
the sorted generalization problem, formulates an algo-
rithm for its solution, discusses the complexity of the
problem and the algorithm, and shows how sorted gen-
eralization can be applied to problems in abduction,
induction, knowledge base vivification and analogical
reasoning.

Before formalizing the task, let’s intuitively examine
an example of sorted generalization and compare it
with unsorted generalization. The examples in this
paper use the following taxonomic information:

& = {Vz UNIV(2), GOOD-COOK(mother(c~yde)),
GOOD-COOK(moi!he7+nbo)),
ELEPHANT(ChJdC), CIRCUS-ANIMAL(C&h?),
ELEPHANT&nbo), CIRCUS-ANIMAL(jumbo),
\da: ELEPHANT(s) -+ ELEPHANT(mother(Z))).

Example 1
Let E = { eats(clyde,peanuts), eats(jumbo,peanuts)}.
E has two maximally-specific sorted generalizations
with respect to Cl:

eats(2:ELEPHANT ,peanuts) and
eats(y:CIRCUS-ANIMAL,peanuts).

E has a most specific unsorted generalization:
eats(z,peanuts).

As Example 1 illustrates, there are cases in
which there is no most specific sorted gener-
alization. Neither eats(z:ELEPHANT,peanuts) nor
eats(y:CIRCUS-ANIMAL,peanuts) is more specific than
the other. Notice also that the sorted generalizations
are more specific than the unsorted generalization.’

‘Section 2 precisely defines “specific” and “general.”

FRISCH AND PAGE 755

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Sorted generalizations
sorted generalizations.

are never less specific than un-

Formalizing the Problem
We formalize the sorted generalization problem us-
ing Sorted First Order Predicate Calculus (SFOPC),
a language that extends First Order Predicate Calcu-
lus (FOPC) with special notation for encoding taxo-
nomic information [Frisch, 19891. SFOPC is no more
expressive than FOPC; each sentence of SFOPC is log-
ically equivalent to one of FOPC. SFOPC is written
with a lexicon that contains the usual function and
predicate symbols and, in addition, contains a count-
able set of sort symbols. Typographically, sort sym-
bols are written entirely in upper-case. Semantically,
a sort symbol denotes a nonempty subset of the do-
main, called a sort. SFOPC contains two kinds of
expressions, “A-expressions” and “S-expressions.” We
refer to A-expressions that are terms as “A-terms” and
A-expressions that are formulas as “A-formulas,” and
we use “S-term” and “S-formula” analogously for S-
expressions. We say that an expression is atomic if it
is a term or an atomic formula. Roughly, the goal of
sorted generalization is to find the maximally-specific
generalizations of a set of atomic A-expressions with
respect to a theory consisting of S-expressions.

A-expressions are similar to ordinary FOPC expres-
sions except that they may contain sorted variables,
variables that are restricted to range over specified sub-
sets of the domain. A sorted variable is a pair, Z:T,
where z is a variable name and r is a sort symbol.
For clarity, variables are sometimes writ ten in angle
brackets, such as (z:T). r and w are used as meta-
linguistic symbols that always stand for sort symbols.
The meanings of A-expressions are similar to those of
FOPC expressions, except for the following rules for
quantification over sorted variables. In these semantic

rules [+I M’ e is the semantic value assigned to an ex-
pression or symbol 4 by a model M and an assignment
to variables e, and e[d/z] is the assignment to variables
that is identical
z is assigned d.

to e with the possible exception that

[Vx:r $?gM1’ = True if, and only if, for every

pxzT dn”+ = True if, and only if, for some

d E 1[7j”+, pn”+[+l = True

The role of S-expressions is to express relationships
among the sorts and the sortal behavior of the func-
tions. - S-expressions are constructed like ordinary ex-
pressions of FOPC, except they contain no ordinary
predicate symbols; in their place are sort symbols act-
ing as monadic predicate symbols. Hence, every atomic
S-formula is of the form 7(t), where T is a sort sym-
bol and t is an ordinary term. S-formulas are assigned

truth values in the usual Tarskian manner. A finite
satisfiable set of S-sentences is called a sort theory and
is frequently denoted by X. Cr is a simple example of a
sort theory. Sort theories may also contain sentences of
other forms, such as DOG(fied) V ELEPHANT(fied) and
v’z DOG(z) A YOUTH(z) ---) PUPPY(x).

We are often interested in whether one sort is a sub-
set of another sort according to a given sort theory
C. T’ is a subsort of T according to X if, and only
if, C k Vz T'(X) + T(Z); we write 7l-4~7. To en-
sure that any two terms have some generalization, as
in the unsorted case, we augment every sort theory
with a sort symbol, UNIV, representing the sort con-
sisting of the entire domain (the universal sort). We
therefore assume that each sort theory contains the S-
sentence Vx UNIV(2). It follows from this assumption
that T 5~ UNIV for every sort symbol T and every sort
theory C. Note that a variable of the universal sort
behaves as an unsorted variable.

Unification and generalization for FOPC formulas
are defined in terms of an instantiation ordering, that
of substitutions. Sorted generalization, as well as
sorted unification, is defined in terms of an analogous
instantiation ordering for SFOPC, that of well-sorted
substitutions. Intuitively, a well-sorted substitution is
a substitution that respects the sorts of the variables.
More precisely, a substitution 0 is well-sorted relative
to a sort theory C if, and only if, for every variable Z:T,

(x:7)6 is a term t such that c b vT(t)i2 Thus, for ex-
ample, 61 = {clyde/z:ELEPHANT} is a well-sorted sub-
stitution relative to Cl, but 192 = {~~~O/Z:ELEPHANT}
is not. An A-expression e is said to be C-more gen-
eral than e’ if e’ = e0, for some substitution 8 that
is well sorted relative to C. We also say that e C-
subsumes e’, and we write e>xe’. An A-expression
that C-subsumes each member of a set of A-expressions
is a C-generalization of the set.

The most general common instance, e, of a set, E,
of atomic expressions may be found with unification
and characterizes the common instances of E: an ex-
pression is a common instance of E if, and only if, it
is an instance of e. Likewise, the most specific gen-
eralization, g, of E characterizes the expressions that
are more general than every expression in E: an ex-
pression is more general than every member of E if,
and only if, it is more general than g. We would like
to use a C-generalization to similarly characterize the
A-expressions that are C-more general than any given
set of atomic A-expressions. But Example 1 shows
that there may be no most specific C-generalization.
An analogous characterization therefore requires a set
of maximally specific C-generalizations, none C-more
general than another. Specifically, the goal of sorted
generalization is to find a complete set of incomparable
C-generalizations (or CIGx) for a given set of atomic

2For any expression $, ‘J$ denotes the universal closure
of +, the result of universally quantifying all free variables
of 4. Similarly, 34 d enotes the existential closure of $.

756 MACHINE LEARNING

A-expressions. A set G is a CIGI: of a set E of atomic
A-expressions if, and only if,

o each member of G is C-more
member of E [Correctness],

general than every

o any atomic A-expression that is C-more general than
every member of E is X-more general than some
member of G [Completeness], and

o no member of G is C-more general than any other
[incomparability].

Some sets of atomic A-expressions have no C-
generalization; the CIGx of any such set is the empty
set. For example, there is no A-expression that is C-
more general than two atomic A-formulas with dif-
ferent predicate symbols. More completely, a set of
atomic A-expressions has an empty CIGx if, and only
if, it contains both A-terms and atomic A-formulas
or contains atomic A-formulas with different predicate
symbols. Might other sets have more than one CIGD?
Can a CIGI: be infinite?

Lemma 1 AZZCIGxs of a set of atomic A-expressions
are variants. That is, any CIGx can be obtained from
another by uniformly renaming variables.

Lemma 2 There are only a finite number of A-
expressions C-more general than a given A-expression,
up to renaming.

Corollary 3 Every CIGx is finite.

The following two examples of sorted generalization
illustrate additional distinctions between sorted and
unsorted generalization, which a sorted generalization
algorithm must accommodate. In Example 2 “mother”
is a function symbol, so E is a set of terms.

Example 2
Let E = { mother(Clyde), mother(jumbo)}.
Then a CAGE, of E is

{y:C00D-COOK, mother(a::ELEPHANT),
mother(z:CIRCUS-ANIMAL)},

and a most specific unsorted generalization of E is
mother(x).

In Example 2, ~:GOOD-COOK Xi-subsumes neither
mother(z:ELEPHANT) nor mother(z:CIRCUS-ANIMAL).
This contrasts with the unsorted case, where a variable
always subsumes any other term. We refer to a vari-
able that C-subsumes all members of a set of A-terms
as a “variable generalization” of that set. We refer to
a non-variable A-expression that C-subsumes all mem-
bers of a set of A-expressions as a “structured gener-
alization.” A sorted generalization algorithm cannot
assume that a variable generalization of a set of A-
terms C-subsumes every structured generalization of
that set. It must therefore compare the variable gen-
eralizations with the structured generalizations.

Because variable generalizations need not C-
subsume structured generalizations, members of a

CIGz may have different structures. In the CIGE1 of
Example 2, one generalization is a variable while the
other two are built from the function symbol “mother.”
Such structural differences can become more remark-
able as the expressions being generalized grow more
complex. That variable generalizations need not C-
subsume structured generalizations is a result of func-
tion polymorphism. A function is .polymorphic if terms
built from that function’s symbol may denote mem-
bers of different sorts based on the arguments in the
terms. mother is a polymorphic function, because
whether a term built from “mother” denotes a member
of the sort GOOD-COOK depends on the argument to
mother. If the argument is Clyde or jumbo, the term
denotes a good cook; otherwise it does not. If mother
were instead a monomorphic function, that is, if all
mothers were known to be good cooks, the variable
~:GOOD-COOK would &-subsume any structured gen-
eralization.

Example 3

Let E = {Zoves(cZyde,mother(Clyde)),
Eoves(jumbo,mother(jumbo))}.

Then a CIGz, of E is

{ Zoves(2:ELEPHANT) mother(z:ELEPHANT)),
Zoves(a::ELEPHANT, mother(r:CIRCUS-ANIMAL)),
Zoves(z:ELEPHANT, y:GOOD-COOK),

ZOVeS(XCIRCUS-ANIMAL, mother(z:ELEPHANT)),
Zoves(z:CIRCUS-ANIMAL, mother(z:CIRCUS-ANIMAL)),
Zoves(z:CIRCUS-ANIMAL, y:GOOD-COOK)},

and a most specific unsorted
Zoves(x,mother(x)).

generalization of E is

The interesting point of Example 3 is that the
CIGx:, of E is built from the cross-product of CIGx:,s
of the parts-the arguments-of the formulas in E.
Care is required in building the CIGEc, to ensure that
variables repeat in exactly the right places, that is,
that variable co-references are correct. There might
also be variable generalizations of E; in this instance
there are not, because E contains A-formulas rather
than A-terms.

A Sorted Generalization Algorithm

The 2-SG algorithm, shown in Figure 1, computes the
CAGE of any pair of atomic A-expressions. The 2-SG
algorithm uses a bijection 4 from any triple of the form
(t, s, T) to a variable of sort T.~ To avoid accidental
variable collisions, we further stipulate that the range
of $ is disjoint from the alphabet from which the A-
expressions input to the algorithm are built.

3This function is similar to the bijection between vari-
able names and pairs of terms that is usep in the anti-
unification (unsorted generalization) algorithm of [Lassez
et al., 19881.

FRISCH AND PAGE 757

I Input: Two atomic A-expressions, (~1 and (~2, and a sort theory X.
Output: A CIGI: of al and ar2.

IfcQ= ar2 then return {err}.

If ~1 and (~2 are A-formulas with different predicate symbols or one is an A-term and the other an
A-formula, then return (}.

If cy1 and CQ are p(sr, 52, So) and p(tl, $2, t,), respectively, where p is a predicate/function symbol,
and 81, s2 , s,, tl, t2, t, are A-terms, then

Let Structured-Set = {~(TI, ~2, TV) 1 Q E 2-SG(si, t;, C), for all 1 5 i 5 n}.
Otherwise,

Let Structured-Set = { }.

If al and ~2 are A-terms, then
a. Let Variable-Set = {4(ar, (~2, T) 1 T is any sort symbol occurring in X for which C b V~(al),

C /= VT(Q~), and for every e E Structured-Set C k VT(e)}.
b. For each variable x:r E Variable-Set:

If there is another variable y:w remaining in Variable-Set such that w & T, then
Remove X:T from Variable-Set.

Otherwise,
Variable-Set = { }.

Return Structured-Set U Variable-Set.

Figure 1: The 2-SG Algorithm

Theorem 4 (Z-SG Algorithm Correctness)
Given oracles for determining whether or not any given
universally-closed atomic S-formula follows from C
and whether or not T -(x w for any two given sorts T

and w, the Z-SG algorithm halts and returns a CIGx
of aI and a2.

The algorithm interacts with the sort theory through
two kinds of taxonomic queries. It asks whether the
sort theory entails a given universally-closed atomic S-
formula, and it asks whether 3~ is true of a given pair
of sorts. Therefore oracles, or decision procedures, for
these taxonomic queries are sufficient for computation
of sorted generalization; if the taxonomic queries are
decidable for a given sort theory, then sorted general-
ization relative to that sort theory is computable. The
converse is also true; if sorted generalization is com-
putable relative to a given sort theory, then the tax-
onomic queries are decidable relative to that theory
because any algorithm for sorted generalization can be
used to answer the queries. Therefore, oracles for the
taxonomic queries are necessary, as well as sufficient,
for sorted generalization. In general such oracles can-
not be computed, but restrictions can be placed on the
sort theory so that they can be.

The reader is encouraged to walk through the 2
SG algorithm’s computation of the generalizations in
the examples. Let’s take the examples in order, con-
sidering how the algorithm addresses the major is-
sue raised by each. Example 1 shows that a set
of atomic A-expressions may have more than one
maximally-specific sorted generalization. The algo-
rithm therefore returns a set rather than a single gen-
eralization. Example 2 shows that variable general-

758 MACHINE LEARNING

izations are not guaranteed to C-subsume structured
generalizations. Therefore, step 4 of the 2-SG algo-
rithm compares variable generalizations with struc-
tured generalizations as it builds the Variable-Set. No-
tice that the algorithm never removes a structured
generalization. Structured generalizations cannot C-
subsume variable generalizations, and, because of the
way they are built, no structured generalization built
by 2-SG C-subsumes another. Example 3 illustrates
the cross-product operation inherent in generalizing
atomic A-expressions involving functions or predicates
with more than one argument. It also shows that
variables must be named properly to ensure correct
variable co-references when cross-products are taken.
Step 3 of the 2-SG algorithm builds structured gen-
eralizations of atomic A-expressions using the cross-
product of the sorted generalizations of their compo-
nents. Correct variable co-references are ensured by
the bijection 4 used for variable naming in step 4,
the only step at which new variables are introduced.
For example, if 4 maps (clyde,jUmbo,ELEPHANT) to
Z:ELEPHANT during generalization of the first argu-
ments in the A-expressions loves(clyde,mother(Clyde))
and loves(jumbo,mother(jumbo)), then during gener-
alization of the second arguments, it maps an in-
put to Z:ELEPHANT if, and only if, that input is also
(clyde,jumbo,ELEPHANT). Thus a variable repeats in
a C-generalization only if a pair of A-terms, one from
each input A-expression, repeats in the same way in
the input A-expressions. Note that repetition of a
pair of A-terms in the input A-expressions does not
guarantee a corresponding variable repetition in every
C-generalization, because the pair of A-terms may be

generalized in more than one way.
The CIGx Decomposition Theorem, which follows,

shows that the 2-SG algorithm can be used repeatedly
to generalize three or more atomic A-expressions.

Theorem 5 (CIGx Decomposition Theorem)
Let A and B be sets of atomic A-expressions and let C
be a sort theory. Then

{x 1 x E CIGx(a, b) for some a E CIGr:(A),
and b E CIGx(B)}

is a complete set of C-generalizations of A u B.

The CIGZ: Decomposition Theorem says nothing
about whether the complete set of C-generalizations
contains comparable A-expressions, that is, whether it
is a CIGx. In general it may not be. But given the
oracles used in the 2-SG algorithm, the complete set
can be filtered into a CIGx by the following proce-
dure. Let E be the set of A-expressions we wish to
filter. From E choose distinct A-expressions er and
e2 such that er >x e2 and remove el from E, until
no such A-expressions remain in E. It follows from
Lemma 2 that E is initially finite. Given the oracles,
>x is decidable, so this procedure halts and returns a
CIGI: that characterizes the same set as the original
complete set of C-generalizations.

Algorithm and Problem Complexity
We have seen that sorted generalization is computable
given oracles for the taxonomic queries. But given
polynomial-time response to the taxonomic queries,
the 2-SG algorithm requires exponential time in the
worst case. Exponential time is a requirement of the
problem itself because, in the worst case, the size of
the CIGx of two atomic A-expressions is exponential
in the size of the smaller A-expression. The size is
O(tn), where t is the number of sort symbols in C and
n is the size of the smaller A-expression.

The exponential size is a result of the cross-product
operation. We can represent CIGxs more compactly
by using an explicit cross-product operator rather than
computing cross-products. A CIGx can always be rep-
resented in size polynomial in the size of the atomic A-
expressions generalized and the number of sort sym-
bols available. We can modify the 2-SG algorithm
to compute such a compact representation. Unfortu-
nately, the problem requires an exponential time algo-
rithm (assuming P # NP) even when we allow a com-
pact representation of the CIGxs and are guaranteed
polynomial-time (in t and n) response to taxonomic
queries. We call such a version of the problem “sim-
plified sorted generalization.”

Theorem 6 Simplified sorted generalization is NP-
hard.

The proof of this theorem shows that 3-Satisfiability
is polynomially reducible to simplified sorted general-
ization. This result does not depend on any partic-
ular compact representation of CIGxs. It holds for

any representation of CIGxs with which we can test
in polynomial time whether a given A-expression is a
member of a given CIGx.

This complexity result indicates that efficient re-
sponse to taxonomic queries is not enough to allow effi-
cient sorted generalization. It is possible, nonetheless,
to restrict the taxonomic information in other ways
to guarantee polynomial-time computation of CIGcs
in a compact representation. It is possible as well to
restrict the taxonomic information so that the size of
all CIGxs is polynomial in the size of the input. The
study of such restrictions is an interesting area for fur-
ther work. It is also possible to compute the compact
representation of a complete set of C-generalizations
in polynomial time, given polynomial-time response to
taxonomic queries, if the set is allowed to contain com-
parable A-expressions. Thus the complexity of simpli-
fied sorted generalization is in ensuring incomparabil-
ity.

Applications
So far we have ordered atomic A-expressions by well-
sorted substitutions, but we have said nothing about
the semantic relationships between A-expressions. We
could not have done so, as we have not even specified
whether the variables in the A-expressions are univer-
sally or existentially quantified. It turns out that there
are correspondences between the ordering 2x, based
on well-sorted substitutions, and orderings based on
entailment. It is because of these correspondences that
we can use the algorithm for various reasoning tasks.

The first application we consider might arguably be
classified as abduction or induction. Let 0, a set of
observations, be any finite set of sentences, and let B,
a body of background information, be any finite satisfi-
able set of sentences. Informally, the problem is to find
an hypothesis, h, that taken with the background in-
formation, B, explains each of the observations. More
formally, by “explains” we mean that h is consistent
with B, and h together with B entails ~0 (~0 is the
conjunction of the observations). We say that h is B-
stronger than ~0 and ~0 is B-weaker than h. But
there may be many such hypotheses, some better than
others, so we would like to find the best one, or charac-
terize the set of all hypotheses. The weakest hypothe-
sis with respect to the background theory characterizes
the set of all hypotheses, but again there may be no
single weakest hypothesis. We therefore want a com-
plete set of incomparable hypotheses, that is, a set H
of sentences from an hypothesis language such that

e every member of H is B-stronger than AO,

o any sentence in the hypothesis language that is B-
stronger than A0 is B-stronger than some member
of H, and

e no member of H is B-weaker than any other one.

It is unclear whether to classify this problem as ab-
duction or induction. In abduction there may be only a

FRISCH AND PAGE 759

single obser vation, and the background information is
normally a causal theory. Abduction typically finds
hypotheses that explain the observation(s) through
chaining, possibly extensive, using modus ponens. In-
duction, on the other hand, frequently works with
many observations and produces a general, universally-
quantified sentence that requires less inference to entail
the observations. So whereas background information
is crucial to abduction, it is less prominent, sometimes
even absent, in induction . The current problem seems
to include many instances of both abduction and in-
duction.

Let’s consider a special case of the problem, in which
0 may be any finite set of universally-closed atomic A-
formulas and B may be any sort theory. We wish to ex-
plain the observations with a universally-closed atomic
A-formula. As the reader may have guessed, the prob-
lem can be solved by sorted generalization. The CIGx
of the atomic A-formulas is a complete set of incom-
parable hypotheses, once its formulas are universally
closed. Why? Because the instantiation ordering >E
over atomic A-formulas is equivalent to the entailment
ordering of those A-formulas, universally closed.

Theorem 7 Let I= be a sort theory and let cx1 and
cv2 be atomic A-formulas. CY~ 21: cy2 if, and only ij,
{k&l} u c t= vcq3.

Therefore the universal closure of any member of the
CIGz of a set of observations is a maximally-weak hy-
pothesis relative to C. If we allow disjunction in the
hypothesis language, there are yet C-weaker hypothe-
ses. In fact, there is a B-weakest one, which is the
disjunction of the universal closures of the A-formulas
in the CIGx.

We have seen how atomic A-formulas are ordered
by entailment when variables are universally quanti-
fied. The next problem we consider involves exist en-
tially quantified variables. The problem is vivification,
a promising approach to efficient deduction [Borgida
and Etherington, 1989; Levesque, 1988]. The premise
of vivification is that much of the complexity of au-
tomated deduction arises from incomplete knowledge
in knowledge bases (KBs), in particular from disjunc-
tions leading to reasoning by cases. Vivification weak-
ens the knowledge base in order to remove such dis-
junctions. To use an example from Levesque [1988],
suppose our KB includes age(fred,?l) V age(fred,72).
Many of the interesting results of this fact follow from
Fred being in his early seventies or, even more gener-
ally, being a senior citizen. If we know that 71 and 72
belong to the category low-seventies, we may use sorted
generalization to replace age(fied,71) V age(fred,72)
with %:LOW-SEVENTIES age(fred,z:LOW-SEVENTIES).
As another example, if our KB includes the disjunction
age(fred,‘lO) V age(joe,70), and the background infor-
mation specifies that Fred and Joe are both golfers
and dentists, a sorted generalization algorithm will
find two vivifications of the disjunction: %:DENTIST
age(s:DENTIST,79) and &GOLFER age(y:GOLFER,70).

It is then necessary to decide which vivification will re-
place the disjunction. It may be best to replace it with
the conjunction of the vivifications, because replacing
one formula with another of equal or greater size can
increase efficiency if the replacement eliminates some
reasoning by cases. But does sorted generalization nec-
essarily give the desirable vivid form of all disjunc-
tions? Does it give the strongest consequents of a dis-
junction together with specified knowledge from the
KB? We now see that it does, where the disjuncts and
consequents are equivalent to ground or existentially
quantified atomic A-formulas and the background in-
formation is taxonomic.

Vivification is a special case of the following truth-
preserving inference problem. Let L3 and B be finite
sets of sentences, where B is satisfiable. Find a set
C of sentences from a specified “consequent” language
such that

a every member of C is B-weaker than VD (VD is the
disjunction of the sentences in D),

e any sentence in the consequent language that is B-
weaker than VD is B-weaker than some member of
C, and

e no member of C is B-stronger than any other one.

Sorted generalization solves all instances of this prob-
lem in which D is a set of atomic A-formulas, exis-
tentially closed, B is a sort theory, and C is allowed to
be any set of existentially-closed atomic A-formulas. It
solves these instances because, according to the follow-
ing theorem, the instantiation ordering 2~ on atomic
A-formulas is also equivalent to an entailment ordering
on those A-formulas, existentially closed.

Theorem 8 Let C be a sort theory and let crl and
cu2 be atomic A-formulas. arl 2~ cv2 if, and only if,
(3cy2) u c i= 3q.

Finally, various methods for falsity-preserving and
truth-preserving generalization are used in algorithms
for analogical reasoning. Reasoning with taxonomic
information is a large part of many such methods.
Therefore, based on Theorems 7 and 8, we suggest that
sorted generalization is a useful tool for analogical rea-
soning, whether truth-preserving or falsity-preserving
generalizations are needed. For example, Leishman’s
[1989] analogical tool uses truth-preserving general-
ization of terms with respect to taxonomic informa-
tion in finding constrained partial correspondences be-
tween conceptual graphs. These correspondences pro-
duce a more general conceptual graph. It follows from
the truth-preserving character of this generalization
method that the taxonomic “concepts” used in the
more general graph may be understood as existentially
quantified sorted variables.

Relationship to Other Work

The present work differs in two major ways from other
studies of generalization with taxonomic background

760 MACHINE LEARNING

information. First, the generality of the taxonomic
theories distinguishes this work. A simple consequence
of this generality is that a set of atomic A-expressions
may have more than one minimal C-generalization.
Therefore, the set of atomic A-expressions, ordered by
C-subsumption, is not a lattice. This contrasts with
other methods such as those described in [Michalski,
1983; Mitchell et al., 19831. A less obvious conse-
quence, further distinguishing this work, is the poly-
morphism of function symbols. The need for poly-
morphism is evident; if fido is a dog and jumbo is an
elephant, we should be able to let mother(fido) and
mother(jumbo) denote individuals that do not belong
to exactly the same sorts. But providing this needed
flexibility adds the subtlety involving structured gen-
eralizations and variable generalizations, as illustrated
in Example 2.

The second major distinction of this work is the pair
of semantic properties asserted by Theorems 7 and
8. They assert falsity-preserving and truth-preserving
correctness and completeness properties of sorted gen-
eralization. Plotkin’s work on unsorted generalization
begins with the semantic property that Vcul b V’a;! if,
and only if, cy1 &a. We know of no such entailment-
based result for methods of generalization with taxo-
nomic background information, other than these pre-
sented here.

Finally, we relate sorted generalization to the gener-
alized subsumption of Buntine [1988]. Generalized sub-
sumption is defined over Horn clauses with respect to a
logic program that acts as the background information.
Because atomic A-formulas are equivalent to Horn
clauses whose antecedents contain only taxonomic con-
straints on variables, we can compare C-subsumption,
on which sorted generalization is based, with general-
ized subsumption, in cases where C consists entirely
of Horn clauses. In these cases, C-subsumption and
generalized subsumption are equivalent.

Because C-subsumption is based on purely taxo-
nomic information, the 2-SG algorithm generalizes
atomic A-expressions by decomposing them, general-
izing their parts, and composing these generalizations.
This compositional approach reduces the search for
maximally-specific C-generalizations. It is reasonable
to ask whether this approach can also reduce the search
for generalization based on generalized subsumption
with respect to arbitrary logic programs. It cannot be
applied directly to generalization problems with such
non-taxonomic theories, because in some cases it com-
putes an incomplete set of generalizations. It may be
possible, nevertheless, to use the 2-SG algorithm as
part of a broader generalization procedure, much as
algorithms for sorted unification are useful in improv-
ing the efficiency of deductive methods.

Acknowledgements
We thank the members of the Knowledge Representa-
tion and Reasoning Group and the Inductive Learning

Group at the University of Illinois, and Tony Cohn,
David Etherington, Mike Frazier, and Chris Matheus
for helpful discussions and comments.

eferences
[Borgida and Etherington, 19891 A. Borgida and D. W.

Etherington. Hierarchical knowledge bases and effi-
cient disjunctive reasoning. In First Int. Conf, on
Principles of Knowledge Representation and Reason-
ing, Toronto, Ontario, Canada, May 1989.

[Buntine, 19881 Wray Buntine. Generalized subsumption
and its applications to induction and redundancy. Ar-
tificial Intelligence, 36(2):149-176, 1988.

[Frisch, 19891 A. M. F risch. A general framework for sorted
deduction: Fundamental results on hybrid reasoning.
In First Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning, pages 126-136, Toronto,
Ontario, Canada, May 1989.

[Lassee and Marriott, 19871 J-L. Lassez and K. Marriott.
Explicit representation of terms defined by counter ex-
amples. Journal of Automated Reasoning, 3:301-317,
1987.

[Lassez et al., 19881 J-L. Lassez, M. J. Maher, and K. Mar-
riott. Unification revisited. In Jack Minker, editor,
Foundations of Deductive Databases and Logic Pro-
gramming, chapter 15, pages 587-625, Morgan Kauf-
mann Publishers, 1988.

Leishman, 19891 D. Leishman. Analogy as a constrained
partial correspondence over conceptual graphs. In
First Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning, pages 223-234, Toronto, On-
tario, Canada, May 1989.

Levesque, 19881 H. J. Levesque. Logic and the complexity
of reasoning. Journal of Philosophical Logic, 17:355-
389, 1988.

[Michalski, 19831 R. S. Michalski. A theory and method-
ology of inductive learning. In T.M. Mitchell
R.S. Michalski, J.G. Carbonell, editor, Machine
Learning: An Artificial Intelligence Approach,
pages 82-132, Morgan Kaufmann Publishers, 1983.

[Mitchell et al., 19831 T. G. Mitchell, P. E. Utgoff, and
R. Banerji. Learning by experimentation: Acquir-
ing and redefining problem solving heuristics. In
T.M. Mitchell R.S. Michalski, J.G. Carbonell, edi-
tor, Machine Learning: An Artificial Intelligence Ap-
proach, chapter 5, pages 137-162, Morgan Kaufmann
Publishers, 1983.

[Plotkin, 19701 G. D. Plotkin. A Note on Inductive Gener-
alization, chapter 8, pages 153-163. Volume 5 of Ma-
chine Intelligence, Edinburgh University Press, Edin-
burgh, 1970.

[Plotkin, 19711 G. D. Plotkin. A Further Note on Inductive
Generalization, chapter 8, pages 101-124. Volume 6
of Machine Intelligence, Edinburgh University Press,
1971.

[Reynolds, 19701 J. C. Reynolds. Transformational Sys-
tems and Algebraic Structure of Atomic Formulas,
chapter 7, pages 135-52. Volume 5 of Machine Intelli-
gence, Edinburgh University Press, Edinburgh, 1970.

FRISCHAND PAGE 761

