
Constructor: A System for the Induction of Probabilistic 
Models 

Robert M. Fung and Stuart L. Crawford 
Advanced Decision Systems 

1500 Plymouth Street 
Mountain View, CA 94043-1230 

Abstract 
The probabilistic network technology is a knowledge- 
based technique which focuses on reasoning under 
uncertainty. Because of its well defined semantics 
and solid theoretical foundations, the technology is 
finding increasing application in fields such as med- 
ical diagnosis, machine vision, military situation as- 
sessment , petroleum exploration, and information re- 
trieval. However, like other knowledge-based tech- 
niques, acquiring the qualitative and quantitative in- 
formation needed to build these networks can be highly 
labor-intensive. 

CONSTRUCTQR integrates techniques and concepts 
from probabilistic networks, artificial intelligence, and 
statistics in order to induce Markov networks (i.e., 
undirected probabilistic networks). The resulting net- 
works are useful both qualitatively for concept orga- 
nization and quantitatively for the assessment of new 
data. 

The primary goal of CONSTRUCTOR is to find quali- 
tative structure from data. CONSTRUCTOR finds struc- 
ture by first, modeling each feature in a data set as a 
node in a Markov network and secondly, by finding 
the neighbors of each node in the network. In Markov 
networks, the neighbors of a node have the property of 
being the smallest set of nodes which “shield” the node 
from being affected by other nodes in the graph. This 
property is used in a heuristic search to identify each 
node’s neighbors. The traditional x2 test for indepen- 
dence is used to test if a set of nodes “shield” another 
node. Cross-validation is used to estimate the quality 
of alternative structures. 

Introduction 
The probabilistic networks technology is a new 
knowledge-based approach for reasoning under uncer- 
tainty. Because of its well-defined semantics and solid 
theoretical foundations, it is finding increasing appli- 
cation in fields such as medical diagnosis, machine vi- 
sion, military situation assessment, petroleum explo- 
ration, and information retrieval. However, like other 
knowledge-intensive approaches, acquiring the qualita- 
tive and quantitative information needed to build these 

networks is a highly labor-intensive task which requires 
trained personnel (i.e., knowledge engineers). In an 
effort to address this problem, techniques for network- 
induction [4, 141 have been explored. However these 
techniques are limited to the recovery of tree structures 
and these structures are often not expressive enough to 
represent real-world situations. 

In this paper, we describe CONSTRUCTOR-a sys- 
tem designed to more fully address this “knowledge 
acquisition bottleneck”. CONSTRUCTOR induces dis- 
crete, Markov networks of arbitrary topology, from 
data. These networks contain a quantitative (i.e., 
probabilistic) characterization of the data but, perhaps 
more importantly, also contain a qualitative structural 
description of the data. By qualitative structure we 
mean, loosely, the positive and negative causal rela- 
tionships between factors as well as the positive and 
negative correlative relationships between factors in 
the processes under analysis. CONSTRUCTOR has as 
a primary focus the recovery of qualitative structures 
since these structures not only determine which quan- 
titative relationships are recovered, but also because 
such structures are readily interpretable and thus are 
valuable in explaining the real world processes under 
analysis. 

The CONSTRUCTOR algorithm is based on the con- 
cept of “constructing” a network from a data set by 
instantiating a node for each attribute in the data set 
and identifying the neighbors of each node in the net- 
work. Identifying the neighbors of a particular node is 
operationalized by heuristically searching for the small- 
est set of nodes which makes the node independent of 
all other nodes in the network. Independence is tested 
through the use of the x2 test of independence. The 
resulting network is a Markov network. 

Throughout this paper we illustrate concepts with 
variations on a single problem, which was originally 
described in [l]. This problem involves an LED dis- 
play connected to a numeric keypad. The display is 
fuulty, however, since the output of the display may 
not always match the key that was depressed. Figure 
1 shows the numerical digit display unit, and illustrates 
the components of the display that must be illuminated 

762 MACHINE LEARNING 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



Rebane & Pearl, 1987 
This research [14] extended the MWST algorithm of 
Chow and Liu to include the partial recovery of singly- 
connected graphs. ’ The basic idea is to first run the 
Chow and Liu algorithm to determine node neighbors. 
A test is then made for each node to determine which 
of the node’s neighbors are pairwise independent. If 
a set of mutually pairwise independent nodes exists, 
then they are labeled as predecessors of the node in 
question and the remainder are labeled as successors. 
However, if no pairwise independent nodes are found, 
no labeling can take place. 

Although this algorithm keeps all the positive fea- 
tures of the MWST algorithm, it does little to address 
its major drawback-the accurate representation of sit- 
uations which do not have a singly-connected network 
representation. 

Xl 

x2 

3 

x3 
x4 

x5 X6 

x7 

Xl X2 X3 X4 X5 X6 X7 - - 

ON ON OFF ON OFF ON ON 

Figure 1: The LED Display 

to generate the number 5. Since each component of the 
display has a 0.9 probability of illuminating in error, 
a training set can be generated in which each example 
consists of the key that was depressed and the actual 
state of the LED. The example task is to use CON- 
STRUCTOR to recover a probabilistic model which can 
be used both qualitatively to understand the workings 
of the LED display and quantitatively to assess the in- 
tended digit given new LED displays. 

Related Work 

This section describes a number of alternative ap- 
proaches to the model construction task addressed by 
CONSTRUCTOR. 

Chow & Liu, 1968 

This research [4] was concerned with reducing the 
significant amounts of memory needed to represent 
large discrete probability distributions. The research 
resulted in the Maximum Weight Spanning Tree 
(MWST) alg or1 ‘th m. The algorithm takes as input a 
training set and produces as output a probabilistic net- 
work with a tree topology. 

The algorithm has several desirable properties. 
First, if the underlying distribution from which the 
training set is sampled has a tree structure, then the 
MWST algorithm will find the “optimal” tree. Sec- 
ondly, the algorithm is computationally tractable-it 
runs in O(n2) where it is the number of attributes in 
the training set. Thirdly, since the algorithm only uses 
pairwise statistics, the size of the training set can be 
modest and still achieve good results. 

The major drawback of this algorithm is that sit- 
uations with more complex structures (i.e., non-tree 
topologies) cannot be accurately represented. This is 
a serious drawback since most real problems do not 
have “tree” structures. 

Concept Formation Research 

The CONSTRUCTOR approach to structure learning 
shares some similarities with the more widely known 
machine learning work on concept formation [5,11,12]. 
The clearest similarity relates to the goals of the algo- 
rithms: the CONSTRUCTOR and concept formation al- 
gorithms are both designed “to help one better under- 
stand the world and to make predictions about its fu- 
ture behavior.“[7]. In addition, both approaches learn 
in an unsupervised manner-no advice or intervention 
is required from a “teacher” and like the AutoClass sys- 
tem [3], Constructor is inherently Bayesian in spirit, 
making use of probability distributions over the at- 
tributes of the observations in the training set. Fur- 
thermore, the networks generated by Constructor are 
not strictly hierarchical, as are the knowledge repre- 
sentations produced by many of the concept formation 
techniques. 

Component Techniques 
CONSTRUCTOR makes use of traditional techniques of 
artificial intelligence as well as recent advances in both 
probabilistic representation and inference and statis- 
tical analysis. The probabilistic network technologies 
provide an intuitive representation for a joint prob- 
ability distribution as well as efficient techniques of 
probabilistic inference. From AI, we use techniques of 
heuristic search in order to efficiently find the structure 
which best represents the data. From statistics, we use 
the x2 test to decide when attributes are probabilisti- 
tally independent and cross-validation for selecting the 
“best connected” network. 

Probabilistic Networks: Probabilistic networks [S, 
131 are used for representing and reasoning with un- 
certain beliefs, and are based on the well-established 

'A singly connected 
(undirected) cycles. 

graph is one in Which there are no 

FUNG AND CRAWFORD 763 



Figure 2: Probabilistic Network for the LED Problem 

theory of Bayesian probability. The primary inno- 
vation of probabilistic networks is the explicit repre- 
sentation of conditional independence relations. The 
representation of conditional independence relations in 
a probabilistic network is encoded in the topology of 
the network and can be illustrated with an example. 
In the network topology shown in Figure 2, the De- 
pressed Key node separates all of the LED segments 
from each other. This topology implies that the state 
of any of the LED segments is independent of the state 
of every other segment in the display given that it 
is known what key has been depressed. This inde- 
pendence is conditional however, since the LED states 
are dependent if it is not known which key has been 
depressed. The three-place relation symbol I will be 
used to denote conditional independence. For example, 
I(n;, nk, ni) denotes that ni is conditionally indepen- 
dent of nj given ?&k. 

There are two types of probabilistic networks: 
Bayesian and Markov. A Bayesian network contains 
directed arcs whereas a Markov network contains undi- 
rected arcs. Networks of both types represent a joint 
state space and a probability distribution on that 
space. Each node of a probabilistic network represents 
one component of the joint state space (i.e., a mutually 
exclusive and exhaustive set of states). For example, 
the Depressed Key node in Figure 2 represents the set 
of states (0 1 2 3 4 5 6 7 8 9). Each arc of a proba- 
bilistic network represents a relationship between the 
nodes it connects. For example, the arc between the 
Depressed Key node and the LED1 node indicates that 
the top element of the LED is probabilistically related 
to the key that is depressed (i.e., if there is no failure, 
it will turn on if the depressed key is 0, 2, 3, 5,7, 8, or 
9). 

The form of the probability distribution for a net- 

work depends on its type. In a Bayesian network, a 
conditional probability is stored at each node where the 
conditioning variables are the node’s predecessors. In a 
Markov network, the nodes are grouped into cliques.2, 
and probabilistic quantities are associated with the 
cliques of a network instead of with the nodes them- 
selves. 

Useful inferences can be made given a probabilistic 
network that represents a situation and evidence about 
the situation. For example, given the evidence that 
LED2 LED4 LED6 and LEDrare illuminated, and the 
network shown in Figure 2, one could infer updated be- 
liefs about the “depressed key”. As one would expect 
for this example, the result would be relatively strong 
beliefs for “5” and “6” and relatively weak beliefs for 
the other possible values for “depressed key”. Several 
algorithms for inference have been reported, [2,10,13]. 
While each of these algorithms has significantly differ- 
ent methods for inference, they are equivalent in that 
given a probabilistic network and a particular query, 
they will infer exactly the same result. 

Every node in a probabilistic network has a Markov 
boundary that “shields” it from being affected by ev- 
ery other node outside the boundary. In other words, 
given the Markov boundary of a node, that node is 
conditionally independent of every other node in the 
network. Formally, the Markov boundary of a node ni 
in a network U is a subset of nodes S such that: 

I(ni,S, u\s\W) (1) 

and no proper subsets of S satisfy Equation 1. (The op- 
erator “\n denotes set difference.) The Markov bound- 
ary of a Bayesian network node is simply the union 
of the node’s predecessors, the node’s successors, and 
the predecessors of the node’s successors. The Markov 
boundary for a Markov network node is simply its 
neighbors. Figure 3 shows the Markov boundary for 
a Bayesian network node. The Markov boundary con- 
cept is crucial to the development of the CONSTRUC- 
TOR algorithm. 

Statistical Methods: When attributes take on cat- 
egorical values, the degree to which two attributes are 
statistically independent can be ascertained via the 
well known x 2 test of independence. For this test, 
the data are arranged in a two-way contingency table 
such that the possible values of one attribute make up 
the rows of the table, the possible values of the other 
attribute make up the columns, and the data propor- 
tions of the various attribute/value combinations fill 
the cells of the table. The conditional independence of 
attributes ai and aj given attribute c&k can be tested 
by preparing a three-way contingency table so that the 
values of oi and aj make up the rows and columns of 
the table, and the values of ok make up the layers. 

2A clique is a s et of nodes in which every node 
set is a neighbor of every other node iu the set. 

in the 

764 MACHINELEARNING 



Figure 3: A Markov Boundary 

Conditional independence is tested by computing sep 
arate x2 statistics for each layer and summing. The 
conditional independence of attributes ai and aj given 
a set of attributes (ok, ul, . . .} can be tested by simply 
forming a “macro” attribute, h, whose values consist 
of all combinations of values of the attributes in the 
conditioning set. 

In most instances of model fitting algorithms (e.g., 
CONSTRUCTOR), the eventual goal is to uncover a 
model that will be useful for prediction. It is an un- 
fortunate fact that the predictive performance of such 
data-derived models often falls short of expectations. 
The model will often be highly predictive when test 
cases are drawn from the data used to formulate the 
model, but less predictive when new data are pre- 
sented. This phenomenon is called “statistical over- 
fitting” and indicates that, on average, the fit of the 
model to the data used to build the model is much 
closer than the fit to new data. A simple mecha- 
nism for addressing the problem of overfitting is cross- 
validation [15], often characterized as a “leave some 
out” technique in which a model formed from a por- 
tion of the data is subsequently tested against the data 
left out of the model formation process. The use of 
cross-validation is not restricted to model assessment, 
however, since the approach can also be used to assist 
with model selection. Breiman et al. [l] describe a 
powerful use of cross-validation for model selection in 
the context of finding the “right sized” classification 
tree. Cross-validation is used in a similar manner in 
CONSTRUCTOR for finding the “best-connected” net- 
work. 

The input to the CONSTRUCTOR algorithmis 
ing set X consisting of N examples, {Zr , &, . 

Constructor Algorithm 
a train- 

Each example, z’i, consists of P discrete values 
{Xil,ee*,Xij,.e., Zip}, one for each of the P attributes 
uj in a set of attributes A. The value set vj is the pos- 
sible set of values for attribute oj. The value set can 
either be input by the user or derived from the training 
set, Ui Xij* 

In the faulty LED example, the first attribute, al, 
is an integer-valued attribute indicating the numeric 
key that was depressed. The rest of the attributes 
ca2 . . .a83 are boolean-valued attributes to indicate 
whether or not a particular LED component is illumi- 
nated. Therefore, vr is (0, 1, . . . ,9), and vr...s is (on 
dT3* 

The output of the CONSTRUCTOR algorithm is a 
Markov network U. For each attribute a!j in X, the 
network contains a node ni whose state space is the 
value set vi of %. Qualitatively, the network repre- 
sents the relevance relationships between attributes in 
the training set. Quantitatively, the network repre- 
sents an estimate of the joint probability distribution 
from which the samples are derived. 

The CONSTRUCTOR algorithm takes as its starting 
point the simple theoretical notion that the structure 
of the probabilistic network 24 can be identified if the 
neighbors (i.e., Markov boundary) of each node of the 
network are found. The Markov boundary Bi of a node 
ni in the network U is found by searching for the set 
of nodes which correspond to the smallest set of at- 
tributes S such that: 

(2) 
and no proper subsets of S satisfy Equation 2. In CON- 
STRUCTOR the determination of conditional indpen- 
dence is made with the x2 test. However, finding such 
relations in large data sets is computationally complex 
since every such test will include the consideration of 
every feature of the data set. 

CONSTRUCTOR therefore limits its attentions to dis- 
tributions which are “composable”. Such distributions 
have the property that 

I(& C, D) a (Vb E B)(Vd E D) I(b, C, d). (3) 

where b, d represent individual discrete random vari- 
ables and B, C, D represent sets of such variables. This 
property states that finding whether two sets of el- 
ements are conditionally independent of a third set 
can be determined by the much simpler computational 
task of checking whether every pairwise combination of 
elements in the two sets is conditionally independent 
of the third set and therefore simplifies the finding of 
Markov boundaries to finding the smallest set of at- 
tributes S such that: 

(VUj E U\S\ai) I(aitSs uj) 

“Composable” models are a much broader class of 
models topologically and contain the previously ex- 
plored Utreen models of [4, 141. 

FUNG AND CRAWFORD 765 



begiu Constructor: (Training Set) 
compute list of o-levels; 
initialize; 
for each o-level do: 

select cross-validation sample; 
initialize frequency tables; 
find network; 
estimate network error; 
compute network complexity; 

end for 
report networks, errors, complexities; 

end Constructor. 

begin Find-Network: (o-level) 
find mutually independent attribute subsets; 
for each subset do: 

for each attribute do: 
find neighbors; 

end for 
end for 
instantiate Bayesian network; 
find cliques; 
estimate clique potentials; 
return network; 

end Find-network. 
Figure 4: Overall CONSTRUCTOR Algorithm. 

Figure 5: The Network Identification Algorithm. 

Besides its use to find Markov boundaries, CON- 
STRUCTOR makes use of “composability” in a pre- 
processing step to separate attributes into mutually- 
independent sets. 

I(S,t@,S2)~(V% E Si)(Vaj E S2)I(ai,Q,aj) (5) 

Figure 4 shows the overall CONSTRUCTOR algo- 
rithm. In this and subsequent listings, a step is un- 
derlined and shown in more detail in a later figure. 

Network identification is the heart of the CON- 
STRUCTOR algorithm and is designed to find the prob- 
abilistic network that best represents the training set 
given an input parameter, cy. This parameter is 
the standard statistical measure of type I error and 
controls how much confirmation is needed before in- 
dependence relations can be concluded in the pro- 
cess. Network identification works by searching for 
the Markov boundary of each attribute in the training 
set. Wrapped around network identification is cross- 
validation-used to select a level of cy: that will deliver 
the “best connected” network. The function of cross- 
validation in CONSTRUCTOR is to assess the perfor- 
mance of a set of induced networks, each of which has a 
different degree of “connectivity”. Each network in the 
set is obtained via the use of a different setting of the a! 
parameter. The network with the best cross-validated 
performance is then selected as the “best connected” 
network. 

Network Identification: Network identification in- 
volves successively finding the neighbors of each at- 
tribute in the training set. Unfortunately, the problem 
of finding the neighbors of an attribute involves search- 
ing through the power set of a set of possible neigh- 
bors and the computational complexity for exhaustive 
search thus grows exponentially with problem size. 

Managing the exponential process of finding neigh- 
bors is the primary challenge for the network identi- 
fication task. This is accomplished by a number of 
diverse mechanisms which include heuristic search. 

In addition, the CONSTRUCTOR algorithm uses other 
mechanisms to minimize the size of the set of possi- 
ble neighbors of an attribute. For’ example, the net- 
work identification process uses findings of previous 
search results in order to reduce the possible neighbors 
set. This is possible because neighbor relationships are 
symmetric: Neighbor-op(ni, nj) e Neighbor-of(nj, ni). 
In this way, finding the neighbors and non-neighbors 
for one attribute adds to the knowledge about the 
neighborhood relationships of every other attribute in 
the training set. 

In spite of these mechanisms, there will be cases in 
which the search process will be lengthy. There are, 
however, two immediate observations which can be 
made about such cases. First, we do not expect to face 
such situations very often. It has been claimed that 
training sets derived from real world situations will 
usually yield sparse graphs (i.e., only a few neighbors 
per attribute) since real world situations are inherently 
structured. In these cases, attribute neighbors can be 
found quickly. In cases which do not have this prop- 
erty, the resulting network will be densely connected 
and will probably be of little use since little qualitative 
information will be extractable from the network. 

Secondly, a feasible solution (i.e., set of neighbors) 
always exists- the whole set of possible neighbors. 
Therefore, in hard subproblems the process can always 
be terminated successfully by returning as a solution 
the full set of possible neighbors. 

The network identification algorithm is outlined in 
Figure 5 and described in more detail below. 

Subset Selection: The first step in network identi- 
fication requires using the x2 test to assess the pair- 
wise independence of all attributes in the training set. 
With these results, the attributes can be partitioned 
into independent sets of attributes. That is, for any 
pair of independent sets, each attribute in one set will 
be independent of every attribute in the other set. Lo- 
cating these subsets helps to reduce the complexity of 
the neighbor search process. 

766 MACHINELEARNING 



begin Find-Neighbors: (attribute oj) 
root + p; 
known-neighbors + Nk; 
shortest-path t nl”; 
shortest-path t aj; 
spawn first level; 
repeat: 

select node to expand; 
current-path t current-path + node; 
when shortest-path > current-path: 

spawn and coalesce children; 
for each child do: 

if independent (uj ,intervening nodes,child) 
then prune child; 
if all children pruned 
then shortest-path +- current-path; 

end for 
end when 

until: no nodes can be expanded; 
return shortest-path; 

end Find-neighbors. 

Figure 6: The Neighbor Identification Algorithm. 

Neighbor Identification: Finding the neighbors 
for every attribute in a training set is an iterative 
search process based on finding the Markov boundary 
for each attribute. As discussed earlier, the Markov 
boundary is the smallest set of attributes that makes 
the target attribute conditionally independent of every 
other attribute in the training set. 

Finding the neighbors of a particular attribute aj, 
outlined in Figure 6, begins with the instantiation of 
an attribute tree, consisting of attribute nodes, each of 
which represents an attribute in the training set. The 
root node of an attribute tree always represents the 
target attribute aj (i.e., the attribute for which neigh- 
bors are being sought). Each branch of a partial at- 
tribute tree (Le., the path from the root node to a 
leaf attribute node) represents a hypothesis that the 
attributes associated with the attribute nodes in that 
branch make up the Markov boundary for the target 
attribute. 

The search for the Markov boundary of attribute oj 
begins by instantiating the root node of the attribute 
tree as oj. An attribute node for each member of the 
set of known neighbors, nf’, is then sequentially added 
to the attribute tree in a single branch rooted at oj. 
The set of candidate new neighbors, n/“, is initialized to 
J\C?j3\Mk\=@, where Sal” is the set of nodes kn 
not to be neighbor 

‘For the very first attribute to be explored, n/& = a/” = 
and so the initial set of candidate neighbors consists of 

AP = A\(cLj). 

The first step of the search process is to choose a leaf 
node for expansion. Initially there will only be one leaf 
node-the end of the A/k branch. Expansion of a node 
simply means that a child node is instantiated for every 
member of nl” and takes place only if expansion will 
not create a branch whose length exceeds that of the 
current shortest path. Note that to avoid duplication, 
each new branch is merged with any existing branch 
that contains exactly the same attributes. After ex- 
pansion, a x2 test is then carried out to determine if 
aj is conditionally independent of each of the new at- 
tribute leaf nodes given the intervening branch. If so, 
a new shortest path has been found. If not, the newly 
instantiated nodes are pruned away and another leaf 
node is chosen for expansion. The search continues 
until there are no leaf attributes to expand and the 
shortest path is then returned as the set of neighbors 
for the attribute. 

This search is performed for each attribute in the 
training set. Once completed, a probabilistic network 
is instantiated in which each attribute is represented 
by a node whose state space is the value set of its 
associated attribute. The structure (i.e., connectivity) 
of the network is determined by placing an undirected 
arc between each pair of neighbors. 

Given the network structure, arcs are added which 
‘KU-in” [16] the network and then the nodes in the net- 
work are grouped into cliques. A joint probability dis- 
tribution for each node in the clique is then estimated 
using the empirical distribution found in the training 
set. 

Search Heuristics: The computational efficiency 
and therefore the viability of CONSTRUCTOR depends 
on the overall strength of the search heuristics that can 
eventually be identified. We discuss two of the more 
powerful heuristics which have been identified. 

First, since computational cost grows exponentially 
with the number of attributes that must be examined 
in the neighbor search, it makes sense to first explore 
those attributes which are likely to have only a few 
neighbors. Because it is unlikely that attributes that 
are pairwise independent of the target node are neigh- 
bors of the target node, this heuristic simply states 
that neighbors should first be located for those at- 
tributes with the largest number of pairwise indepen- 
dencies. Note that, because of the neighbor symmetry 
relationship described earlier in this section, locating 
any neighbor relationships will reduce the search space 
for subsequent neighbor relationships and so it is eI%i- 
cient to do the shorter searches first. 

network is a fu 

expansion, first select that node with the largest de- 

FUNG AND CRAWFORD 767 



Table 1: LED1 Dependency On LED2 and LED3 

11 

pendency on the target node given the current state of 
the tree. 

Examples 
To illustate the algorithm’s operation, we describe the 
results obtained when CONSTRUCTOR is applied to the 
digit recognition training set. In particular, we focus 
on the search to discover the neighbors of attribute 
LEDI. The pairwise independence relationship be- 
tween LED1 and all other attributes is first exam- 
ined and it is discovered that LED1 is independent 
(at ar = 0.001) of all attributes save for LED7, LED5, 
and Depressed Key. All other attributes are therefore 
pruned from the search tree. The remaining attributes 
(children of the LED2 node) are examined and an ex- 
pansion order is computed. The “dependence” heuris- 
tic forms an order based upon the degree of depen- 
dence between children and parent. Since LED7shows 
the highest degree of dependence with LEDl, it is ex- 
panded first. It is found that LED1 and LED2 through 
LED6 are conditionally independent given LED7, but 
since LED1 and LED7 are found to be conditionally 
independent given Depressed Key, LED7 cannot be 
a neighbor of LED1 and so it, and its children are 
pruned. The Depressed Key node is expanded next 
and it is found that all other attributes are condition- 
ally independent given Depressed Key and are there- 
fore pruned from consideration. The Depressed Key 
attribute makes up a feasible set of Markov neighbors 
for the LED1 attribute and since no other path can 
possibly be shorter than this one (a path of length l), 
the search is terminated. 

The neighbors for all attributes are located in the 
same manner and the final result of this process is a 
network with exactly the same topology as that illus- 
trated in Figure 2. 

Digit Recognition with Loop: For this training 
set, we introduce an additional source of error into the 
model for our already faulty display. In this model, the 
state of LED1 is determined entirely by the states of 
LED2 and LED.??, both of which depend upon the state 
of Depressed Key. The dependencies are summarized 
in Table 1. 

The introduction of this additional source of error in 
the digit recognition model amounts to the introduc- 
tion of a loop in the Bayesian network representation 
of the model, as shown in Figure 7. 

Y LED7 I 

Figure 7: Digit Recognition Network with Loop 

CONSTRUCTOR can uncover this structure when pro- 
vided with a set of training examples generated from 
the probability model. The final result is a Markov 
network with the same topology as the network in Fig- 
ure 7 with the exception of an additional arc between 
LED2 and LEDJ. This demonstrates, in the simplest 
possible way, the feasibility of CONSTRUCTOR recover- 
ing models with loops. 

iscussion 

In this paper, we have described the CONSTRUCTOR 
system for inducing probabilistic models from data. 
The motivation for CONSTRUCTOR is that previous 
structure-finding algorithms have been limited to trees 
and that such structures are often too restrictive for ad- 
dressing real problems. The basic idea of CONSTRUC- 
TOR is theoretically sound-it is to construct a net- 
work by finding the neighbors of each node through a 
heuristic search process. CONSTRUCTOR operational- 
izes this theoretical idea through the application of 
modern statistical techniques and addresses the com- 
putational complexities of the task to make significant 
progress towards a practical machine-learning system. 

CONSTRUCTOR has been tested not only on train- 
ing sets generated from probability models like those 
in Section 4, but has been tested recently on real data 
in an information retrieval application [6]. For those 
training sets generated from probability models, CON- 
STRUCTOR was able to reconstruct the models and for 
the information retrieval spplication, CONSTRUCTOR 
yielded a network which was intuitive to an expert and 
performed well in practice. 

Although CONSTRUCTOR can be run without user 
intervention, we strongly believe that users often have 
important insights that may be easy to acquire and 
may significantly improve the process of structure 
learning. In order to benefit from these insights, CON- 
STRUCTOR allows the user to interact with the sys- 
tem in every phase of the algorithm. For example, the 

768 MACHINE LEARNING 



user can choose to have the structure for the entire 
set of attributes be discovered using the search heuris- 
tics, or may wish to choose to find the neighbors for 
a single attribute himself. In the search for the neigh- 
bors of a particular attribute, the user can observe the 
growth of the search tree and can control the order in 
which attribute nodes will be expanded. The user can 
also control pruning and cross-validation and can view 
intermediate results such as pairwise-independencies, 
neighbor relationships and the networks which have 
been found. 

Future Research: The primary focus of subsequent 
research will focus on addressing problems created by 
the exponential search space in neighbor identification 
and problems imposed by the “curse” of dimension- 
ality - the observation that high-dimensional space 
is inherently sparsely populated. For CONSTRUCTOR, 
the curse of dimensionality is manifested in low cell 
counts in the contingency tables used to assess inde- 
pendence via the x2 test. One approach to this prob- 
lem is to reduce the dimensionality of the training set 
and, to this end, some relatively new dimension re- 
ducing techniques such as projection pursuit [9] will be 
investigated. 

Two other important areas for research are: enlarg- 
ing the class of distributions which CONSTRUCTOR can 
recover and exploring parallel implementations. While 
CONSTRUCTOR recovers gene& graphical structures, 
there are some classes of distributions that are cur- 
rently not adequately recovered with CONSTRUCTOR. 
To address this issue, it is possible to use the condi- 
tional independence test of Equation 2 as a heuristic 
and do an exact test when this heuristic is successful. 
Much of the CONSTRUCTOR algorithm is inherently 
parallel. It therefore appears likely that substantial 
performance gains could result from implementation 
of CONSTRUCTOR on a parallel architecture. 

References 

[l] L. Breiman, J. H. Friedman, R. A. Olshen, and 
C. J. Stone. Classification and Regression l%ees. 
Wadsworth, Belmont, 1984. 

[2] K. C. Chang and R. M. Fung. Node aggregation 
for distributed inference in bayesian networks. In 
Proceedings of the Iith IJCAI, Detroit, Michigan, 
August 1989. 

[3] Peter Cheeseman, James Kelly, Matthew Self, 
John Stutz, Will Taylor, and Don Freeman. Auto- 
class: a bayesian classification system. In Proceed- 
ings of the Fifth International Conference on Ma- 
chine Learning, Ann Arbor, Michigan, June 1988. 

[4] C. K. Chow and C. N. Liu. Approximating dis- 
crete probability distributions with dependence 
trees. IEEE lkans. on Info Theory, 1968. 

[5] D. H. Fisher. Knowledge acquisition via incre- 
mental conceptual clustering. Machine Learning, 
2(2):139-172, September 1987. 

[6] R. M. Fung, S. L. Crawford, L. Appelbaum, 
and R. Tong. An architecture for probabilistic 
concept-based information retrieval. In Proceed- 
ings of the 13th International Conference on Re- 
search and Development in Information Retrieval, 
September 1990. 

[7] John Gennari, Pat Langley, and Doug Fisher. 
Models of incremental concept formation. Arti- 
ficial Intelligence, 40(1-3):11-61, 1990. 

[8] R.A. Howard and J.E. Matheson. Influence dia- 
grams. In R.A. Howard and J.E. Matheson, edi- 
tors, The Principles and Applications of Decision 
Analysis, vol. 11, Menlo Park: Strategic Decisions 
Group, 1981. 

[9] P.J. Huber. Projection pursuit. The Annals of 
Statistics, 13(2):435-475,1985. 

[lo] S. L. Lauritzen and D. J. Spiegelhalter. Lo- 
cal computations with probabilities on graphical 
structures and their application in expert systems. 
Journal Royal Statistical Society B, 50, 1988. 

[ll] M. Lebowitz. Experiments with incremental con- 
cept formation: UNIMEM. Machine Learning, 
2(2):103-138, September 1987. 

[12] R.S. Michalski and R.E. Stepp. Learning from ob- 
servation: conceptual clustering. In R.S. Michal- 
ski, J.G. Carbonell, and T.M. Mitchell, editors, 
Machine Learning: An Artificial Intelligence Ap- 
proach, Morgan Kaufman, 1983. 

[13] J. Pearl. Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference. Mor- 
gan Kaufmann, San Mateo, 1988. 

[14] G. Rebane and J. Pearl. The recovery of causal 
poly-trees from statistical data. Proc., 3rd Work- 
shop on Uncertainty, 1987. 

[15] M. Stone. Cross-validatory choice and assessment 
of statistical predictions. Journal of the Royal Sta- 
tistical Society, 36:111-147,1974. Series B. 

[16] R. E. Tarjan and M. Yannakakis. Simple linear- 
time algorithms to test chordality of graphs, test 
acyclicity of hypergraphs, and selectively reduce 
hypergraphs. SIAM J. Comput., 13:566-579, 
1984. 

FUNG ANDCRAWFORD 769 


