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Abstract 

We describe an algorithm which allows a behavior- 
based robot to learn on the basis of positive and - 
negative feedback when to activate its behaviors. 
In accordance with the philosophy of behavior- 
based robots, the algorithm is completely distribu- 
ted: each of the behaviors independently tries to sensors 
find out (i) whether it is relevant (i.e. whether 
it is at all correlated to positive feedback) and 
(ii) what the conditions are under which it be- 
comes reliable (i.e. the conditions under which 
it maximises the probability of receiving positive 
feedback and minimises the probability of receiv- 
ing negative feedback). The algorithm has been 
tested successfully on an autonomous 6-legged ro- 
bot which had to learn how to coordinate its lens 

E 

Figure 1: Cl assical decomposition of an autonomous 
robot. 
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Since 1985, the MIT Mobile Robot group has advocated 
a radically different architecture for autonomous intel- 
ligent agents (Brooks, 1986). Instead of decomposing 
the architecture into functional modules, such as per- 

wander 

avoid objects 

ception, modeling, and planning (figure l), the archi- Figure 2: Behavior-based decomposition of an autono- 
tecture is decomposed into task-achieving modules, also mOuS robot. 
called behaviors (figure 2). This novel approach has al- 
ready demonstrated to be very successful and similar ap- 
proaches have become more widely adopted (cfr. for ex- fully grasp the peculiarities of the task and environment, 
ample (Brooks, 1990) (Rosenschein & Kaelbling, 1986) so as to be able to specify what will make the robot suc- 
(Arkin, 198’7) (Payton, 1986) (Anderson & Donath, 1988) 
(Yamaushi, 1990) (Zhang, 1989)). 

cessfully achieve the task (Maes, 1990). 
We therefore started developing an algorithm for learn- 

One of the main difficulties of this new approach lies ing the control of behaviors through experience. In ac- 
in the control of behaviors. Somehow it has to be decided cordance with the philosophy of behavior-based robots, 
which of the behaviors should be active and get control the learning algorithm is completely distributed. There 
over the actuators at a particular point in time. Until is no central learning component, but instead each behav- 
now, this problem was solved by precompiling the con- ior tries to learn when it should become active. It does 
trol flow and priorities among behaviors either by hand so by (i) trying to find out what the conditions are under 
(Brooks, 1986), or automatically, using a description of which it maximizes positive feedback and minimizes neg- 
the desired behavior selection (Rosenschein & Kaelbling, 
1986). In both cases the result is some “switching cir- 

ative feedback, and (ii) measuring how relevant it is to the 
global task (whether it is correlated to positive feedback). 

cuitry” among the behaviors which is completely fixed at We hope that ultimately, this learning algorithm will 
compile time by the designer. allow us to program the behavior of a robot by selecting 

However, for more complicated robots prewiring such a number of behaviors from a library of behaviors, con- 
a solution becomes either too difficult or impractical. As netting these to the actual sensors and actuators on the 
the number of behaviors goes up, the problem of control robot, defining positive and negative feedback functions, 
and coordination becomes increasingly complex. Addi- and making each of the behaviors learn from experience 
tionally, it is often too difficult for the programmer to when it is appropriate for it to become active. 
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The Learning Task 

The learning task we are concerned with is defined as 
follows. Given a robot which has: 

a vector of binary perceptual conditions which are 
either being perceived (or “on”) or not being per- 
ceived (or “off”) at every instant of time, 

a set of behaviors; where a behavior is a set of pro- 
cesses involving sensing and action; a behavior has 
a precondition list, which is a conjunction of predi- 
cates testing a specific value (on or off) for a certain 
perceptual condition; a behavior may become active 
when all of its preconditions are fulfilled; an active 
behavior executes its processes, 

a positive feedback generator, which is binary and 
global, i.e. at every time t, the robot (and therefore 
all of the behaviors) either receive positive feedback 
or not, 

a negative feedback generator, which is again binary 
and global. 

The learning task is to incrementally change the pre- 
condition list of behaviors so that gradually only those 
behaviors become active that fulfill the following two con- 
straints: 

1. they are relevant, 
where a relevant behavior is a behavior that is pos- 
itively correlated to positive feedback (i.e. positive 
feedback is more often received when the behavior 
is active then when it is is not active) and not pos- 
itively correlated to negative feedback (i.e. either 
not correlated at all or inversely correlated), 

2. they are reliable, 
where a reliable behavior is defined as a behavior 
that receives consistent feedback (i.e. the probabil- 
ity of receiving positive (respectively negative) feed- 
back when the behavior is active is close enough to 
either 1 or 0). 

An additional requirement, imposed by our philoso- 
phy, is that we want the algorithm to be distributed. It 
should allow individual behaviors to change their precon- 
dition list in response to certain feedback patterns so that 
the global behavior of the set of behaviors converges to- 
wards a situation where maximal positive feedback and 
minimal negative feedback is received. Finally, three ad- 
ditional constraints are related to the fact that this al- 
gorithm has to be useful for real robots in unconstrained 
environments: (i) the algorithm should be able to deal 
with noise, (ii) the algorithm should be computationdly 
inexpensive, so that it can be used in real-time, and (iii) 
the algorithm should support readaptation, i.e. if the 
robot changes (e.g. some component breaks down), or 
its environment changes (e.g. the feedback generators 
change) the algorithm will make the robot adapt to this 

new situation (which possibly involves forgetting or revis- 
ing learned knowledge). 

We adopted some simplifying, but realistic, assump- 
tions. One is that, for every behavior, there exists at least 
one conjunction of preconditions for which the probability 
of positive feedback as well as the probability of negative 
feedback are within some boundary (which is a param- 
eter of the algorithm) from either 0 or 1. Another im- 
portant assumption is that feedback is immediate (there 
is no delayed feedback) and does not involve action se- 
quences. And finally only conjunctions of conditions (in- 
cluding negations) can be learned. The last section of the 
paper sketches how the algorithm could be extended to 
deal with the more general probleml. Nevertheless, even 
after adopting these simplifying assumptions, the learn- 
ing task is still far from trivial. More specifically, the 
global search space for a robot with n behaviors, and m 
binary perceptual conditions is n * 3m, since every behav- 
ior possibly has to learn an “on”, “off” or “don’t-care” 
value for every perceptual condition. 

The Algorithm 

The learning algorithm employed by each behavior is the 
following. Each behavior starts from a “minimal” pre- 
condition list. More specifically, only conditions that are 
necessary in order to be able to execute the processes of 
the behavior are present. Behaviors maintain data about 
their performance. A first set of data is related to whether 
the behavior is relevant or not. A behavior measures i, j, 
k and 1: 

active not active 

positive feedback j k 
no uositive feedback 1 m 

Where, j is the number of times positive feedback hap- 
pened when the behavior was active, k is the number of 
times positive feedback happened when the behavior was 
not active, 1 is the number of times positive feedback did 
not happen when the behavior was active, and m is the 
number of times negative feedback did not happen when 
the behavior was not active. The same statistics are main- 
tained for negative feedback. The statistics are initialized 
at some value N (for example N = 10) and “decayed” 
by multiplying them with fi every time they are up- 
dated. This ensures that impact of past experiences on 
the statistics is less than that of more recent experiences. 
The correlation (the Pearson product-moment correlation 
coefficient) between positive feedback and the status of 
the behavior is defined as 

cow(P, A) = 
j*m-l*k 

&m+l)*(m+k)*(j+k)*(j+l) 
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This gives a statistical measure of the degree to which 
the status of the behavior (active or not active) is corre- 
lated with positive feedback happening or not. cow(P, A) 
ranges from -1 to 1, where a value close to -1 represents a 
negative correlation (feedback is less likely when the be- 
havior is active), 0 represents no correlation and 1 repre- 
sents a positive correlation (feedback is more likely when 
the behavior is active). In an similar way, cow(N, A), i.e. 
the correlation between the status of the behavior and 
negative feedback is defined. The relevance of a particu- 
lar behavior is defined as 

coTr (P, A) - COTF( N, A) 

It is used by the algorithm to determine the probability 
that the behavior will become active (which is related to 
the effort which will be put into doing experiments in 
order to improve the behavior, i.e. making it more reli- 
able). The relevance of a behavior ranges from -2 to +2. 
The more relevant a behavior is, the more chance it has 
of becoming active. A behavior that is not very relevant 
has little chance of becoming active. So, these statistics 
makes it possible to determine which behaviors are the in- 
teresting ones (relevant ones). The relevant behaviors are 
not necessarily very reliable yet: they might only receive 
positive feedback in a minority of the times they are ac- 
tive. They also might still cause a lot of negative feedback 
to be received. All that is “known” is that positive feed- 
back will be more likely received when these behaviors 
are active, than when they are not active (respectively 
negative feedback being less likely). The reliabdity of a 
behavior is defined as (where index P stands for positive 
feedback and index N stands for negative feedback) 

. 
min(maz(A lP -), maz( - 

jp+b’jp+b 

The reliability of a behavior ranges from 0 to 1. When 
the value is close to 1, the behavior is considered very 
reliable (i.e. the feedback is very consistent: the proba- 
bility of receiving feedback is either close to 0 or to 1). 
The reliability of a behavior is used by the algorithm to 
decide whether the behavior should try to improve itself 
( i.e. learn more conditions or modify the existing pre- 
conditions). If the behavior is not reliable enough, i.e. if 
either the negative feedback is inconsistent OE the posi- 
tive feedback is inconsistent or both, then one or more 
additional preconditions are relevant. In this case, the 
behavior will pick a new perceptual condition to moni- 
tor in order to determine whether this condition might 
be related to the inconsistent feedback 2. An additional 
set of statistics is related to the specific condition being 
monitored (if there is one): 

becomes close to 1 (respectively -l), then the condition 
will be adopted in the precondition list, with a desired 
value of “on” (respectively “off”). And similarly, if the 
correlation for negative feedback becomes close to 1 (re- 
spectively -l), then the condition will be adopted in the 
precondition list, with a desired value of “OR” (respec- 
tively “on”). If the values for positive and negative feed- 
back are incompatible, the one suggested by the negative 
feedback dominates. From the moment a new condition 
has been learned, a behavior only becomes active when 
this condition has the desired value. If after monitoring a 
condition for a while, the behavior doesn’t notice any cor- 
relation between the value of the condition and positive 
or negative feedback, and the behavior is still not reliable 
enough, it will start monitoring another condition. 

After learning a new condition, the behavior will not 
necessarily be completely reliable. There might still be 
other conditions related to the feedback. Until the be- 
havior is reliable enough, it will try to find extra precon- 
ditions s. Notice that the list of conditions being mon- 
itored/evaluated is circular. When all of the conditions 
have been evaluated and feedback is still inconsistent, the 
behavior will start monitoring conditions from the start 
of the list again, reevaluating also those conditions which 
have already been taken up in the precondition list. A be- 
havior might “forget” something it learned and reevaluate 
the relevance of that condition. This guarantees that if 
the environment (e.g. the feedback) or the robot changes, 
the behaviors are able to adapt to the new situation. 

The control strategy of the algorithm is as follows. 
Behaviors are grouped into groups which control the same 
actuators. At every timestep the selectable behaviors in 
every group are determined (those behaviors which are 2Currently there is a complete connectivity between behaviors 

and perceptual conditions. The connectivity will be decreased in a 

cond. on cond. off 

positive feedback n 0 
no positive feedback D a 

Where n is the number of times positive feedback hap- 
pened when the behavior was active and the condition 
was on, o is the number of times positive feedback hap- 
pened when the behavior was active and the condition 
was off (not on), p the number of times positive feedback 
did not happen when the behavior was active and the 
condition was on, and q is the number of times negative 
feedback did not happen when the behavior was active 
and the condition was off. Again the same statistics are 
maintained for negative feedback. If the behavior notices 
a strong correlation between the condition being moni- 
tored and positive and/or negative feedback, it will adopt 
this condition as a new precondition. More specifically, if 
the correlation 

cow ( P, on) = 
n*q-p*o 

J(q+p)*(q+o)*(n+o)*(n+p) 

subsequent implementation through the use of a switchboard. In 3We make the assump tion here that for every condition that 
applications involving a large vector of perceptual conditions, one has to be learned the correlation to feedback is independently de- 
could restrict the subset of conditions that a particular behavior tectable. This is likely to be true, because we are not dealing with 
considers for learning. the problem of learning disjunctions. 
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not yet active and whose preconditions are fulfilled). For 
each of these groups, one or zero behaviors are selected 
probabilistically according to (in order of importance) 
o the relative relevance of behaviors, 
o the reliability of behaviors, and 
e the “interestingness” of the current situation for behav- 
iors, where a situation is more interesting for a behavior 
if the condition being monitored by the behavior appears 
in the situation with a value (on or off) that has been 
experienced a lesser number of times. 

The selected behaviors are then activated. The prob- 
abilistic nature of the selection process ensures that there 
is a balance between behaviors being selected (i) because 
they are successful (are relevant and reliable) and (ii) be- 
cause of experimentation purposes (to learn). Notice that 
the learning algorithm is biased: if behaviors are not very 
relevant (in comparison with other behaviors) they have 
very little chance of becoming active, which means that 
little effort is put into making them more reliable (learn 
new preconditions). 

Finally, there are a number of global parameters which 
can be varied to change the algorithm 
o how strong a condition has to be correlated to adopt it 
as a new precondition, 
o how long a condition is monitored before it is dropped, 
e how reliable a behavior should try to become, 
e how adaptive the behavior is (the relative importance 
of new data versus data of past experiences). 

These parameters have to be tuned to the particular 
circumstances of task and robot at hand. 

A Robot that Learns to 

The Task 

The described- algorithm is being tested on a six-legged 
robot, called Genghis (see figures 4 and 5). The goal of 
the experiment is to make Genghis learn to walk forward. 
This task was chosen because of its complexity. The cur- 
rent version consists of 12 behaviors learning about 6 per- 
ceptual conditions, which corresponds to a search space 
of 12*3” = 8748 nodes. Another reason for choosing this 
task was the availability of a 6-legged robot with a lot of 
degrees of freedom (12 to be precise) (Angle, 1989). The 
final reason is that a lot is known both about insect walk- 
ing (Wilson, 1966) (B eer, 1989) and about 6-legged robot 
walking (Donner, 1987) (B rooks, 1989). The results re- 
ported in this literature demonstrated that the task was 
feasible (that the completely distributed walking which 

traiu whest 
r? (posit eteedback) 

touch sensors 
(negative feedback) 

Figure 3: Schematic representation of Genghis, its pos- 
itive and negative feedback sensors and its distributed 
collection of learning behaviors. 

Genghis is an autonomous six-legged robot with twelve 
servo motors controlling the two degree of freedom legs 
(Angle, 1989). It has 4 on board 8-bit microprocessors 
linked by a 62.5Kbaud token ring. The total memory us- 
age of the robot is about 32Kbytes. Genghis has been 
programmed before to walk over rough terrain and fol- 
low a person passively sensed in the infrared spectrum 
(Brooks, 1989). 0 ur experiments were programmed us- 
ing the Behavior Language and Subsumption Compiler 
(Brooks, 1989b). Th e entire learning program runs on 
board. 

The sensors used in this experiment are two touch 
sensors on the bottom of the robot (one in the front and 
one in the back) and a trailing wheel which measures for- 
ward movement. Negative feedback is received by all of 
the behaviors every time at least one of the touch sensors 
fires. Positive feedback is received every time the wheel 
measures forward movement. We equipped Genghis with 
a dozen behaviors: 6 swing-leg-forward behaviors (which 
move a leg that is backward, up, forward and then down 
again), 6 swing-leg-backward behaviors (which move a leg 
that is forward, up, backward and then down again) (fig- 
ure 3). Further there is one horizontal balance behavior, 
which sums the horizontal angles of the legs and sends a 
correction to all of the legs so as to reduce that sum to 0 
(i.e. if one leg is moved forward, all of the legs are moved 
backwards a little). The 12 swing behaviors try to learn 
what the conditions are under which they should become 
active. The vector of binary perceptual conditions has 6 
elements, each of which records whether a specific leg is 
up (not touching the ground). 

would result from our learning was indeed robust and suc- 
cessful). This literature also made it possible to compare Results 
and interpret our results. 

The Robot 

In a first experiment only six swing forward behaviors plus 
the balance behavior were involved. Genghis was able to 
learn to activate behaviors safely (avoiding negative feed- 
back or “falling on its belly”) and successfully (producing 
positive feedback or moving forward). More specifically, 
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it learned to adopt a tripod gait, keeping three legs on This experiment has been successfully demonstrated 
the ground at any moment: the middle leg on one side on the robot. Using a non-intelligent search through the 
and the front and back leg on the other side. Notice that condition vector (i.e. every behavior monitors the condi- 
this task is not trivial: negative feedback is not related Cons in the same order, starting with the status of the 
to particular behaviors (none of the behaviors by itself first leg, then the status of the second leg, etc) this takes 
causes negative feedback), but rather to the way they are in the order of 10 minutes. Using an intelligent search 
coordinated (or uncoordinated). It is therefore a neces- (i.e. every behavior starts by monitoring the status of 
sity in this application that actions are explored by the legs that are nearby, then the ones that are further away, 
robot in parallel. This extra difficulty is successfully han- and so on), this experiment t&es approximately 1 minute 

dled by the algorithm: the distributed learning behaviors and 45 seconds. 
are able to learn a task which requires their coordination. 

Figure 4: Genghis learning to walk. Initially, the behaviors do not know yet how they are supposed to coordinate 
(under what conditions they should become active). Since the two front leg “swing forward” behaviors are being 
activated at the same time, Genghis falls down and receives negative feedback from the touch sensor mounted on 
the front of its belly. 

Figure 5: Gradually, a more coherent “walk” emerges. In this case the global behavior converges towards a tripod 
gait: two groups of three legs are being swung forward alternately. 
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The reason why this is so much faster is that in this 
case, behaviors learn and converge more or less simul- 
taneously (in the non-intelligent search case all of the 
behaviors have to “wait” for leg 4 and 5 to go through 
the whole condition vector before finding correlated con- 
ditions). The preconditions that are learned are that a 
swing-forward behavior is only allowed to become active 
when the neighboring legs (e.g. leg3 and leg0 in the case 
of legl) are down. Actually, we noticed that not all of the 
behaviors learn that both of the neighboring legs have to 
be down. If for example leg0 and leg4 learned not to be 
active at the same time as leg2, then leg2 doesn’t have 
to learn how to avoid negative feedback, because its two 
neighbors are taking care of the coordination problem. 

In a second experiment, which has been demonstrated 
in simulation (it is therefore difficult to compare the re- 
sulting convergence times), six swing-backward behaviors 
were added. The robot now also had to learn that only 
certain behaviors are relevant for receiving positive feed- 
back (in the first experiment, positive feedback didn’t 
play much of a role, because every behavior was corre- 
lated to positive feedback under all conditions). More 
specifically, the robot had to learn that even though the 
swing-leg-backward behaviors do not cause negative feed- 
back to be received (when coordinated), they should never 
become active because they are not correlated to positive 
feedback. In our simulation, the “non-relevant” swing- 
backward behaviors slowly die out, because they are not 
correlated to positive feedback. Their probability of be- 
coming active gradually goes down, so that they have less 
opportunities to find out what the conditions are under 
which they can minimize negative feedback. Most of them 
“die out” before they are able to find the optimal list of 
preconditions so as to avoid negative feedback. 

The gait that emerges in the experiments is the ttipod 
gait, in which alternatively 2 sets of 3 legs are simultr+ 
neously swung forward. As reported by Wilson (Wilson, 
1966) and confirmed in simulations by Beer (Beer, 1989), 
the gait that emerges in a distributed g-legged walking 
creature is an emergent property of the time it takes to 
push a leg backwards during the “stance phase”. One of 
the experiments we are working on right now is to try to 
obtain different gaits as a result of varying the speed of the 
stance phase and by disconnecting one of the legs at run 
time. The circular monitoring scheme should take care 
that the behaviors can adapt to this new situation and 
modify their precondition lists accordingly. Another ex- 
periment we are currently working on is to make Genghis 
learn to walk backward, by adding a switch which inverts 
the movement feedback. 

for one or zero conditions at the time. As a consequence 
our algorithm is less computationally complex. Drescher’s 
algorithm would not be usable in real time. A second im- 
portant difference is that the algorithms are concerned 
with different learning tasks. In Drescher’s case the task 
is to discover the regularities of the world when taking 
actions (a condition-action-effect kind of representation 
of the world is built up), while in the work presented here 
the only things learned are the conditions which optimize 
positive feedback and minimize negative feedback. Our 
system evolves towards a task-dependent (goal-oriented) 
solution, while in Drescher’s case, generally useful knowl- 
edge is built up. 

There is further also some relation to Classifier Sys- 
tems and Genetic Algorithms (Holland et al., 1986) (for 
an application to control problems cfr. (Greffenstette, 
1989)). The main difference is that our learning technique 
is basically constructivist, while theirs is selectionist. In 
our algorithm the right representations are built up (in 
an incremental way) instead of being selected. An advan- 
tage is that our algorithm is faster because it does not 
perform a “blind”, unstructured search. It further also 
uses memory more efficiently because there is no duplica- 
tion of information (all the information about one action 
is grouped in one behavior) and because we only moni- 
tor/explore a certain condition when there is a need for 
it (the behavior is not reliable yet). 

Finally, the problem studied here is related to a class 
of algorithms called Reinforcement Learning Algorithms 
(Sutton, 1984)(Sutton, 1988)(Sutton, 1990)(Kaelbling, - 
199O)(also related are (Narendra & Thathachar, 1989) 
and (Berry & Fristedt, 1985)). The main differences are 
that (i) the algorithm discussed here is distributed and 
parallel: several actions an be taken at once, and asyn- 
chronously (this is even crucial to learn the tripod gait, for 
example), (ii) this algorithm is action- oriented, whereas’ 
reinforcement learning algorithms are state-oriented (util- 
ity functions are associated with states, while here rel- 
evance and reliability are associated with actions) and 
(iii) here feedback is binary and dual (positive and nega- 
tive), whereas in reinforcement learning the utility func- 
tion is real valued (both have advantages and disadvan- 
tages: the former’s advantage is that positive and nega- 
tive goals/feedback are treated separately, while the lat- 
ter’s advantages is that there is a more gradual evalua- 
tion). 

Conclusion and Future Work 

We have developed a learning algorithm which allows a 

Related Learning Work 
behavior-based robot to learn when its behaviors should 
become active using positive and negative feedback. We 
tested the algorithm by successfully teaching a g-legged 

This work is related to Drescher’s PhD thesis on “trans- robot to walk forward. In future work we plan to test the 
lating Piaget into LISP” (Drescher, 1989). The main dif- generality of the algorithm by doing more experiments 
ferences are: that our behaviors (corresponding to his with the same and different robots for different tasks and 
“schemas”) do not maintain statistics for all of the per- by studying the properties and limitations of the algo- 
ceptual conditions in the environment, but instead only rithm with a mathematical model. 
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We further plan some extensions to the algorithm, the 
first one being the addition of a mechanism to deal with 
delayed feedback (or learning action sequences). Three 
possible solutions to this problem will be investigated: (i) 
the usage of some Bucket Brigade Algorithm or Temporal 
Difference method (Sutton, 1988) (Holland et al., 1986), 
(ii) the extension of the perceptual condition vector with 
conditions representing the past actions taken and (iii) 
composing actions into macro-actions (so that feedback 
is still immediate for such an action sequence). 

Brooks R.A. (1990) Elephants don’t play chess. In: P. 
Maes (ed.) Designing Autonomous Agents, Bradford- 
MIT Press, in press. Also: special issue of Journal of 
Robotics and Autonomous Systems, Spring ‘90, North- 
Holland. 
Donner M.D. (1987) Real-time control of walking. Pro- 
gress in Computer Science series, Vol. 7, Birkhauser, 
Boston. 
Drescher G.L. (1989) Made-Up Minds: A Constructivist 
Approach to Artificial Intelligence, PhD Thesis, Depart- 
ment of EECS, MIT. 

Acknowledgements 
Greffenstette J.J. (1989) I ncremental learning of control 
strategies with genetic algorithms. Proceedings of the - 
Sixth International Workshop on Machine Learning, Mor- 
gan Kauftnann. 

Grinell Moore did most of the mechanical design and fabrica- 
tion of Genghis. Cohn Angle did much of the processor design 

Holland J.H., Holyoak K.J. Nisbett R.E. and Thagard 

and most of the electrical fabrication. Olaf Bleck built the 
P.R. (1936) Induction: Processes of inference, learning 

sensors providing positive and negative feedback and replaced 
and discovery. MIT-Press, Cambridge, MA. 

the broken servos every time our buggy programs “tortured” Kaelbling L. (1990 Learning in embedded systems, PhD 

the robot. Leslie Kaelbling, Maja Mataric and Paul Viola 
thesis, Stanford c, omputer Science Department, forth- 

provided useful comments on an earlier draft of this paper. coming. 

Richard Lathrop and David Clemens helped with the statis- Maes P. (1990) Situated agents can have goals. In: P. 
tics. Maes (ed.) Designing Autonomous Agents, Bradford- 

Supported by Siemens with additional support from the MIT Press, in press. Also: special issue of Journal of 
University Research Initiative under Office of Naval Research Robotics and Autonomous Systems, Spring ‘90, North- 
contract N00014-86-K-0685, and the Defense Advanced Re- Holland. 
search Projects Agency under Office of Naval Research con- 
tract N00014-85-K-0124. The first author is a research as- 

Narendra K, and Thathachar M.A.L. (1989) Learning Au- 
tomata, an Introduction. Prentice Hall, New Jersey. 

sociate of the Belgian National Science Foundation. She cur- 
rently holds a position as visiting professor at the M.I.T. Ar- 

Payton D.W. (1986) A n architecture for reflexive autono- 

tificial Intelligence Laboratory. 
mous vehicle control. IEEE Robotics and Automation 
Conference ‘86, San Francisco. 
Rosenschein S.J. and Kaelbling L. (1986) The synthesis 

Bibliography 
of digital machines with provable epistemic properties, 
in Joseph Halpern, ed, Proceedings of the Conference 
on Theoretical Aspects of Reasoning About Knowledge, 

Anderson T.L. and Donath M. (1988) A computation- Montereyv CA’ 
al structure for enforcing reactive behavior in a mobile Schlimmer J.C. (1986) Tracking Concept Drift, Proceed- 
robot. In: Mobile Robots III, Proc. of the SPIE confer- ings of the Sixth National Conference on Artificial Intel- 
ence, Vol. 1007, Cambridge, MA. ligence ‘86. 

Angle C.M. (1989) Genghis, a six-legged autonomous walk- Sutton R. (1984) Temporal credit assignment in rein- 
ing robot. Bachelors thesis, Department of EECS, MIT. forcement learning. Doctoral dissertation, Department 

of Computer and Information Science, University of Mas- Arkin R. (1987) Motor schema based navigation for a sachusetts 
mobile robot: An approach to programming by behavior. 

Amherst . 

IEEE Conference on Robotics and Automation ‘87. Sutton R.‘(I988) L earning to predict by the methods of 

Beer R.D. (1989) Intelligence as Adaptive Behavior: An Temporal Differences. Machine Learning Journal, Vol. 3, g 44 
Experiment in Computational Neuroethology. Techni- - * 
cal Report 89-118, Center for Automation and Intelligent Sutton R. (1990) Integrated architectures for learning, 
Systems Research, Case Western Reserve University. planning and reacting based on approximating dynamic . 
Berry D.A. and Fristedt B. (1985) Bandit problems: Se- programming’ Proceedings of the Seventh International 
quential allocation of experiments. Chapman and Hall, Conference on Machine Learning. 
London. Wilson D.M. (1966) Insect walking. Annual Review of 

Brooks R.A. (1986) A robust layered control system for a Entomology, 11: 103-121. 

mobile robot. IEEE Journal of Robotics and Automation. Yamaushi B. (1990) Independent Agents: A Behavior- 
Volume 2, Number 1. Based Architecture for Autonomous Robots. Proceedings 
Brooks R.A. (1989) A robot that walks: Emergent be- of the Fifth Annual SUNY Buffalo Graduate Conference 

havior from a carefully evolved network. Neural Compu- on Computer Science ‘90, Buffalo, NY. 
tation, l(2). Zhang, Y. (1989) Transputer-based Behavioral Module 

Brooks R.A. (1989b) The behavior Language; User’s - for Multi-Sensory Robot Control. 1st International Con- 

Guide. Implementatron Note. AI-laboratory, MIT. ference in Artificial Intelligence and Communication Pro- 
cess Architecture ‘89, London, UK. 

802 MACHINE LEARNING 


