
Learning to Coordinate Behaviors
Pattie Maes & Rodney A. Brooks

AI-Laboratory
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

pattieQai.mit .edu
brooksQai.mit .edu

Abstract

We describe an algorithm which allows a behavior-
based robot to learn on the basis of positive and -
negative feedback when to activate its behaviors.
In accordance with the philosophy of behavior-
based robots, the algorithm is completely distribu-
ted: each of the behaviors independently tries to sensors
find out (i) whether it is relevant (i.e. whether
it is at all correlated to positive feedback) and
(ii) what the conditions are under which it be-
comes reliable (i.e. the conditions under which
it maximises the probability of receiving positive
feedback and minimises the probability of receiv-
ing negative feedback). The algorithm has been
tested successfully on an autonomous 6-legged ro-
bot which had to learn how to coordinate its lens

E

Figure 1: Cl assical decomposition of an autonomous
robot.

. . .

so as to walk forward. build maps

Situation of the Problem sensors -
explore

- actuators

Since 1985, the MIT Mobile Robot group has advocated
a radically different architecture for autonomous intel-
ligent agents (Brooks, 1986). Instead of decomposing
the architecture into functional modules, such as per-

wander

avoid objects

ception, modeling, and planning (figure l), the archi- Figure 2: Behavior-based decomposition of an autono-
tecture is decomposed into task-achieving modules, also mOuS robot.
called behaviors (figure 2). This novel approach has al-
ready demonstrated to be very successful and similar ap-
proaches have become more widely adopted (cfr. for ex- fully grasp the peculiarities of the task and environment,
ample (Brooks, 1990) (Rosenschein & Kaelbling, 1986) so as to be able to specify what will make the robot suc-
(Arkin, 198’7) (Payton, 1986) (Anderson & Donath, 1988)
(Yamaushi, 1990) (Zhang, 1989)).

cessfully achieve the task (Maes, 1990).
We therefore started developing an algorithm for learn-

One of the main difficulties of this new approach lies ing the control of behaviors through experience. In ac-
in the control of behaviors. Somehow it has to be decided cordance with the philosophy of behavior-based robots,
which of the behaviors should be active and get control the learning algorithm is completely distributed. There
over the actuators at a particular point in time. Until is no central learning component, but instead each behav-
now, this problem was solved by precompiling the con- ior tries to learn when it should become active. It does
trol flow and priorities among behaviors either by hand so by (i) trying to find out what the conditions are under
(Brooks, 1986), or automatically, using a description of which it maximizes positive feedback and minimizes neg-
the desired behavior selection (Rosenschein & Kaelbling,
1986). In both cases the result is some “switching cir-

ative feedback, and (ii) measuring how relevant it is to the
global task (whether it is correlated to positive feedback).

cuitry” among the behaviors which is completely fixed at We hope that ultimately, this learning algorithm will
compile time by the designer. allow us to program the behavior of a robot by selecting

However, for more complicated robots prewiring such a number of behaviors from a library of behaviors, con-
a solution becomes either too difficult or impractical. As netting these to the actual sensors and actuators on the
the number of behaviors goes up, the problem of control robot, defining positive and negative feedback functions,
and coordination becomes increasingly complex. Addi- and making each of the behaviors learn from experience
tionally, it is often too difficult for the programmer to when it is appropriate for it to become active.

796 MACHINE LEARNING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

The Learning Task

The learning task we are concerned with is defined as
follows. Given a robot which has:

a vector of binary perceptual conditions which are
either being perceived (or “on”) or not being per-
ceived (or “off”) at every instant of time,

a set of behaviors; where a behavior is a set of pro-
cesses involving sensing and action; a behavior has
a precondition list, which is a conjunction of predi-
cates testing a specific value (on or off) for a certain
perceptual condition; a behavior may become active
when all of its preconditions are fulfilled; an active
behavior executes its processes,

a positive feedback generator, which is binary and
global, i.e. at every time t, the robot (and therefore
all of the behaviors) either receive positive feedback
or not,

a negative feedback generator, which is again binary
and global.

The learning task is to incrementally change the pre-
condition list of behaviors so that gradually only those
behaviors become active that fulfill the following two con-
straints:

1. they are relevant,
where a relevant behavior is a behavior that is pos-
itively correlated to positive feedback (i.e. positive
feedback is more often received when the behavior
is active then when it is is not active) and not pos-
itively correlated to negative feedback (i.e. either
not correlated at all or inversely correlated),

2. they are reliable,
where a reliable behavior is defined as a behavior
that receives consistent feedback (i.e. the probabil-
ity of receiving positive (respectively negative) feed-
back when the behavior is active is close enough to
either 1 or 0).

An additional requirement, imposed by our philoso-
phy, is that we want the algorithm to be distributed. It
should allow individual behaviors to change their precon-
dition list in response to certain feedback patterns so that
the global behavior of the set of behaviors converges to-
wards a situation where maximal positive feedback and
minimal negative feedback is received. Finally, three ad-
ditional constraints are related to the fact that this al-
gorithm has to be useful for real robots in unconstrained
environments: (i) the algorithm should be able to deal
with noise, (ii) the algorithm should be computationdly
inexpensive, so that it can be used in real-time, and (iii)
the algorithm should support readaptation, i.e. if the
robot changes (e.g. some component breaks down), or
its environment changes (e.g. the feedback generators
change) the algorithm will make the robot adapt to this

new situation (which possibly involves forgetting or revis-
ing learned knowledge).

We adopted some simplifying, but realistic, assump-
tions. One is that, for every behavior, there exists at least
one conjunction of preconditions for which the probability
of positive feedback as well as the probability of negative
feedback are within some boundary (which is a param-
eter of the algorithm) from either 0 or 1. Another im-
portant assumption is that feedback is immediate (there
is no delayed feedback) and does not involve action se-
quences. And finally only conjunctions of conditions (in-
cluding negations) can be learned. The last section of the
paper sketches how the algorithm could be extended to
deal with the more general probleml. Nevertheless, even
after adopting these simplifying assumptions, the learn-
ing task is still far from trivial. More specifically, the
global search space for a robot with n behaviors, and m
binary perceptual conditions is n * 3m, since every behav-
ior possibly has to learn an “on”, “off” or “don’t-care”
value for every perceptual condition.

The Algorithm

The learning algorithm employed by each behavior is the
following. Each behavior starts from a “minimal” pre-
condition list. More specifically, only conditions that are
necessary in order to be able to execute the processes of
the behavior are present. Behaviors maintain data about
their performance. A first set of data is related to whether
the behavior is relevant or not. A behavior measures i, j,
k and 1:

active not active

positive feedback j k
no uositive feedback 1 m

Where, j is the number of times positive feedback hap-
pened when the behavior was active, k is the number of
times positive feedback happened when the behavior was
not active, 1 is the number of times positive feedback did
not happen when the behavior was active, and m is the
number of times negative feedback did not happen when
the behavior was not active. The same statistics are main-
tained for negative feedback. The statistics are initialized
at some value N (for example N = 10) and “decayed”
by multiplying them with fi every time they are up-
dated. This ensures that impact of past experiences on
the statistics is less than that of more recent experiences.
The correlation (the Pearson product-moment correlation
coefficient) between positive feedback and the status of
the behavior is defined as

cow(P, A) =
j*m-l*k

&m+l)*(m+k)*(j+k)*(j+l)

MAES AND BROOKS 797

This gives a statistical measure of the degree to which
the status of the behavior (active or not active) is corre-
lated with positive feedback happening or not. cow(P, A)
ranges from -1 to 1, where a value close to -1 represents a
negative correlation (feedback is less likely when the be-
havior is active), 0 represents no correlation and 1 repre-
sents a positive correlation (feedback is more likely when
the behavior is active). In an similar way, cow(N, A), i.e.
the correlation between the status of the behavior and
negative feedback is defined. The relevance of a particu-
lar behavior is defined as

coTr (P, A) - COTF(N, A)

It is used by the algorithm to determine the probability
that the behavior will become active (which is related to
the effort which will be put into doing experiments in
order to improve the behavior, i.e. making it more reli-
able). The relevance of a behavior ranges from -2 to +2.
The more relevant a behavior is, the more chance it has
of becoming active. A behavior that is not very relevant
has little chance of becoming active. So, these statistics
makes it possible to determine which behaviors are the in-
teresting ones (relevant ones). The relevant behaviors are
not necessarily very reliable yet: they might only receive
positive feedback in a minority of the times they are ac-
tive. They also might still cause a lot of negative feedback
to be received. All that is “known” is that positive feed-
back will be more likely received when these behaviors
are active, than when they are not active (respectively
negative feedback being less likely). The reliabdity of a
behavior is defined as (where index P stands for positive
feedback and index N stands for negative feedback)

.
min(maz(A lP -), maz(-

jp+b’jp+b

The reliability of a behavior ranges from 0 to 1. When
the value is close to 1, the behavior is considered very
reliable (i.e. the feedback is very consistent: the proba-
bility of receiving feedback is either close to 0 or to 1).
The reliability of a behavior is used by the algorithm to
decide whether the behavior should try to improve itself
(i.e. learn more conditions or modify the existing pre-
conditions). If the behavior is not reliable enough, i.e. if
either the negative feedback is inconsistent OE the posi-
tive feedback is inconsistent or both, then one or more
additional preconditions are relevant. In this case, the
behavior will pick a new perceptual condition to moni-
tor in order to determine whether this condition might
be related to the inconsistent feedback 2. An additional
set of statistics is related to the specific condition being
monitored (if there is one):

becomes close to 1 (respectively -l), then the condition
will be adopted in the precondition list, with a desired
value of “on” (respectively “off”). And similarly, if the
correlation for negative feedback becomes close to 1 (re-
spectively -l), then the condition will be adopted in the
precondition list, with a desired value of “OR” (respec-
tively “on”). If the values for positive and negative feed-
back are incompatible, the one suggested by the negative
feedback dominates. From the moment a new condition
has been learned, a behavior only becomes active when
this condition has the desired value. If after monitoring a
condition for a while, the behavior doesn’t notice any cor-
relation between the value of the condition and positive
or negative feedback, and the behavior is still not reliable
enough, it will start monitoring another condition.

After learning a new condition, the behavior will not
necessarily be completely reliable. There might still be
other conditions related to the feedback. Until the be-
havior is reliable enough, it will try to find extra precon-
ditions s. Notice that the list of conditions being mon-
itored/evaluated is circular. When all of the conditions
have been evaluated and feedback is still inconsistent, the
behavior will start monitoring conditions from the start
of the list again, reevaluating also those conditions which
have already been taken up in the precondition list. A be-
havior might “forget” something it learned and reevaluate
the relevance of that condition. This guarantees that if
the environment (e.g. the feedback) or the robot changes,
the behaviors are able to adapt to the new situation.

The control strategy of the algorithm is as follows.
Behaviors are grouped into groups which control the same
actuators. At every timestep the selectable behaviors in
every group are determined (those behaviors which are 2Currently there is a complete connectivity between behaviors

and perceptual conditions. The connectivity will be decreased in a

cond. on cond. off

positive feedback n 0
no positive feedback D a

Where n is the number of times positive feedback hap-
pened when the behavior was active and the condition
was on, o is the number of times positive feedback hap-
pened when the behavior was active and the condition
was off (not on), p the number of times positive feedback
did not happen when the behavior was active and the
condition was on, and q is the number of times negative
feedback did not happen when the behavior was active
and the condition was off. Again the same statistics are
maintained for negative feedback. If the behavior notices
a strong correlation between the condition being moni-
tored and positive and/or negative feedback, it will adopt
this condition as a new precondition. More specifically, if
the correlation

cow (P, on) =
n*q-p*o

J(q+p)*(q+o)*(n+o)*(n+p)

subsequent implementation through the use of a switchboard. In 3We make the assump tion here that for every condition that
applications involving a large vector of perceptual conditions, one has to be learned the correlation to feedback is independently de-
could restrict the subset of conditions that a particular behavior tectable. This is likely to be true, because we are not dealing with
considers for learning. the problem of learning disjunctions.

798 MACHINE LEARNING

not yet active and whose preconditions are fulfilled). For
each of these groups, one or zero behaviors are selected
probabilistically according to (in order of importance)
o the relative relevance of behaviors,
o the reliability of behaviors, and
e the “interestingness” of the current situation for behav-
iors, where a situation is more interesting for a behavior
if the condition being monitored by the behavior appears
in the situation with a value (on or off) that has been
experienced a lesser number of times.

The selected behaviors are then activated. The prob-
abilistic nature of the selection process ensures that there
is a balance between behaviors being selected (i) because
they are successful (are relevant and reliable) and (ii) be-
cause of experimentation purposes (to learn). Notice that
the learning algorithm is biased: if behaviors are not very
relevant (in comparison with other behaviors) they have
very little chance of becoming active, which means that
little effort is put into making them more reliable (learn
new preconditions).

Finally, there are a number of global parameters which
can be varied to change the algorithm
o how strong a condition has to be correlated to adopt it
as a new precondition,
o how long a condition is monitored before it is dropped,
e how reliable a behavior should try to become,
e how adaptive the behavior is (the relative importance
of new data versus data of past experiences).

These parameters have to be tuned to the particular
circumstances of task and robot at hand.

A Robot that Learns to

The Task

The described- algorithm is being tested on a six-legged
robot, called Genghis (see figures 4 and 5). The goal of
the experiment is to make Genghis learn to walk forward.
This task was chosen because of its complexity. The cur-
rent version consists of 12 behaviors learning about 6 per-
ceptual conditions, which corresponds to a search space
of 12*3” = 8748 nodes. Another reason for choosing this
task was the availability of a 6-legged robot with a lot of
degrees of freedom (12 to be precise) (Angle, 1989). The
final reason is that a lot is known both about insect walk-
ing (Wilson, 1966) (B eer, 1989) and about 6-legged robot
walking (Donner, 1987) (B rooks, 1989). The results re-
ported in this literature demonstrated that the task was
feasible (that the completely distributed walking which

traiu whest
r? (posit eteedback)

touch sensors
(negative feedback)

Figure 3: Schematic representation of Genghis, its pos-
itive and negative feedback sensors and its distributed
collection of learning behaviors.

Genghis is an autonomous six-legged robot with twelve
servo motors controlling the two degree of freedom legs
(Angle, 1989). It has 4 on board 8-bit microprocessors
linked by a 62.5Kbaud token ring. The total memory us-
age of the robot is about 32Kbytes. Genghis has been
programmed before to walk over rough terrain and fol-
low a person passively sensed in the infrared spectrum
(Brooks, 1989). 0 ur experiments were programmed us-
ing the Behavior Language and Subsumption Compiler
(Brooks, 1989b). Th e entire learning program runs on
board.

The sensors used in this experiment are two touch
sensors on the bottom of the robot (one in the front and
one in the back) and a trailing wheel which measures for-
ward movement. Negative feedback is received by all of
the behaviors every time at least one of the touch sensors
fires. Positive feedback is received every time the wheel
measures forward movement. We equipped Genghis with
a dozen behaviors: 6 swing-leg-forward behaviors (which
move a leg that is backward, up, forward and then down
again), 6 swing-leg-backward behaviors (which move a leg
that is forward, up, backward and then down again) (fig-
ure 3). Further there is one horizontal balance behavior,
which sums the horizontal angles of the legs and sends a
correction to all of the legs so as to reduce that sum to 0
(i.e. if one leg is moved forward, all of the legs are moved
backwards a little). The 12 swing behaviors try to learn
what the conditions are under which they should become
active. The vector of binary perceptual conditions has 6
elements, each of which records whether a specific leg is
up (not touching the ground).

would result from our learning was indeed robust and suc-
cessful). This literature also made it possible to compare Results
and interpret our results.

The Robot

In a first experiment only six swing forward behaviors plus
the balance behavior were involved. Genghis was able to
learn to activate behaviors safely (avoiding negative feed-
back or “falling on its belly”) and successfully (producing
positive feedback or moving forward). More specifically,

MAES AND BROOKS 799

it learned to adopt a tripod gait, keeping three legs on This experiment has been successfully demonstrated
the ground at any moment: the middle leg on one side on the robot. Using a non-intelligent search through the
and the front and back leg on the other side. Notice that condition vector (i.e. every behavior monitors the condi-
this task is not trivial: negative feedback is not related Cons in the same order, starting with the status of the
to particular behaviors (none of the behaviors by itself first leg, then the status of the second leg, etc) this takes
causes negative feedback), but rather to the way they are in the order of 10 minutes. Using an intelligent search
coordinated (or uncoordinated). It is therefore a neces- (i.e. every behavior starts by monitoring the status of
sity in this application that actions are explored by the legs that are nearby, then the ones that are further away,
robot in parallel. This extra difficulty is successfully han- and so on), this experiment t&es approximately 1 minute

dled by the algorithm: the distributed learning behaviors and 45 seconds.
are able to learn a task which requires their coordination.

Figure 4: Genghis learning to walk. Initially, the behaviors do not know yet how they are supposed to coordinate
(under what conditions they should become active). Since the two front leg “swing forward” behaviors are being
activated at the same time, Genghis falls down and receives negative feedback from the touch sensor mounted on
the front of its belly.

Figure 5: Gradually, a more coherent “walk” emerges. In this case the global behavior converges towards a tripod
gait: two groups of three legs are being swung forward alternately.

800 MACHINE LEARNING

The reason why this is so much faster is that in this
case, behaviors learn and converge more or less simul-
taneously (in the non-intelligent search case all of the
behaviors have to “wait” for leg 4 and 5 to go through
the whole condition vector before finding correlated con-
ditions). The preconditions that are learned are that a
swing-forward behavior is only allowed to become active
when the neighboring legs (e.g. leg3 and leg0 in the case
of legl) are down. Actually, we noticed that not all of the
behaviors learn that both of the neighboring legs have to
be down. If for example leg0 and leg4 learned not to be
active at the same time as leg2, then leg2 doesn’t have
to learn how to avoid negative feedback, because its two
neighbors are taking care of the coordination problem.

In a second experiment, which has been demonstrated
in simulation (it is therefore difficult to compare the re-
sulting convergence times), six swing-backward behaviors
were added. The robot now also had to learn that only
certain behaviors are relevant for receiving positive feed-
back (in the first experiment, positive feedback didn’t
play much of a role, because every behavior was corre-
lated to positive feedback under all conditions). More
specifically, the robot had to learn that even though the
swing-leg-backward behaviors do not cause negative feed-
back to be received (when coordinated), they should never
become active because they are not correlated to positive
feedback. In our simulation, the “non-relevant” swing-
backward behaviors slowly die out, because they are not
correlated to positive feedback. Their probability of be-
coming active gradually goes down, so that they have less
opportunities to find out what the conditions are under
which they can minimize negative feedback. Most of them
“die out” before they are able to find the optimal list of
preconditions so as to avoid negative feedback.

The gait that emerges in the experiments is the ttipod
gait, in which alternatively 2 sets of 3 legs are simultr+
neously swung forward. As reported by Wilson (Wilson,
1966) and confirmed in simulations by Beer (Beer, 1989),
the gait that emerges in a distributed g-legged walking
creature is an emergent property of the time it takes to
push a leg backwards during the “stance phase”. One of
the experiments we are working on right now is to try to
obtain different gaits as a result of varying the speed of the
stance phase and by disconnecting one of the legs at run
time. The circular monitoring scheme should take care
that the behaviors can adapt to this new situation and
modify their precondition lists accordingly. Another ex-
periment we are currently working on is to make Genghis
learn to walk backward, by adding a switch which inverts
the movement feedback.

for one or zero conditions at the time. As a consequence
our algorithm is less computationally complex. Drescher’s
algorithm would not be usable in real time. A second im-
portant difference is that the algorithms are concerned
with different learning tasks. In Drescher’s case the task
is to discover the regularities of the world when taking
actions (a condition-action-effect kind of representation
of the world is built up), while in the work presented here
the only things learned are the conditions which optimize
positive feedback and minimize negative feedback. Our
system evolves towards a task-dependent (goal-oriented)
solution, while in Drescher’s case, generally useful knowl-
edge is built up.

There is further also some relation to Classifier Sys-
tems and Genetic Algorithms (Holland et al., 1986) (for
an application to control problems cfr. (Greffenstette,
1989)). The main difference is that our learning technique
is basically constructivist, while theirs is selectionist. In
our algorithm the right representations are built up (in
an incremental way) instead of being selected. An advan-
tage is that our algorithm is faster because it does not
perform a “blind”, unstructured search. It further also
uses memory more efficiently because there is no duplica-
tion of information (all the information about one action
is grouped in one behavior) and because we only moni-
tor/explore a certain condition when there is a need for
it (the behavior is not reliable yet).

Finally, the problem studied here is related to a class
of algorithms called Reinforcement Learning Algorithms
(Sutton, 1984)(Sutton, 1988)(Sutton, 1990)(Kaelbling, -
199O)(also related are (Narendra & Thathachar, 1989)
and (Berry & Fristedt, 1985)). The main differences are
that (i) the algorithm discussed here is distributed and
parallel: several actions an be taken at once, and asyn-
chronously (this is even crucial to learn the tripod gait, for
example), (ii) this algorithm is action- oriented, whereas’
reinforcement learning algorithms are state-oriented (util-
ity functions are associated with states, while here rel-
evance and reliability are associated with actions) and
(iii) here feedback is binary and dual (positive and nega-
tive), whereas in reinforcement learning the utility func-
tion is real valued (both have advantages and disadvan-
tages: the former’s advantage is that positive and nega-
tive goals/feedback are treated separately, while the lat-
ter’s advantages is that there is a more gradual evalua-
tion).

Conclusion and Future Work

We have developed a learning algorithm which allows a

Related Learning Work
behavior-based robot to learn when its behaviors should
become active using positive and negative feedback. We
tested the algorithm by successfully teaching a g-legged

This work is related to Drescher’s PhD thesis on “trans- robot to walk forward. In future work we plan to test the
lating Piaget into LISP” (Drescher, 1989). The main dif- generality of the algorithm by doing more experiments
ferences are: that our behaviors (corresponding to his with the same and different robots for different tasks and
“schemas”) do not maintain statistics for all of the per- by studying the properties and limitations of the algo-
ceptual conditions in the environment, but instead only rithm with a mathematical model.

MAES AND BROOKS 801

We further plan some extensions to the algorithm, the
first one being the addition of a mechanism to deal with
delayed feedback (or learning action sequences). Three
possible solutions to this problem will be investigated: (i)
the usage of some Bucket Brigade Algorithm or Temporal
Difference method (Sutton, 1988) (Holland et al., 1986),
(ii) the extension of the perceptual condition vector with
conditions representing the past actions taken and (iii)
composing actions into macro-actions (so that feedback
is still immediate for such an action sequence).

Brooks R.A. (1990) Elephants don’t play chess. In: P.
Maes (ed.) Designing Autonomous Agents, Bradford-
MIT Press, in press. Also: special issue of Journal of
Robotics and Autonomous Systems, Spring ‘90, North-
Holland.
Donner M.D. (1987) Real-time control of walking. Pro-
gress in Computer Science series, Vol. 7, Birkhauser,
Boston.
Drescher G.L. (1989) Made-Up Minds: A Constructivist
Approach to Artificial Intelligence, PhD Thesis, Depart-
ment of EECS, MIT.

Acknowledgements
Greffenstette J.J. (1989) I ncremental learning of control
strategies with genetic algorithms. Proceedings of the -
Sixth International Workshop on Machine Learning, Mor-
gan Kauftnann.

Grinell Moore did most of the mechanical design and fabrica-
tion of Genghis. Cohn Angle did much of the processor design

Holland J.H., Holyoak K.J. Nisbett R.E. and Thagard

and most of the electrical fabrication. Olaf Bleck built the
P.R. (1936) Induction: Processes of inference, learning

sensors providing positive and negative feedback and replaced
and discovery. MIT-Press, Cambridge, MA.

the broken servos every time our buggy programs “tortured” Kaelbling L. (1990 Learning in embedded systems, PhD

the robot. Leslie Kaelbling, Maja Mataric and Paul Viola
thesis, Stanford c, omputer Science Department, forth-

provided useful comments on an earlier draft of this paper. coming.

Richard Lathrop and David Clemens helped with the statis- Maes P. (1990) Situated agents can have goals. In: P.
tics. Maes (ed.) Designing Autonomous Agents, Bradford-

Supported by Siemens with additional support from the MIT Press, in press. Also: special issue of Journal of
University Research Initiative under Office of Naval Research Robotics and Autonomous Systems, Spring ‘90, North-
contract N00014-86-K-0685, and the Defense Advanced Re- Holland.
search Projects Agency under Office of Naval Research con-
tract N00014-85-K-0124. The first author is a research as-

Narendra K, and Thathachar M.A.L. (1989) Learning Au-
tomata, an Introduction. Prentice Hall, New Jersey.

sociate of the Belgian National Science Foundation. She cur-
rently holds a position as visiting professor at the M.I.T. Ar-

Payton D.W. (1986) A n architecture for reflexive autono-

tificial Intelligence Laboratory.
mous vehicle control. IEEE Robotics and Automation
Conference ‘86, San Francisco.
Rosenschein S.J. and Kaelbling L. (1986) The synthesis

Bibliography
of digital machines with provable epistemic properties,
in Joseph Halpern, ed, Proceedings of the Conference
on Theoretical Aspects of Reasoning About Knowledge,

Anderson T.L. and Donath M. (1988) A computation- Montereyv CA’
al structure for enforcing reactive behavior in a mobile Schlimmer J.C. (1986) Tracking Concept Drift, Proceed-
robot. In: Mobile Robots III, Proc. of the SPIE confer- ings of the Sixth National Conference on Artificial Intel-
ence, Vol. 1007, Cambridge, MA. ligence ‘86.

Angle C.M. (1989) Genghis, a six-legged autonomous walk- Sutton R. (1984) Temporal credit assignment in rein-
ing robot. Bachelors thesis, Department of EECS, MIT. forcement learning. Doctoral dissertation, Department

of Computer and Information Science, University of Mas- Arkin R. (1987) Motor schema based navigation for a sachusetts
mobile robot: An approach to programming by behavior.

Amherst .

IEEE Conference on Robotics and Automation ‘87. Sutton R.‘(I988) L earning to predict by the methods of

Beer R.D. (1989) Intelligence as Adaptive Behavior: An Temporal Differences. Machine Learning Journal, Vol. 3, g 44
Experiment in Computational Neuroethology. Techni- - *
cal Report 89-118, Center for Automation and Intelligent Sutton R. (1990) Integrated architectures for learning,
Systems Research, Case Western Reserve University. planning and reacting based on approximating dynamic .
Berry D.A. and Fristedt B. (1985) Bandit problems: Se- programming’ Proceedings of the Seventh International
quential allocation of experiments. Chapman and Hall, Conference on Machine Learning.
London. Wilson D.M. (1966) Insect walking. Annual Review of

Brooks R.A. (1986) A robust layered control system for a Entomology, 11: 103-121.

mobile robot. IEEE Journal of Robotics and Automation. Yamaushi B. (1990) Independent Agents: A Behavior-
Volume 2, Number 1. Based Architecture for Autonomous Robots. Proceedings
Brooks R.A. (1989) A robot that walks: Emergent be- of the Fifth Annual SUNY Buffalo Graduate Conference

havior from a carefully evolved network. Neural Compu- on Computer Science ‘90, Buffalo, NY.
tation, l(2). Zhang, Y. (1989) Transputer-based Behavioral Module

Brooks R.A. (1989b) The behavior Language; User’s - for Multi-Sensory Robot Control. 1st International Con-

Guide. Implementatron Note. AI-laboratory, MIT. ference in Artificial Intelligence and Communication Pro-
cess Architecture ‘89, London, UK.

802 MACHINE LEARNING

