
Knowledge Level and Inductive Uses of Chunking (EBL) 

Paul S. Rosenbloom 
Information Sciences Institute 

University of Southern California 
4676 Admiralty Way 

Marina de1 Rey, CA 90292 
rosenbloom@isi.edu 

Abstract 
When explanation-based learning (EBL) is used for 
knowledge level learning (KLL), training examples 
are essential, and EBL is not simply reducible to 
partial evaluation. A key enabling factor in this 
behavior is the use of domain theories in which not 
every element is believed a priori. When used with 
such domain theories EBL provides a basis for rote 
learning (deductive KLL) and induction from 
multiple examples (nondeductive KLL). This article 
lays the groundwork for using EBL in KLL, by 
describing how EBL can lead to increased belief, and 
describes new results from using Soar’s chunking 
mechanism - a variation on EBL - as the basis for 
a task-independent rote learning capability and a 
version-space-based inductive capability. This latter 
provides a compelling demonstration of nondeductive 
KLL in Soar, and provides the basis for an 
integration of conventional EBL with induction. 
However, it also reveals how one of Soar’s key 
assumptions - the non-penetrable memory 
assumption - makes this more complicated than it 
would otherwise be. This complexity may turn out 
to be appropriate, or it may point to where 
modifications of Soar are needed. 

Introduction’ 
Recent analytical papers on explanation-based 

learning (EBL) (DeJong & Mooney, 1986; Mitchell, 
Keller, & Kedar-Cabelli, 1986) comment on how 
training examples are not logically necessary for 
EBL (Prieditis, 1988; van Harmelen & Bundy, 
1988). Their point is that a training example may 
serve a useful search control function in EBL - 
guiding the learner to regions of performance which 
it would be useful to operationalize - but that the 
resulting operationalized rule is just a specialization, 
in the general case, of what a partial evaluation 

1 This research was sponsored by the National Aeronautics and 
Space Administration under cooperative agreement number NCC 
Z-538, and by the Defense Advanced Research Projects Agency 
(DOD) under contract number NOOO39-86C-0033 (via subcontract 
from the Knowledge Systems Laboratory, Stanford University). 
We would like to thank Yoram Reich, Haym Hirsh, Craig Miller, 
Peter Pirolli, and John Laird for their helpful comments. 

Jans Aasman 
Traffic Research Centre 

Rij ksuniversiteit Groningen 
Rijksstraatweg 76, 

9752 AH Haren (Gn), The Netherlands 
aas%hgrrug5.bitnet@cunyvm.cuny.edu 

(PE) mechanism could achieve without the training 
example. This is an important point which reveals 
a previously submerged connection between learning 
and program transformation. However, it is flawed 
by its neglect of the use of EBL in knowledge level 
learning (KLL) (Flann & Dietterich, 1989; 
Rosenbloom, Laird, & Newell, 1987); that is, for the 
acquisition of knowledge not implied by what is 
already known (Dietterich, 1986). In such 
situations, the combination of the training example 
and goal concept - an instance - plays an essential 
role; one that is quite comparable to the role of 
instances in classic inductive concept learning 
systems. 

The first task of this article is to lay necessary 
groundwork for the use of EBL in KLL. The key 
idea is to explain - actually, to rationalize - 
instances via a low-belief domain theory, and then 
to use EBL to acquire a high-belief rule from the 
rationalization. Unlike in PE, the instances play a 
crucial role here in determining what is rationalized, 
and thus what becomes believed. We then build on 
this foundation in the context of Soar (Laird, 
Newell, & Rosenbloom, 1987; Rosenbloom et al., 
1990) - whose learning mechanism, chunking, is a 
variation on EBL (Rosenbloom & Laird, 1986) in 
which new rules are acquired from a dependency 
analysis of the traces of rules that fire during 
subgoal-based problem solving - to take several 
steps towards the realization of the 
integrated-learning hypothesis (Rosenbloom, 1988). 
This hypothesis states that “Rote learning, 
empirical generalization, and explanation-based 
learning arise as variations in the knowledge- 
reconstruction process”, where ((knowledge- 
reconstruction” should be read as “rationalization”. 
Traditional explanation-based learning differs from 
rote memorization and induction in that the former 
uses only high-belief rationalizations while the latter 
two necessitate aspects that are initially low in 
belief. Rote memorization differs from induction in 
that the latter utilizes additional knowledge to 
affect rationalization. 

The subsequent sections introduce a new task- 
independent, rote-memorization capability in Soar; 

ROSENBLOOMANDAASMAN 82 1 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



extend this to induction from multiple examples, 
providing a compelling example of nondeductive 
knowledge level learning (NKLL) (Dietterich, 1986) 
in Soar, and introducing a complication caused by 
Soar’s inability to directly examine its own rules; 
cover the third leg of the integrated-learning 
hypothesis, explanation-based learning, and its use 
in induction; and conclude. 

EBL and KLL 
EBL can be applied over many types of domain 

theories - the only requirement being the provision 
by the domain theory of a way to generate a 
(possibly generalized) dependency structure for the 
instance that relates the training example to the 
goal concept. In a classical EBL domain theory, all 
of the elements - e.g., facts and rules - are 
ascribed a uniform high level of belief. In such a 
domain theory, EBL performs symbol level learning 
by explicitly storing knowledge that is already 
implicit in this domain theory. However, it does not 
alter levels of belief - they are all already as high 
as they can get. For knowledge level learning, the 
domain theory needs to include low-belief elements. 
With such a theory, EBL can lead to knowledge 
level learning by increasing the level of belief in 
selected elements of the theory. 

Consider the example of a system with a domain 
theory that allows it to abductively generate 
rationalizations - that is, plausible explanations - 
for what it sees (or hears). One of the key ways in 
which a rationalization differs from a simple 
deductive proof - as used in EBG (Mitchell, Keller, 
& Kedar-Cabelli, 1986), for example - is that the 
facts and rules utilized in a rationalization need not 
be completely believed in order to be used. It is in 
fact essential to the rationalization process that the 
system be able to derive from its domain theory not 
just facts that are known to be true, but also ones 
which are not yet believed. For example, suppose 
the instance consists of telling the system that 
“Fred, a dolphin, is warm blooded” - “‘Fred is a 
dolphin ” is the training example, and “Fred is 
warm blooded” is the goal concept. To rationalize 
this knowledge it might use that “dolphins are 
mammals” and ((mammals are warm blooded”, even 
if its a priori belief is that dolphins are fish rather 
than mammals. This explanation could have been 
created in the absence of the instance, but it would 
have little a priori believability. It is the existence 
of the instance that provides grounds for increasing 
the believability of the explanation. 

When this example is extended to the EBL/PE 
situation, it becomes clear that arbitrary rules 
created by partially evaluating this domain theory 
would have low believability, while comparable rules 
created by EBL for specific instances could have 
much higher believability. The instances allow EBL 
to increase the scope of what is believed, thus 
enabling knowledge level learning. In the extreme it 

is possible to start with a theory consisting of a 
generator able to produce data structures 
representing all possible pieces of knowledge, all 
with zero belief. Such a theory has all possible 
knowledge implicit in it, but none of it initially 
believed. EBL, in conjunction with appropriate 
instances, can then be used selectively to learn 
anything, by increasing the level of belief in the 
appropriate, possibly implicit, knowledge structures. 

One way to view this process is as explicit belief 
propagation, where there are belief-propagation 
rules that are used to compute a level of belief for 
an explanation - and thus for the rules learned via 
EBL from the explanation - as a function of the 
believability of the individual domain theory 
elements and the instance. An alternative view of 
this process, and the one that guides the research 
reported here, is that the instance acts as a filter, 
letting through only those explanations which 
should be believed. Learning then only occurs for 
these believed explanations. 

To support this type of processing, plausible 
domain theories - that is, theories in which only 
plausible explanations can be generated for 
conclusions - are required. Such a theory can 
potentially explain things that aren’t true - 
necessitating the use of instances as filters - but 
what is true is explained in a plausible manner. As 
long as a domain theory meets this condition, the a 
priori believability of the individual elements of the 
theory can be zero without affecting the 
believability of what is learned. At the extreme 
end, the domain theory could contain elements 
which are not representational in the domain, such 
as the letter “d” - or which are representational 
but do not have belief values, such as “‘dolphin” - 
but which can be combined syntactically to generate 
elements which do have belief values. 

Given EBL and plausible low-belief domain 
theories, the one missing component is what makes 
the newly learned rule believed. A variety of 
approaches are possible, including ones that 
augment the EBL mechanism to generate explicit 
belief values, and ones that partition learned rules - 
which automatically receive high belief - from 
domain theory rules. In Soar a variation on this 
latter approach is used. The domain theory 
corresponds to the problem space used in a subgoal 
(Rosenbloom & Laird, 1986) - in our case, this 
might be a generation problem space, where all 
possible structures are generatable, but none are 
believed. However, the learned rule is always 
created for the problem space in the parent goal; 
perhaps a fact problem space, in which all 
retrievable structures are believed. If restrictions 
are then placed on which problem spaces are utilized 
at any point in time, it is possible to know what 
level of belief - 0 or 1 - to assign to the retrieved 
knowledge. This point is related to the one recently 
made in (Flann & Dietterich, 1989). They focus on 
how EBL can perform KLL if an explanation that is 

822 MACHINE LEARNING 



generated for one concept is used to define a second 
concept that is a specialization of the first one. In 
our work, EBL performs KLL by transferring 
(possibly implicit) structures from an unbelieved 
domain theory to a believed domain theory that 
contains a subset of the structures in the original 
theory. Despite the differences, what both have in 
common - in fact, what every use of EBL for KLL 
must have in common - is that the learned 
knowledge is used differently than would be the 
domain theory from which it is learned. It can be 
used at a different belief level (as here), for a 
different goal concept (Flann & Dietterich, 1989), or 
even as evidence that a particular episode occurred 
(in which the rule was learned) (Rosenbloom, 
Newell, & Laird, 1990). 

Rote Memorization 
In previous work this general approach to 

knowledge level learning has been employed to 
perform several simple rote memorization tasks - 
recognition, recall, cued recall, and paired-associate 
recall - for hierarchical letter strings and for 
objects that are described by attributes with values 
(Rosenbloom, Laird, & Newell, 1987; Rosenbloom, 
Laird, & Newell, 1988; Rosenbloom, Newell, & 
Laird, 1990). This work also provided solutions for 
two additional problems that arise when rules are to 
be learned that recall new structure: (1) the data 
chunking problem - how to enable the retrieval of 
new information without its already being present - 
and (2) the selective retrieval problem - how to 
avoid retrieving everything ever learned. The data 
chunking problem is solved by reconstructing new 
knowledge from what is already known - that is, 
the domain theory - rather than directly 
rationalizing the input structures representing the 
new knowledge. Since this reconstruction process is 
not dependent on the input structures, tests of the 
input do not appear in the conditions of the learned 
rules. The selective retrieval problem is solved by 
selectively acquiring retrieval cues as conditions of 
learned rules. 

Recently, this earlier work has been extended 
with the development of a general, task-independent 
rote-memorization operator. This is a normal Soar 
operator that uses problem solving in a subgoal to 
implement solutions to the data chunking and 
selective retrieval problems. The operator takes two 
arbitrary graphs of Soar working memory elements 
as inputs - the first is the training example, and 
the second is the goal concept. The result of 
memorizing the pair is the acquisition of a rule that 
tests for the existence of the first graph (the cue 
graph) and if the test succeeds, retrieves the second 
graph (the recalled graph) into working memory. 
To do this, the memorization operator reconstructs 
the recalled graph by assembling primitive domain- 
theory elements into a copy of the graph (solving 
the data chunking problem), and then makes this 

copy dependent on the structure of the cue graph 
(solving the selective retrieval problem), Figure 1 
shows such a chunk, schematized as a pair of graph 
structures. The cue and recalled graphs are 
attached to operator <Ol > in the rule’s conditions 
and actions, respectively. 

Figure 1: Chunk learned from memorizing 
a pair of graph structures. 

Multi-Example Induction 
When the contents of the initial domain theory 

are restricted to only elements that are completely 
believed, it is not possible for the domain theory 
itself to perform inductive leaps. If a system 
containing such a domain theory is to perform 
inductive generalization, it must be done outside the 
domain theory - in the EBL mechanism, for 
example. The most common approach is to 
augment EBL’s standard explanation processing 
with some form of inductive postprocessing of either 
the entire explanation, or just its operational 
components (Flann & Dietterich, 1989; Hirsh, 1989; 
Sarrett & Pazzani, 1989). 

If, on the other hand, the contents of the initial 
domain theory can include unbelieved elements, the 
option opens up of doing induction directly in the 
domain theory, and leaving explanation processing 
unaltered. This was proposed in (Rosenbloom, 
1988) as part of the integrated-learning hypothesis, 
and is the approach taken here.’ The domain theory 
includes knowledge about how to reconstruct 
presented objects (a stripped-down version of the 
task-independent memorization operator), 
generalization hierarchies (the basis of the concept 
language), rules which perform inductive leaps, and 
rules learned from prior instances. When a new 
instance is perceived, this domain theory is used to 
determine what is to be rationalized - it may be a 
generalization of the instance, rather than the 
instance itself - as well as how it should be 
rationalized. 

ROSENBLOOMANDAASMAN 823 



One decision that must be made at this point is 
the orientation of the rule to be learned - whether 
the concept’s name should be in the actions and its 
definition in the conditions, or vice versa. In EBL 
(and chunking), the concept definition appears in 
the conditions because that is where EBL has its 
primary generalization effect, and also where the 
definition can act as a recognizer of instances of the 
concept. However, to go beyond simple concept 
recognition - to retrieval and modification of the 
concept definition as further instances are processed 
- requires a fuller declarative access to the 
definition. Such access is not available in Soar if 
the definition is stored in the conditions because 
Soar’s rule memory is non-penetrable - rules can be 
executed (forward), but can not be directly 
examined. Non-penetrability arises because the 
rules are compiled procedures that can be executed 
but not examined. In psychological terms, they 
represent automatized behavior (for example, 
(Shiffrin & Schneider, 1977)). A consequence of 
non-penetrability is that, to access the concept 
definition explicitly, it must be stored in the rule’s 
actions, where it can be retrieved by rule execution. 
Once retrieved, the concept definition can be used to 
influence what is learned for new instances, and to 
interpretively recognize instances of the concept 
(concept recognition rules, in which the definition is 
in the conditions, can be learned by chunking this 
interpretation process). As discussed later, the 
downside of this decision is that the generality of 
the concept definition is affected only by the 
decision of what to rationalize, and not by the 
rationalization process or the chunking/EBL 
mechanism. 

The domain theory that has been implemented 
within Soar utilizes a variant of the Focussing 
algorithm (Young, Plotkin, & Linz, 1977; Bundy, 
Silver, & Plummer, 1985). This is a version space 

’ algorithm that works for spaces describable by a 
conjunction of attributes, where each attribute is 
defined by a tree-structured generalization 
hierarchy. The key ideas underlying the 
implemented algorithm are that: (1) the version 
space is kept factored - bounds are maintained 
independently for each attribute (Subramanian & 
Feigenbaum, 1986); (2) only near-miss negatives 
(Winston, 1975) are processed (the zero option)3 to 
guarantee that the boundary sets will not fragment; 
and (3) once the first positive example is processed, 
the entire factored version space is explicitly 
represented, rather than just the boundary sets (at 
worst this requires space proportional to the number 
of attributes times the maximum depth of the 
generalization hierarchies). 

Suppose that the task is to learn that the 
definition of (GOOD=TRUE) is (MOBILITT=MOBILE, 

SHAPE=ANY, SIZE=ANY). The algorithm starts with the 
goal concept, (GOOD=TRUE), and a positive example, 
such as (MOBILITY=WHEELED, SHAPE=SQUARE, 

SIZE=LARGE).4 It then uses the generalization 
hierarchies in the domain theory to elaborate the 
example with all of the superclasses of its attributes’ 
values, yielding for this case (MOBILITY=CANY, MOBILE, 
WHEELED), SHAPE=(ANY, POLYGON, REGULAR, SQUARE), 
SIZE=<ANY, LARGE)). This elaborated example is then 
memorized as the initial version space, with the 
retrieval cue being the goal concept: 
(GOOD=TRUE) --> 

(MOBILITY=(ANY, MOBILE, WHEELED), 
SHAPE=<ANY, POLYGON, REGULAR, SQUARE), 
SIZE=(ANY, LARGE)) 

The memorization a operator succeeds here only 
because the initial domain theory implicitly contains 
within itself every possible version space that could 
be generated for (GOOD=TRUE), all initially unbelieved. 
The example then determines which of these version 
spaces is explicitly stored, and thus believed. 

When a succeeding positive example of this same 
goal concept is encountered, processing again begins 
by elaborating it with its values’ superclasses. The 
current version space for the concept is then 
retrieved and compared to the elaborated example. 
All value classes in the concept version space that 
are not also in the elaborated example are then 
rejected from the version space (a form of 
incremental version space merging (Hirsh, 1989)). 
Chunking over this rejection process yields rules 
which, in the future, reject the inappropriate 
segments of the old version space. This rejection 
process is itself reconstructive so that the updated 
version space can later be retrieved without the 
presence of the positive example. 

As an example, suppose that the next example for 
this goal concept is (MOBILITY=TRACKFD, 
SHAPE=ELLIPSE, SIZE=LARGE), which when elaborated 
becomes (MOBILITY=(ANY, MOBILE, TRACKED), 
SHAPE=(ANY, CONIC, ELLIPSE), SIZE=(ANY, LARGE)). 
From this example, the following rejection rules are 
learned: 
(GOOD=TRUI~, MoBILIn=WHEIu3D) ---> 

(GOOD=TRUE, sHApE=poLYGoN) ---> (SHAPE=POLYG~N)- 
(GOOD=TRUE, SHAPE=REGULAR) ---> (SHAPE=REGULAR)- 
(GOOD=TRUE, SHAPE=SQUARE) ---> (SHAPE=SQUARE)- 

The next time the same goal concept is seen, all five 
learned rules fire, yielding the following updated 
version space: (MOBILITY=CANY, MOBILE), SHAPE=ANY, 
SIZE=(ANY, LARGE)). 

Learning from negative examples introduces an 
additional issue: because all of the knowledge 
learned from positive examples is cued off of 

3 
With a suitable training order, fat misses are 

convergence (Bundy, Silver, & Plummet, 1985). 
not needed for 

4 This example, and all later ones have been implemented in 
Soar (Version 5.0.2), and verified to run correctly. 

824 MACHINE LEARNING 



(GOOD=TRUE), it will not be retrieved automatically 
for a negative example, where (GOOD=FALSE) (the 
converse is also true). The solution to this is to 
transiently cue with both TRUE and FALSE, thus 
retrieving all of the knowledge so far learned about 
the concept, and then to proceed to process the 
example while maintaining only the correct value 
(FALSE, in this case). Then, if the example is a near- 
miss - that is, if it mismatches in at most one 
attribute - those classes of the mismatched 
attribute that match are rejected from the version 
space. If the example is a far miss, it is ignored. 

As an illustration, suppose the third example is 
the negative example (MOBILITY=STATIONARY, 
SHAPE=REcTANGLE, SIZE=LARGE). This example is 
elaborated with superclass information to become 
(MOBILIT~=<ANY, STATIONARY), SHAPE=<ANY, POLYGON, 
IRREGULAR, RECTANGLE>, SIZE=<ANY, LARGE)), and then 
the existing information about the concept 
definition is retrieved. The mismatched attribute is 
MOBILITY, and the class that matches for that 
attribute is ANY. The rule learned for rejecting this 
class is: 
(GOOD=FALSE, MOBILITY=ANY) --> (MOBILITY=ANY)- 

The resulting concept version space is 
(MOBILITY=MOBILE, SHAPE=ANY, SIZE=<A~, LARGE)). 

These examples demonstrate that Soar can be 
used not only as the basis for rote memorization 

I 
deductive Kw, but also for induction 
nondeductive KLL). Inductive augmentations of 

the EBL mechanism are not required, because the 
induction occurs directly in using the domain 
theory. As suggested by the integrated-learning 
hypothesis, rote learning and induction are 
distinguished by differences in the rationalization 
process. However, contrary to the intent of the 
hypothesis, the difference is in terms of what is 
rationalized rather than how it is rationalized 
(forced by the decision to store the concept 
definition in actions rather than conditions). In the 
induction case, rather than directly rationalizing the 
concept name in terms of the training example, it is 
rationalized in terms of the version space (or 
changes to it). This choice of what to rationalize is 
essentially a choice of what to learn. Here, this 
choice was based on the instance, the generalization 
hierarchies, the previous version space, and 
knowledge about how to induce. Bringing other 
knowledge to bear should allow additional useful 
variations on this choice. 

Explanation-Based Learning 
Using the chunking/EBL mechanism to perform 

explanation-based learning - that is, the standard 
form of symbol level learning - supports the third, 
and final leg of the integrated learning hypothesis. 
However, this needs no explicit demonstration here, 
as it is the foundational result of EBL. Instead, 
what is of interest here is the extent to which, in 

practice, this use of EBL can be integrated with the 
induction process described in the previous section. 
In this section we examine three successively weaker 
versions of this question. The first version is 
whether the direct use of EBL in induction, as 
described in the previous section, provides the 
requisite form of symbol level learning - that is, is 
EBL itself performing significant acts of 
“justifiable” generalization during induction? The 
answer, upon inspection, is “no”. EBL is storing 
the results of inductive processing, but it is not itself 
contributing to their level of generalization. This is 
forced by the decision to store the concept definition 
in rule actions. 

The second version is whether the standard use of 
EBL to perform symbol level learning - that is, 
with a classical believed domain theory - can help 
the inductive process described in the previous 
section (which is independently using EBL). The 
answer to this version of the question is once again 
I’ no ‘I . To see this, consider a domain theory with 
the following two believed rules. 
(MOBILITY=WHEELED) --B @AST=TRUE) 
(FAST=TRW swpE=co~~c) ---a (GOOD=TRIJE) 

If these rules are used to relate the training example 
to the goal concept, the following rule is learned. 

This is exactly what EBL should learn. However, it 
is difficult to use in the induction process described 
in the previous section because the generalized 
example is in the conditions of the rule - thus the 
rule retrieves the goal concept when a matched 
training example is present, rather than retrieving 
the generalized example when the goal concept is 
present. This failure is disturbing because this is 
the type of gain achieved by other hybrid 
approaches, such as (Flann & Dietterich, 1989; 
Hirsh, 1989; Sarrett & Pazzani, 1989). In these 
other approaches, this problem is solved by enabling 
the induction process to directly access the 
explanation, its operational fringe, or the resulting 
rule. In the present approach, the rule can be fired, 
but neither it nor any part of the explanation can 
be directly examined. 

The third version is whether some form of 
explanation-based learning can lead to 
generalizations that are useful in the induction 
process described in the previous section. The 
answer here is finally ‘(yes”. However, it requires 
augmenting the domain theory itself with the ability 
to interpret rules and to generate and process 
explanations. These rules are not Soar’s native 
rules, but declarative structures of limited 
expressibility that are stored in the actions of Soar’s 
rules. These rules are retrieved as needed to 
support a backward-chaining process that starts 
with the goal concept and ends when it grounds out 
in attribute-value pairs contained in the elaborated 
example (the operational predicates). The 

ROSENBLOOMAND AASMAN 825 



operational fringe of the explanation derived from 
this process is a generalization of the example. 
Based on the approach in (Hirsh, 1989), this 
generalized example is used in induction by 
converting it into an explicit, factored version space 
- by assigning values to unmentioned attributes 
({ANY} for positive examples, and the values in the 
concept version space for negative examples) and 
then elaborating it with superclasses - and then 
merging it with the current concept version space. 

As illustration, consider the positive example 
(MOBILITY=WHFELED, SHAPE=CIRCLE, SIZE=SMALL), 
which becomes upon elaboration (MOBILITY=WJY, 
MOBILE, WHEELED>, SHAPE=<ANY, CONIC, CIRCLE), 
SIZE=UNY, SMALL)). If the domain theory consists of 
the two rules above, backward chaining yields an 
operational fringe of (MOBILITY=WHEELED, 
SHAPE=CONIC), which is more general than the 
original example because it ignores SIZE, and 
generalizes SHApE from CIRCLE to CONIC. When this 
generalized example is extended to cover the 
unmentioned attributes, and elaborated, it becomes 
(MOBILITY=<ANY, MOBILE, WHEELED), SHAPE=<ANY, 
CONIC), SIZE=ANY). When this description is then 
merged with the concept version space, the result is 
(MOBILITY=MOBILE, SHAPE=ANY, SIZE=ANY). The rule 
learned from this processing is: 
(GOOD=TRUE) ---, (SIZE=LARGE)- 

This same general approach can be used to 
incorporate other forms of knowledge into the 
induction process. So far, we have partial 
implementations of the use of irrelevance knowledge 
(Subramanian & Genesereth, 1987) and 
determinations (Davies & Russell, 1987; Mahadevan, 
1989; Russell, 1988; Widmer, 1989) in the induction 
process. 

When taken together, the answers to the three 
versions of the question reveal that explanations can 
be effectively combined with induction in this 
approach, but that this is achieved only by building 
additional declarative rule interpretation and EBL 
mechanisms into the domain theory. The native 
mechanisms are not usable because there is no way 
to access the rules (or explanations) they create as 
declarative structures, as required by the induction 
process. 

The question this raises is whether this is 
evidence that the Soar architecture needs to be 
changed or is evidence that some of our 
preconceived notions about induction, and its 
interaction with chunking/EBL, need to be changed. 
While the former is a distinct possibility, the utility 
of architectures as theories of intelligence stems in 
large part from their ability to predict unexpected 
but important phenomena. If the architecture is 
changed whenever one of its consequences violates 
preconceived notions, this benefit is lost. Also 
potentially lost are the positive consequences of the 
way the changed component currently works. The 
component is usually the way it is for good reason, 

which in this case is the ability to model basic 
aspects of human memory. Thus it is useful, before 
jumping in and changing the architecture, to first 
consider the possibility that Soar is revealing 
something important here. When this is done, at 
least one intriguing speculation arises - that 
chunking and EBL, though quite similar in 
mechanism (both compile dependency structures), 
are really distinct capabilities. Chunking is an 
automatic architectural process (it learns for every 
result of every subgoal, and does not compete for 
cognitive resources with performance), of fixed 
capability (how it works is not affected by what the 
system knows), which compiles recognition-driven 
procedures (productions) from experience. It is an 
appropriate, and effective, generalized long-term 
caching mechanism; but it really is a low-level 
mechanism that is in some ways more analogous to 
neural-network learning algorithms than to EBL. 
However, an intelligent system also needs to be able 
to deliberately create and utilize declarative 
explanations of new phenomena. This is where 
EBL, as used here in concept learning, comes in. It 
is a deliberate cognitive process, of open capability, 
which processes and creates declarative structures 
that can be used in induction, and which can also 
yield behavior, but only indirectly, through 
interpretation. 

Conclusions 
By making a distinction between what is in the 

domain theory (either implicitly or explicitly) and 
what is believed, it is possible to distinguish the 
symbol level and knowledge level uses of EBL - 
symbol level uses make implicit knowledge explicit, 
while knowledge level uses make unbelieved 
knowledge believed. This idea has been explored 
here as the foundation for chunking(EBL)-based rote 
memorization (deductive KLL) and induction 
(nondeductive KLL) capabilities. Utilizing 
unbelieved knowledge enables induction to be 
performed in the domain theory itself, rather than 
as a post hoc process. Chunking is used in this 
induction process to store the initial version space, 
and to record modifications to it that are required 
by new instances of the concept. These capabilities 
demonstrate why EBL is not simply reducible to 
partial evaluation - the training examples are 
essential. 

When combined with the standard use of EBL for 
symbol level learning, these capabilities provide the 
three legs of support required by the integrated 
learning hypothesis. However, the support is 
weakened by the difference between rote learning 
and induction arising from differences in what is 
rationalized rather than how it is rationalized. 
Further weakening is engendered by the difficulty in 
using EBL to generalize instances for use by 
induction. This has been accomplished, but only by 
implementing an additional declarative EBL 

826 MACHINELEARNING 



mechanism in the domain theory. Both of these 
weaknesses occur because of the choice to store the 
inductive concept definition in the actions of learned 
rules (rather than in the conditions), which is itself 
forced by the non-penetrability of Soar’s rules, and 
the resulting difficulty in determining the contents 
of rule conditions. As discussed in the previous 
section, this may actually turn out to be 
appropriate, or it may reveal an aspect of Soar that 
should be altered. 

References 
Anderson, .I. R. 1986. Knowledge compilation: The 
general learning mechanism. In R. S. Michalski, 
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine 
Learning: An Artificial Intelligence Approach, 
Volume II. Los Altos, CA: Morgan Kaufmann 
Publishers, Inc. 
Bundy, A., Silver, B., & Plummer, D. 1985. An 
analytical comparison of some rule-learning 
programs. Artificial Intelligence, 27, 137-181. 

Davies, T. R., & Russell, S. J. 1987. A logical 
approach to reasoning by analogy. Proceedings of 
IJCAI-87. Milan. 
DeJong, G., & Mooney, R. J. 1986. Explanation- 
based learning: An alternative view. Machine 
Learning, 1, 145-176. 

Dietterich, T. G. 1986. Learning at the knowledge 
level. Machine Learning, 1, 287-315. 

Flann, N. S., & Dietterich, T. G. 1989. A study of 
explanation-based methods for inductive learning. 
Machine Learning, 4, 187-226. 

Hirsh, H. 1989. Combining empirical and analytical 
learning with version spaces. fioceedings of the 
Sixth International Workshop on Machine 
Learning. Cornell. 
Laird, J. E., Newell, A., & Rosenbloom, P. S. 1987. 
Soar: An architecture for general intelligence. 
Artificial Intelligence, 33, l-64. 

Mahadevan, S. 1989. Using determinations in EBL: 
A solution to the incomplete theory problem. 
fioceedings of the Sixth International Workshop 
on Machine Learning. Cornell. 
Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, 
S. T. 1986. Explanation-based generalization: A 
unifying view. Machine Learning, -1, 47-80. 

Prieditis, A. E. 1988. Environment-guided program 
transformation. G. F. DeJong (Ed.), Fkoceedings of 
the AAAI Symposium on Explanation-Based 
Learning. Stanford, CA: AAAI. 
Rosenbloom, P. S. 1988. Beyond generalization as 
search: Towards a unified framework for the 
acquisition of new knowledge. G. F. DeJong (Ed.), 
Proceedings of the AAAI Symposium on 
Explanation-Based Learning. Stanford, CA: AAAI. 

Rosenbloom, P. S., & Laird, J. E. 1986. Mapping 
explanation-based generalization onto Soar. 
Proceedings of M-86. Philadelphia. 
Rosenbloom, P. S., Laird, J. E., Newell, A., & 
McCarl, R. 1990. A preliminary analysis of the 
Soar architecture as a basis for general intelligence. 
Artificial Intelligence, . In press. 
Rosenbloom, P. S., Laird, J. E., & Newell, A. 1987. 
Knowledge level learning in Soar. Proceedings of 
M-87. Seattle. 
Rosenbloom, P. S., Laird, J. E., & Newell, A. 1988. 
The chunking of skill and knowledge. In 
B. A. G. Elsendoorn & H. Bouma (Eds.), Working 
Models of Human Perception. London: Academic 
Press. 
Rosenbloom, P. S., Newell, A., & Laird, J. E. 1990. 
Towards the knowledge level in Soar: The role of 
the architecture in the use of knowledge. In 
K. VanLehn (Ed.), Architectures for Intelligence. 
Hillsdale, NJ: Erlbaum. In press. 
Russell, S. J. 1988. Tree-structured bias. 
fioceedings of AAAI-88. St. Paul, MN. 

Sarrett, W. E. & Pazzani, M. J. 1989. One-sided 
algorithms for integrating empirical and 
explanation-based learning. Proceedings of the 
Sixth International Workshop on Machine 
Learning. Cornell. 
Shiffrin, R. M. & Schneider, W. 1977. Controlled 
and automatic human information processing: II. 
Perceptual learning, automatic attending, and a 
general theory. Psychological Review, 84, 127-190. 

Subramanian, D., & Feigenbaum, J. 1986. 
Factorization in experiment generation. 
fioceedings of AAAI-86. Philadephia. 
Subramanian, D., & Genesereth, M. R. 1987. The 
relevance of irrelevance. Proceedings of IJCAI-87. 
Milan. 
van Harmelen, F. & Bundy, A. 1988. Explanation- 
based generalization = partial evaluation. 
Arti jicial Intelligence, 36, 401-412. 

Widmer, G. 1989. A tight integration of deductive 
and inductive learning. Proceedings of the Sixth 
International Workshop on Machine Learning. 
Cornell. 
Winston, P. H. 1975. Learning structural 
descriptions from examples. In Winston, 
P. H. (Ed.), The Psychology of Computer Vision. 
New York: McGraw Hill. 
Young, R. M., Plotkin, G. D., & Linz, R. F. 1977. 
Analysis of an extended concept-learning task. 
FFoceedings of IJCAI-77. Cambridge. 

ROSENBLOOMANDAASMAN 827 


