
Empirical Studies on the Speed of Convergence of 
Neural Network Training using Genetic Algorithms 

Hiroaki Kitano 
Center for Machine Translation 

Carnegie Mellon University 
Pittsburgh, PA 15213, U.S.A. 

hiroaki@cs.cmu.edu 
Abstract 

This paper reports several experimental results on 
the speed of convergence of neural network train- 
ing using genetic algorithms and back propaga- 
tion. Recent excitement regarding genetic search 
lead some researchers to apply it to training neu- 
ral networks. There are reports on both success- 
ful and faulty results, and, unfortunately, no sys- 
tematic evaluation has been made. This paper re- 
ports results of systematic experiments designed to 
judge whether use of genetic algorithms provides 
any gain in neural network training over existing 
methods. Experimental results indicate that ge- 
netic search is, at best, equally efficient to faster 
variants of back propagation in very small scale 
networks, but far less efficient in larger networks. 

1 Introduction 
Genetic algorithms are an efficient searching method inspired 
by the principle of natural selection. There are a few studies 
on the efficiency of search by genetic algorithms, including a 
few reports applied to neural network training [Montana and 
Davis, 19891 [Whitley and Hanson, 19891, and some reports 
claim that genetic algorithms are more efficient than back 
propagation [Montana and Davis, 19891. However, it is con- 
troversial whether application of genetic algorithms to train 
neural networks can be an efficient alternative to gradient- 
descent methods such as back propagation. One cause for 
this confusion is that we have not seen any systematic in- 
vestigation of the efficiency of neural network training using 
genetic algorithms. 

In [Whitley and Hanson, 19891 there are reports that 
show convergence characteristics change if population size 
changed or an adaptive mutation method was used, but no 
comparison has been made as to whether their method pro- 
vides any faster convergence than back propagation or its 
variants. [Montana and Davis, 19891 reported that training 
using genetic algorithms was substantially faster than back 
propagation. However, lack of description on the specific 
back propagation method and its parameters, and inaccess- 
ability to their task domain made their experiments unrepli- 
cable by other researchers. 

This paper is, perhaps, the first attempt to systematically 
evaluate the efficiency of genetic algorithms for neural net- 

work training. The goal of our experiments is to draw an 
overall picture as to relative strengths of back propagation 
and genetic algorithms for neural network training, and to 
evaluate the speed of convergence of both methods. We de- 
signed our experiments to be replicated by other researchers 
so that our report could serve as a common forum for dis- 
cussion to resolve this issue. For this purpose, we decided 
to use the XOR problem, various scales of encoder/decoder 
problems, and the two-spirals problem as tasks by which we 
evaluate the speed of convergence. Of course, we recognized 
the need to assess this with large and real-world domains, and 
thus we also conducted experiments in phoneme recognition 
tasks. However, reports from such a domain are not repli- 
cable by other researchers because the training data and the 
network for the task are not easily accessible. Thus, we re- 
port our experiments from the XOR, various encoder/decoder 
problems and the two-spirals problem which, at least, serve 
as a starting point for further systematic evaluations. 

Although there are applications of genetic algorithms for 
neural network designing as seen in [Miller et. al., 19891 
[Harp et. al., 19891 and [Stork et. al., 19901, we focus on 
weight training in this paper. This is because neural network 
designing tasks can be subsumed by weight training where 
weight values in a specific value range or connectivity bits 
represent unconnected links. This view is biologicallyplausi- 
ble since real connection strengths between neural groups can 
be determined by the distribution of cell and substrate adhe- 
sion molecules (CAMS and SAMs)[Edelman, 19871. Com- 
putationally, convergence characteristics of weight training 
and configuration design have similar property since the only 
differences between them is the size of search spaces. 

This paper has three parts. First, we examine character- 
istics of genetic algorithm-based weight training using the 
XOR problem. As we will describe later, we found that 
simple use of genetic algorithms for neural network would 
generally be outperformed by back propagation. Second, we 
propose and examine the GA-BP method as a remedy for 
the problem of local search. The GA-BP method combines 
genetic algorithms and back propagation to offset problems 
of local search. We found that the GA-BP method consis- 
tently converges faster than genetic algorithms alone. Here, 
we found that as network size gets bigger, convergence of 
genetic algorithms degrades to the extent that even the GA- 
BP method underperforms back propagation and its faster 
variants. The third part of the paper is central. We ex- 

KITANO 789 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



amine convergence characteristics using various scales of 
encoder/decoder problems and the two-spirals problem to 
examine whether genetic algorithms converge faster than 
back propagation in its early stages of training. While the 
weakness of genetic algorithms in local fine-tuning is obvi- 
ous, although this problem was circumvented in the GA-BP 
method, the speed of convergence in the early stages of train- 
ing is the critical factor in evaluating their utility as a method 
of training neural networks. 

2 Genetic Algorithms: Overview 
Genetic algorithm is a kind of stochastic search process that 
starts from a set (or a population) of finite string represen- 
tations, called chromosomes, each of which maps a possi- 
ble solution to the problem. Given an evaluation function, 
a reproduction probability for each chromosome is assigned 
based on the fitness of that chromosome. Chromosomes with 
higher fitness values will have higher reproduction probabili- 
ties. This simulates the survival of the fittest. Two operations 
are performed stochastically: crossover and mutation. The 
crossover operation chooses two chromosomes from a cur- 
rent population as parents, and reproduces descendants by 
mixing chromosomes. Since this is a probabilistic process, 
and not all chromosomes are crossovered, a parameter called 
a crossover parameter defines probability. Mutation is the 
random change of an element of a chromosome. As a result, 
a new population is formed as a descendant of the current 
population. The next generation will be formed by going 
through evaluation, crossover, and mutation processes. For 
detail, refer to [Goldberg, 19891. 

In our experiments, each chromosome represents a distri- 
bution of weights of each network. Thus, a population of 
chromosomes is a population of neural networks with differ- 
ent weight distributions. Since we employ a real value encod- 
ing, a chromosome is a list of real values each of which maps 
onto a connection weight. We expect chromosomes which 
represent highly optimized weight distribution to dominate 
the population through genetic search processes. 

3 Problems of Genetic Algorithms for Neural 
Network Training 

There are two major problems in applying genetic algorithms 
to training neural networks: weakness in fine-tuned local 
search, and a trade-off between population size and speed of 
convergence. 

The weakness of genetic algorithms in performing fine- 
tuned local search is widely recognized. Although genetic 
algorithms exhibit very fast convergence to a point of approx- 
imate solution in a search space, a genetic algorithm itself 
does not entail a mechanism for local fine-tuning as seen in 
back propagation. when a population reaches a state where 
it is dominated by the best chromosome, finding a better so- 
lution must depend upon mutations. This would result in 
very inefficient search. 

We have confirmed this problem by training a neural net- 
work with a genetic algorithm. In figure 1, movements of sum 
square error are shown for back propagation, a serial genetic 

Total Sum Square Error 
4 

. 

1.0 - 
* 

- . 
. 

0.8 - 

serial Genetic Algorithm 

0.6 . 

Figure 1: Convergence of GA- and BP-based training 

algorithm, and a parallel genetic algorithm. Although genetic 
algorithms successfully reduce the error measure at the begin- 
ning of the training, the speed of convergence was drastically 
decreased in searching for a near-optimal solution. Eventu- 
ally, back propagation outperformed genetic algorithm-based 
training. This characteristic of genetic algorithms would not 
be a problem when the required converge criteria of the error 
measure is relatively high, but this assumption is often not 
the case. 

One way to solve this problem is to have a larger popu- 
lation. [Whitley and Hanson, 19891 reported that an error 
measure was reduced to 0.0025 in the XOR problem using 
populations of 100 and 200, but not with a population of 
50. We have also confirmed these results. However, the 
problem of using a larger population is that it requires exten- 
sive computation for each generation, and, even though the 
outcome converges into an optimal solution in a few gener- 
ations, genetic algorithms using large populations would be 
outperformed by back propagation. 

4 Combining Genetic Algorithms and Back 
Propagation: The GA-BP Method 

We propose the GA-BP method as a remedy for this prob- 
lem. In the GA-BP method, neural networks are trained in 
two stages. First, genetic algorithms train weights and biases 
of nodes to locate a point in a weight-bias space which is 
close to the optimal solution. Then, back propagation starts 
from that point, and conducts an efficient local search. This 
combination would be an efficient method of training neu- 
ral networks because it takes advantage of the strengths of 
genetic algorithms and back propagation (the fast initial con- 
vergence of genetic algorithms and the powerful local search 
of back propagation), and circumvents the weaknesses of 
the two methods’ (the weak fine-tuning capability of ge- 
netic algorithms and a flat spot in back propagation). Since 
the problem of weak fine-tuning capability has been circum- 
vented by employing back propagation for local search, the 

‘Ideas of combining local search methods with genetic algo- 
rithms are not new. It has been discussed in literatures such as 
[Grefenstette, 19871 and [Ackley, 19871. 

790 MACHINE LEARNING 



central issue is whether the speed of convergence of genetic 
algorithms outperforms the speed of convergence of back 
propagation in locating a point near the solution. 

4.1 Experimental Settings 

We have tested the GA-BP method using the XOR prob- 
lem and the 4-2-4 encoder/decoder problem. For the XOR 
problem, we used the 2-2- 1 feedforward network. 

In genetic algorithms, we represent the network with an 
array of floating point numbers, each of which corresponds to 
weights and biases. At the initialization, these floating point 
numbers are randomly generated in the range of f5.0, and 
follow a simple distribution. For the XOR problem and the 
4-2-4 encoder/decoder problem, we assigned higher proba- 
bility in the range from +2.5 to +5.0, and from -2.5 to -5.0. 
A range from +2.5 to -2.5 has a lesser chance of being gen- 
erated. This distribution of initial values was decided based 
upon heuristic observation of weights and biases in the final 
state of the networks, and adjusted for each network. It is 
important to ensure that the optimal value of weights and 
biases is covered by the range of initial distribution. The size 
of the population is 50 unless otherwise stated. To evaluate 
the fitness of each chromosome, feedforward computation is 
performed by presenting patterns which consist of one epoch. 
Total sum square (TSS) error is used as an error measure. The 
fitness of a chromosome is: fitness = 1/TSS2. Reproduction 
strategy is a proportional reproduction which normalizes fit- 
ness, and assigns higher reproduction probability for higher 
fitness chromosomes. In addition, we introduced an elitist re- 
production which always chooses the two best chromosomes 
and simply copies them, without crossover or mutation, to 
the population of the next generation. Crossover is either a 
single crossover or multiple crossover (two point or more) 
with a probability of 50.0%. Mutation probability is 5.0% 
for a static mutation unless otherwise stated. For an adap- 
tive mutation, the value changes depending upon a similar- 
ity of paired chromosomes. For this experiment, we used 
two-point crossover, adaptive mutation, proportional repro- 
duction based on a fitness measure, and elitist copy strategy. 

After training by the genetic algorithm is completed, the 
best chromosome is sent to a back propagation module. 
The genetic algorithm stage was terminated when total sum 
square error was reduced to less than 0.6. This is because for 
chromosomes whose error measure is higher than this figure, 
significant numbers of trials did not converge. We used a 
standard back propagation as defined in [Rumelhart, Hinton 
and Williams, 19861. Learning parameters were default val- 
ues of [McClelland and Rumelhart, 19881. The learning was 
judged to have converged when the TSS measure went below 
0.04 unless otherwise specified. The continuous weights up- 
date mode was used which conducts error back propagation 
after each presentation of the pattern. For back propagation, 
the initial values of weights and biases were randomly gener- 
ated within a range f 1 .O, instead of f5.0. This is because if 
we generate initial weights and biases with a range of f5.0, 
more than 30% of the trials do not converge. 

We have also used a quickprop, a faster variant of back 
propagation, proposed in [Fahlman, 19881. Quickprop is 

Total Sum Square Error 

1.0 

0.8 

0.6 

0.4 

02 

50 100 150 200 250 
computaticm cc&3 (Cycle) 

Figure 2: Convergence of GA-BP and BP only methods 

known to be the fastest variation of back propagation at 
present. For quickprop, we used default parameters de- 
scribed in [Fahlman, 19881. 

In measuring computational costs, we counted one evalu- 
ation in a genetic algorithm as l/2 an epoch of back propaga- 
tion because the evaluation of TSS does not involve the er- 
ror back propagation process; only feedforward is involved. 
Thus, evaluating one generation consisting of 50 chromo- 
somes is considered to be equal to 25 epochs in back propa- 
gation. 

4.2 Experimental Results 

We ran the standard back propagation (BP), quickprop with 
hyper error (QP-Hyper), quickprop with sum square error 
(QP-Sum), serial GA-BP with varying population size (GA- 
BP-50 and GA-BP-20), and parallel GA-BP with varying 
threshold value (PGA-BP-O.6 and PGA-BP-0.3). For each 
learning method, we ran 20 trials, and the average value and 
standard deviation was computed to compare the speed of 
convergence and the stability of the method. 

The result is shown in table 1, and typical convergence 
curves for parallel GA-BP, serial GA-BP, and standard back 
propagation are shown in figure 2. ECC is an expected 
convergence cycle, and STD is a standard deviation. 

In table 1, an experimental set of GA-BP-50 was con- 
ducted with a population size of 50, and an experimental set 
of GA-BP-20 with a population size of 20 was conducted, 
but with a very high mutation probability (50.0%). We used a 
relatively small population because the GA-BP method does 
not require a genetic algorithm-based process to converge 
into a very low sum square error measure. We only require 
it to converge down to 0.6. To this level of error measure, 
in the XOR problem, smaller populations converge faster 
than larger populations. It should be noted that for trials by 
quickprop 45% of the trials using sum square error, and 29% 
of trials using hyper error function did not converge within 
pre-decided limitations. These trials had to be restarted and 
numbers of iteration for unconverged trials were added to 
the total computation cost. PGA-BP-O.6 and PGA-BP-O.3 
are parallel GA-BP methods with thresholds of stopping ge- 
netic algorithms of 0.6 and 0.3 in total sum square error, 
respectively. We also found that the threshold value of 0.6 

KITANO 791 



QP (Sum) 
GA-BP-50 
GA-BP-20 
PGA-BP-O.6 
PGA-BP-03 

ECC STD 
285.8 90.9 

91.9 60.9 
226.6 123.6 
130.9 72.4 
100.5 37.5 
33.1 4.6 
46.7 28.2 

Table 1: Results from the XOR problem 

Table 2: Results from the 4-2-4 encoder/decoder problem 

converges faster than the 0.3 setting. This is due to the fact 
that the genetic algorithm slows down its convergence speed 
if it needs to fine-tune weights and biases, and the speed of 
convergence of the back propagation process is not signifi- 
cantly reduced even if it starts from 0.3 of the TSS measure. 

Next, we carried out experiments with the 4-2-4 en- 
coder/decoder problem. In the genetic algorithm stage, it 
took an average of 58 generations to converge to 0.6 sum 
square error with a population size of 200. Trials with a 
population size of 50 did not converge to 0.6 within 200 gen- 
erations. In table 2, we show the results of 10 trials. Data for 
back propagation is the average of the trials which converged: 
almost 20% of trials did not converge within 1500 cycles and 
these trials were simply ignored. The convergence criteria 
was 0.16 in TSS allowing 0.01 TSS error for each output unit 
per pattern. 

In the 4-2-4 encoder/decoder problem, the GA-BP method 
was outperformed by quickprop. There are two possible 
explanations for this. First, the threshold to stop genetic 
algorithms is too low for this task so that efficiency was lost at 
the plateau. The second possibility is that quickprop is faster 
even in the initial search of near-optimal points. If the latter is 
the case, use of genetic algorithms for neural network training 
could generally be concluded to be inefficient compared to 
faster variants of back propagation. 

In the following section, we describe our experiments to 
critically test whether genetic algorithms can converge faster 
in the initial stage of training. 

5 Scaled Up Experiments 
In order to examine the possibility that quickprop could be 
faster than genetic algorithms even in initial stage of train- 
ing, we have conducted a series of experiments on the en- 
coder/decoder problems ranging from 2-2-2 to 16-4-16 and 
the two-spirals problem. Chromosome length for these ex- 
periments ranges from 11 to 165 for encoder/decoder prob- 
lems, and 138 for the two-spirals problem. Experimental 
settings are the same as stated in the previous section. Since 

TotalSumSquareFirmx 

10.0 R: ,/ 6416 

7.5 

/lo-s-10 

- J 
2.5 

Figure 3: Total sum square error with GA-based training 

10,ooo 3o.m 

Figure 4: Percentage of total sum square error against maxi- 
mum potential error 

we are going to compare genetic algorithms with a quick- 
prop which is an optimized version of back propagation, 
we have also optimized genetic algorithms using multi-point 
crossover, and an adaptive mutation rate method. Although 
these methods improved performance of genetic algorithms, 
its effects were not significant enough to alter the essential 
results of our experiments. 

5.1 The Encoder/Decoder Problems 

The encoder/decoder problems are one of the standard bench- 
marks for neural network learning algorithms. An “N-M-N 
encoder/decoder” means a network of three-layers with N 
units for input and output layer and M units for a hidden 
layer. The network is given with N distinct input patterns, 
each of which only one bit is turned on, and all other bits are 
turned off. The network should duplicate the input pattern in 
the output units. 

Figure 3 shows total sum square error for each task plotted 
along with numbers of reproductions required 2. These are 
expected values averaged over 10 trials each. Clearly, TSS 
measure degrades as the size of the network increases. 

Figure 4 shows the percentage ratio of TSS compared to 
maximum potential TSS error. It should be noticed that the 
size of the network did not alter the speed of convergence 

2For a population consists of 50 individuals, evolving one gen- 
eration requires 50 reproductions, for most cases, involving re- 
combination and mutation. Thus, 10,000 reproduction means 200 
generations with a population of 50 individuals. 

792 MACHINE LEARNING 



Tasks 
2-2-2 
3-2-3 I 4-2-4 
8-3-8 
10-5-10 
16-4-16 

Chromo. Length Max. Error GA QP 
14 4.0 133 8.8 
20 9.0 2950 9.2 
26 16.0 3800 9.6 
67 64.0 2800 9.7 

125 100.0 1150 2.4 
164 256.0 1950 7.2 

Table 3: Convergence speed to 10% of MPE 
Remaining points 
to learn 

Genetic Algorithm 

I I I ) 
1000 2000 3000 

Cycle 
Figure 5: Results from the two-spirals problem 

measured by percentage bases, except with very small size 
networks such as the 3-2-3 problem and the 2-2-2 problem 
which converged into very low error measure. 

Table 3 shows expected numbers of reproductions for ge- 
netic algorithms to converge at 10% of the maximum poten- 
tial error (MPE). Length of the chromosome does not seem to 
have a strong correlation with the speed of convergence, but, 
again smaller networks such as the 2-2-2 problem converge 
much faster than in other tasks. Expected convergence cy- 
cles for quickprop to converge at 10% of the maximum error 
are shown. Quick prop was run with sum square error, not 
with hyper error which is faster than with sum square error, 
and still converged much faster than genetic algorithms. In 
addition, substantial numbers of trials from points specified 
by genetic algorithms were trapped in the local minima when 
the error measure of the point which stops genetic algorithm 
stage was more than 10% of the maximum potential error. 

5.2 The lko-Spirals Problem 

The two-spirals problems is a task that, for each 194 training 
points belonging to one of two interwined spirals, a network 
must tell in which spiral a given point belongs to. This is 
a hard task for a back propagation due to its complicated 
error landscape. We use a training point generation program 
and a network described in [Lang and Witbrock, 19881. The 
network is a five-layered fully connected configuration with 
short cut connections. The network consists of 19 nodes 
and, counting threshold of each node, there are 138 trainable 
weights. 

In figure 5, plots of average numbers of points remain 
to be learned from 10 trials are shown. Although the task 

is extremely non-linear, quickprop outperforms GA-based 
training. For this experiment, network parameters used are 
the same as [Lang and Witbrock, 19881. A population size 
for GA-based training is 50. Adaptive mutation and mul- 
tiple crossover are used. Change in population size, muta- 
tion rate, number of crossover points and its probability, and 
initial weight distribution did not alter basic results of the 
experiments. 

6 Discussions 

In essence, our experiments demonstrated the following three 
points: 

o Although genetic algorithms converge efficiently at the 
initial stage, the speed of convergence is severely under- 
mined later due to its weak local fine-tuning capability. 

f~+ Use of gradient-descent procedure, such as back propa- 
gation, from the point specified by a chromosome gen- 
erally provides faster convergence than starting from 
points determined at random. 

* Speed of convergence of genetic algorithms for larger 
networks is very slow, and the point of convergence is 
shifted upward. Thus, substantial numbers of trials for 
back propagation from these points ran the risk of being 
trapped by local minima. 

One clear message from our experiment is the need for 
faster convergence methods of genetic algorithms. Although 
weakness of local fine-tuning can be overcome by combining 
a gradient-descent scheme, such as back propagation, and a 
genetic algorithm as seen in the GA-BP method, if genetic al- 
gorithms’ initial convergence is slower than gradient-descent 
schemes, the utility of the genetic algorithm can hardly be 
seen. Unfortunately, for a range of problems we have tested 
here, this was the case. Convergence of genetic algorithm 
based neural network training was so slow that it was consis- 
tently outperformed by quickprop. Varying parameters such 
as mutation rate, crossover rate, and population size, or the 
introduction of faster convergence *methods, such as adap- 
tive mutation and multipoint crossover, made only limited 
contributions in reversing the results. 

However, it should be noted that our experiments were 
conducted only on relatively small tasks with rather simple 
error landscapes. It is conceivable that for this class of prob- 
lem, a gradient-descent method works very efficiently. This 
is especially true for encoder/decoder problems. But, this 
may not be the case where the error landscape has many local 
minima and pathetic curvature so that the speed of conver- 
gence of the gradient-descent method degrades substantially, 
and even runs a high risk of being trapped in the local minima. 
For this class of tasks, genetic algorithms may have a rea- 
sonable chance of outperforming even faster variants of back 
propagation. In fact, [Ackley, 19871 reports genetic algo- 
rithms have a better chance of outperforming hillclimbing on 
tasks with many local mimina. However, it should be noticed 
that our experiments include the two-spiral problems which 
is expected to be hard for gradient-descent methods. The fact 
that GA-based training was outperformed by quickprop even 

KITANO 793 



Figure 6: Distribution of parent chromosomes 

in the two-spirals problem indicates that existence of strong 
non-linearity itself is not a sufficient condition to judge that 
the task is suitable for the GA-based training. We are cur- 
rently investigating whether the GA-BP method outperforms 
faster variants of back propagation in the real-world domain 
- phoneme recognition with time-delay neural networks. 

It is conceivable, however, that such a task as weight 
training of neural network is not a good task for genetic 
algorithms due to its interdependencies between regions of 
chromosomes. In neural network, modification of weights in 
a part of the network affects outcomes of other parts through 
activation or inhibitory links. This property of neural net- 
works counters to a basic idea of genetic search that a partial 
solution in a lower-dimensional subspace is likely to be a part 
of a good overall solution. Thus, combining good chromo- 
somes does not necessarily results in a better chromosome. 
It is an interesting question to ask to what extend a composi- 
tionality of solution is kept or disturbed in the neural network 
training task. In order to quantitatively analyze contribution 
by good partial solutions, we took statistics of ranking distri- 
bution of parents which created the best chromosome in each 
generation. In the figure 6, rank-based distribution of par- 
ents which created the best chromosome in each generation 
is mapped. This distribution is taken from one of the runs for 
the XOR problem. 

If a partial solution is likely to be a part of an overall good 
solution, there should be strong bias of distribution toward 
high ranking (lower half of the graph) chromosomes. 59.3% 
of the parents are within the top 25 range in rank3. Dis- 
tribution between the range from 26th to 100th was almost 
uniformal. Obviously, we have statistically significant bias 
toward higher ranking parents, although almost 40% of con- 
tribution comes from not-so-high ranked parents. However, 
since we are using the proportional reproduction rule, which 
is 1/TSS2, the above figure does not answer the question 
whether higher ranking chromosomes has a better chance of 
contributing to optimization. We would further analyze this 
by measuring an efj’ective reproduction rate. The efective 
reproduction rate is a ratio of reproduction which created the 
best chromosome out of an entire reproduction. 

3This exclude the dead copy of the best chromosome of the pre- 
vious generation, because it merely shows any new recombination 
did not gain better fitness than existing one’s - only the parents of 
chromosomes which updated the best fitness should be counted. 

Range 2- 25 26 -50 51-75 76- 100 
XOR 0.15 0.11 0.05 0.09 
Linear Bits 0.47 0.11 0.11 0.07 

Table 4: Effective reproduction rate 

Table 4 show the effective reproduction rate for each range 
of chromosomes in the XOR problem and a linear bits prob- 
lem. The linear bits problem is a task that for N-length bit 
string, obtain a string with maximum numbers of bits on. 
Thus, in this problem partial solution is always a part of a 
better overall solution. In the XOR problem, although there 
is a statistically significant bias toward high ranking chro- 
mosomes (0.15%), there is substantial contribution from low 
ranking chromosomes. The linear bits problem is more de- 
pendent upon high ranking chromosomes (0.47%). It seems 
that a strong interdependency of the neural network task 
suppresses an effective reproduction rate of high rank chro- 
mosomes, thus overall speed of convergence is slower than 
that of weak- or non-interdependent tasks. 

It should be noticed that successful reports on applications 
of genetic algorithms come mostly from the tasks having the 
compositional property assumed in the genetic algorithms. 
From this aspects, using genetic algorithms for neural net- 
works design would be more promising than weight training 
because well-formed local circuits are expected to be a part 
of more functional structure. 

The fact that genetic algorithms are not capable of conduct- 
ing local fine-tuning has interesting biological implications. 
Supposing our somatic system exhibits similar characteris- 
tics, it is computationally plausible that genetically encoded 
information on neural circuitry and connectivity is not suffi- 
cient to create an optimally tuned neural system. 

First, the fact that genetic algorithms alone are not capable 
of precisely determining weights of networks indicates that 
some gradient-descent type or equivalent learning scheme 
is needed. By the same token, genetic algorithms may not 
be able to fully optimize a network even in neural network 
design tasks. A need for a supplementary scheme for fine- 
tuning is clear. 

Second, however, simply combining genetic algorithms 
and local fine-tuning may not provide sufficient optimization. 
We might have to insert a more flexible scheme for adapta- 
tion in between genetic search and local gradient-descent 
search scheme. This can be concluded from two facts: (1) 
degradation of convergence of genetic algorithms on larger 
scale problems, and (2) many trials from points specified by 
genetic algorithms, in these degraded cases, are trapped in 
the local minima. 

Fortunately, our neural system has such mechanisms. One 
is a scheme such as that modeled on the theory of neural 
group selection or neural darwinism [Edelman, 19871, and 
the other is synaptic weight modification and plasticity. As- 
suming that our experimental results could be considered as 
being a simpler, but analogical simulation of evolution and 
development of the brain, a cascaded scheme of natural se- 
lection, adaptation, and learning is a necessary consequence 
for survival. 

794 MACHINE LEARNING 



7 Conclusion 

In this paper, we have reported results of systematic exper- 
iments designed to compare the speed of convergence for 
training neural networks using genetic algorithms and gradi- 
ent descent methods. At the outset of this paper, we pointed 
out that simple application of genetic algorithms would be 
outperformed by back propagation due to its weak local fine- 
tuning capability and computational cost for evaluating num- 
bers of chromosomes in one generation. Thus, instead of 
directly comparing genetic algorithms and back propagation, 
we have compared the GA-BP method and quickprop, both 
of which are faster methods of training neural networks. 

As a rationale for using the GA-BP method, we have shown 
briefly that the GA-BP method converges consistently faster 
than genetic algorithms alone. However, experimental re- 
sults using the XOR and the 4-2-4 encoding/decoding prob- 
lems revealed a possibility that the scaling property of genetic 
algorithms is not desirable for training larger networks even 
in the initial stage of convergence. Thus, the critical test 
should examine whether genetic algorithms converge faster 
than back propagation and its faster variants in the initial 
stage of training. 

Experiments with various scales of the encoder/decoder 
problems range from 2-2-2 to 16-4-16 and the two-spiral 
problem. As a result of these experiments, we discovered 
that the scaling property of genetic algorithms is undesir- 
able for neural network training. Although the performance 
largely depends upon the error landscape and evaluation func- 
tions used, degradation of performance was so significant 
that even the parallel GA-BP method underperformed quick- 
prop. Also, asymptotic convergence curves indicate genetic 
algorithms require far greater numbers of recombination to 
converge to desired error criteria compared to the quick- 
prop. On the other hand, we have a report by [Montana and 
Davis, 19891 indicating that neural network training by ge- 
netic algorithms converge much faster than training by back 
propagation. This conflict needs to be resolved by carrying 
out fair and well controlled experiments. 

As discussed in the previous section, from the scope of our 
experiments, we reached the conclusion that: 

Dramatically faster methods of convergence need to be 
discovered for genetic algorithms to be used as an effi- 
cient alternative to faster variants of back propagation. 

The neural network training task was cornfirmed to have 
a less compositional feature - combinations of good 
partial solutions do not necessarily create a better overall 
solution. Thus, the speed of convergence of genetic 
algorithm-based training was significantly undermined. 

The relation between the convergence speed of genetic 
algorithms and back propagation against various classes 
of error landscape needs to be systematically investi- 
gated to identify cases where genetic algorithms perform 
better than back propagation. By identifying classes 
of tasks and error landscapes which genetic algorithm 
based neural network training could perform better than 
back propagation or its faster variants, we can resolve 

e 

conflicts of results between successful and faulty re- 
ports, and this would lead to appropriate use of genetic 
algorithms for neural network training. 
The fact that genetic algorithms fail to converge into op- 
timal points in larger networks has interesting biological 
implications. Assuming our model simulates, even in 
a very simplified manner, real evolutional process, the 
convergence property discovered computationally sup- 
ports neural plasticity, such as neural group selection 
and weight modification, as a necessary mechanism to 
sustain the survival of our spices. 

References 
[Ackley, 19871 Ackley, D., A Connectionist Machine for Genetic 

Hillclimbing, Kluwer Academic Publishers, 1987. 

[Edelman, 19871 Edelman, G., Neural Darwinism: Theory ofNeu- 
ronal Group Selection, Basic Books, New York, 1987. 

[Fahlman, 19881 Fahhnan, S., An Empirical Study of Learn- 
ing Speed in Back-Propagation Networks, CMU-CS-88-162, 
Carnegie Mellon University, 1988. 

[Goldberg, 19891 Goldberg, D., Genetic Algorithms inSearch, Op- 
timization and Machine Learning, Addison Wesley, 1989. 

[Grefenstette, 19871 Grefenstette, J., “Incorporating Problem Spe- 
cific Knowledge into Genetic Algorithms,” In Davis, L. (Ed.), 
Genetic Algorithms and Simulated Annealing, Morgan Kauf- 
mann, 1987. 

[Harp et. al., 19891 H arp, S., Samad, T. and Guha, A., “Towards 
the Genetic Synthesis of Neural Networks,” In Proceedings of 
the Third InternationalConference on Genetic Algorithms, 1989. 

[Lang and Witb rock, 19881 Lang, K. and Wrtbrock, M., “Learning 
to Tell ‘l%o Spirals Apart,” In Proceedings of the 1988 Connec- 
tionist Models Summer School, 1988. 

[McClelland and Rumelhart, 19881 McClelland, J. L. and Rumel- 
hart, D. E., Explorations in Parallel Distributed Processing: A 
Handbookof Models, Programs, and Exercises, The MIT Press, 
1988. 

[Miller et. al., 19891 Miller, G., Todd, P andHegde, S., “Designing 
Neural Networks using Genetic Algorithms,” In Proceedings of 
the Third International Conference on GeneticAlgorithms, 1989. 

[Montana and Davis, 19891 Montana, D. and Davis, L., “Training 
Feedforward Neural Networks Using Genetic Algorithms,” In 
Proceedings of International Joint Conference on Artificial In- 
telligence (IJCAI-89), 1989. 

[Rumelhart, Hinton and Williams, 19861 Rumelhart, D. E., Hin- 
ton, G. E. and Williams, R.J., “Learning Internal Representation 
by Error Propagation,” In Parallel Distributed Processing: Ex- 
plorations in the Microstructure of Cognition, (Eds.) Rumelhart, 
D. E. and McClelland, J. L., The MlT Press, 1986. 

[Stork et. al., 19901 Stork, D., Walker, S., Bums, M. and Jackson, 
B., “Preadaptation in Neural Circuits,” In Proceedings of the 
International Joint Conference on Neural Networks, 1990. 

[Whitley and Hanson, 19891 Whitley, D. and Hanson, T., “Opti- 
mizing Neural Network Using Faster, More Accurate Genetic 
Search,” In Proceedings of the International Conference on Ge- 
netic Algorithms, 1989. 

KITANO 795 


