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Abstract 
Programs such as Bacon, Abacus, Coper, Kepler and oth- 
ers are designed to find functional relationships of scientific 
significance in numerical data without relying on the deep 
domain knowledge scientists normally bring to bear in an- 
alytic work. Whether these systems actually perform as 
intended is an open question, however. To date, they have 
been supported only by anecdotal evidence-reports that 
a desirable answer has been found in one or more hand- 
selected and often artificial cases. 

In this paper, I describe a function-finding algorithm 
which differs radically from previous candidates in three 
respects. First, it concentrates rather on reliable identifi- 
cation of a few functional forms than on heuristic search 
of an infinite space of potential relations. Second, it intro- 
duces the use of distinction, significance and lack of fit- 
three general concepts of value in evaluating apparent func- 
tional relationships. Finally, and crucially, the algorithm 
has been tested prospectively on an extensive collection of 
real scientific data sets. Though I claim much less than pre- 
vious investigators about the power of my approach, these 
claims may be considered-to a degree quite unfamiliar in 
function-finding research-as conclusively proven. 

Evaluating Function-Finding Systems 
Over the past ten years, programs like Bacon [Lang- 
ley et al., 19871, Abacus [Falkenhainer, 1985; Greene, 
19881, Coper [Kokar, 19861, Kepler [Wu and Wang, 
19891 and others have been designed to attack a 
problem I call domain-independent scientific function- 
finding. Each program accepts numerical data and, 
without relying on knowledge of the domain in which 
it was collected, attempts to find the underlying func- 
tional relationship which might be proposed by a sci- 
entist examining the same data. 

Unfortunately, while a great deal of effort has been 
expended in designing function-finding systems, little 
has been done to test them. Researchers have nearly 
always relied on anecdotal evidence, reporting the suc- 
cesses of their programs on a few hand-selected cases, 
most of which have consisted of artificial data gener- 
ated to conform exactly to a functional relationship. 
Also, although performance clearly depends on the en- 

vironment in which a function-finding system is de- 
ployed, researchers have omitted specification of such 
an environment in their reporting. 

What we would really like to know about a function- 
finding program is not its record of successes on ar- 
tificial problems chosen by the programmer, but its 
likelihood of success on a new problem generated in a 
prespecified environment and involving real scientific 
data. To date, function-finding research has provided 
no information on which an estimate of this likelihood 
might be based. 

In view of this, my recent research has concentrated 
on the problem of evaluating function-finding systems 
[Schaffer, 1989a; Schaffer, 1989b], and, in the process, 
I have amassed quite a large collection of real scientific 
data for use in testing. While the five reports cited 
above mention a total of only six real data sets, I have 
collected 352. Moreover, as I will soon describe, part 
of this data was collected in a systematic fashion from 
a specified environment, making it possible to conduct 
prospective trials of function-finding algorithms. 

Contact with real data did more than provide an 
acid test for existing notions, however. It led me to a 
fundamentally novel conception of the problem of func- 
tion finding. While previous researchers have concen- 
trated mainly on constructing one of an infinite number 
of possible functional forms or, equivalently, searching 
an infinite space of formulas, I believe it is both more 
accurate and more productive to view function-finding 
as a classification problem-one of deciding reliably be- 
tween a fixed, finite set of potential relationships. 

This viewpoint is developed in [Schaffer, 1990b] and 
more fully in [Schaffer, 199Oa]. In both places, I ana- 
lyze the well-known Bacon algorithm and show that, 
while it is surprisingly successful in the face of prospec- 
tive testing, virtually all of this success is accounted 
for, not by the search heuristics on which published 
reports have concentrated, but by a mechanism for 
evaluating potential relationships of which the authors 
have said that they “hold no particular brief.” 

Clearly, however, if evaluation and not search is the 
key to successful function-finding with real data, it 
ought to be possible to improve performance by de- 
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veloping more sophisticated evaluation criteria. The 
result of my attempt to do just this is a new algorithm 
which it is my main purpose in this paper to present. 
Before I do so, though, let me take a moment to de- 
scribe the data which served as both inspiration and 
testbed for my ideas. 

Test Data 
The 352 data sets of which I have spoken all con- 
sist of real, measured scientific data. Each set in- 
volves precisely two variables for which the reporting 
scientist has hypothesized a single functional relation- 
ship. The function finding I have investigated is thus 
of the simplest possible kind. Previous researchers 
have attempted to provide methods for more complex 
function-finding problems in addition to this simple 
one. My bivariate data gives such strong evidence of 
the difficulty of even the most basic problem, however, 
that it casts serious doubt on most of these attempts. 

The 352 data sets are organized into 217 cases, each 
case containing from one to four data sets reported 
by a scientist in a single publication in support of a 
common hypothesized relationship. In testing an algo- 
rithm, I use these cases as basic units. If an algorithm 
discovers the scientist’s proposed relationship in two of 
four data sets making up a case, I credit it with half 
a “correct” answer. If it reports a different answer for 
one of the sets, I count that as a quarter of an “incor- 
rect” answer. Clearly, it is possible that the scientist 
is wrong or that the algorithm’s incorrect answer is, in 
fact, just as scientifically significant. Given the scien- 
tist’s domain-knowledge advantage, however, it seems 
reasonable to consider his or her answer as the best 
available reference standard and to assume that other 
answers identify spurious patterns-false leads of no 
particular scientific significance. Note, finally, that an 
algorithm may report that it is unable to find a rela- 
tionship for a given data set. In this case, I count it as 
neither correct nor incorrect. 

The first 57 of my 217 cases were collected from a 
wide variety of sources: dissertations, journals, hand- 
books, undergraduate laboratory reports, textbooks 
and others. Based on my experience with these, I be- 
gan to develop function-finding ideas and to design 
algorithms accordingly. To test these, I initiated a 
project of collecting data sets systematically from is- 
sues of the journal PhysicaZ Review published in the 
early years of this century. In this case, I made ev- 
ery attempt to collect aZZ tabulated bivariate data sets 
for which scientists had hypothesized functional rela- 
tionships and hence to get a representative sampling of 
function-finding problems in a real scientific environ- 
ment. 

These systematically collected data sets had a dev- 
astating effect both on my programs and on my basic 
conception of function finding. By the time I had col- 
lected 60 cases from the Physical Review, however, I 
had made the rather radical conceptual shift described 

above and designed a new algorithm to reflect it. I 
then set out to conduct a prospective trial of my ideas 
by collecting an additional 100 cases from the Physical 
Review for use in testing. In what follows, I will refer 
to the 117 cases collected in my development phase as 
preliminary and the remainder as test cases. Note that 
the tested algorithms and algorithm parameters were 
fixed in every detail before any of the test cases was 
collected. 

The E* Algorithm 
As I have indicated, the algorithm E* which I am about 
to present concentrates on identifying a fixed set of re- 
lationships reliably rather than on searching an infinite 
space of possibilities. Three main observations influ- 
enced my decision to proceed in this manner. First, 
experience with the preliminary Physical Review cases 
showed that scientists reporting in the journal pro- 
posed functional relationships of a few simple forms in 
as many as 70 percent of the cases I collected. Second, 
in testing a reimplementation of Bacon’s core bivariate 
function-finding algorithm on these preliminary cases, 
I found that, although the algorithm is equipped to 
consider an infinite number of complex relationships, 
its actual successes were limited to a handful of simple 
ones. Finally, preliminary testing of this and other al- 
gorithms suggested strongly that function finding was 
as much a matter of avoiding incorrect hypotheses as 
of proposing correct ones. As data presented below 
will show, the Bacon algorithm gets nearly one wrong 
answer for every right one; in a sense, it leaves a major 
part of the work of function finding to the user, who 
must decide when to trust the program. Practically 
speaking, follow-up of false leads is a waste of scientific 
resources and spurious answers thus constitute a cost 
of function finding which it is essential to control. This 
point has not been considered sufficiently, I think, by 
researchers who have conducted tests on selected and 
often artificial cases and who thus, for the most part, 
have only successes to report. 

The E* algorithm, then, considers only eight pos- 
sible answers: the linear relationship y = kr~ + 
IQ, six power proportionalities, y = bxn for n E 
{ -2, -1, -.5, .5,1,2), and the null answer “No rela- 
tionship identified.” In deciding between these, E* 
employs a fairly complicated scheme developed on the 
basis of my experience with the preliminary cases. This 
scheme is quite definitely the result of trial and error, 
rather than an implementation of a preconceived the- 
ory of data analysis. Still, it may be useful to construe 
the approach as an application of three basic abstract 
notions. 

By the first, significance, I mean the strength of a 
functional pattern measured in terms of how unlikely 
it is to have arisen by chance in purely random data. 
Note that, though I am borrowing both the concept 
and the term from statistics, I am not speaking of con- 
ducting strict tests of statistical significance; I only 
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propose to make use of the statistical measures under- 
lying such tests, inasmuch as these provide evidence 
regarding how much we ought to trust an apparent 
pattern. 

For the second notion, I will use the new term dis- 
tinction, since I do not believe the idea has heretofore 
received attention. In general, in conducting function- 
finding work, it is natural to consider measures of fit 
which indicate how well a functional relationship ap- 
proximates the data in hand. The statistician’s R2 is 
a simple example. By distinction, I mean any indica 
tion provided by such a measure which suggests that a 
candidate function stands apart from other functional 
forms with which it might easily be confused. If we 
want to ensure the reliability of a function-finding sys- 
tem, it seems reasonable that we should attempt to 
keep the system from reporting relationships when con- 
fusion is likely and hence that distinction ought to be 
relevant to evaluation. 

The third basic concept is what statisticians refer to 
as systematic lack offit and it is illustrated by the data 
set plotted in the lefthand graph of Figure 1. This 
is real scientific data taken from one of my Physical 
Review cases and, apparently, is an example of a strong 
linear relationship. Actual measured data is always 
somewhat in error, however, so, even if the underlying 
relationship is in fact linear, the best-fitting formula of 
the form lcrz + Z& will not predict y values perfectly. 
We must always expect a discrepancy or residual equal 
to y - (Elx + ZQ). We should not, however, find a 
relationship between the value of x and the value of the 
residual. If such a relationship were to exist, we could 
use it to add a correction to the original formula and do 
a better job of predicting y. Moreover, this correction 
would have to be non-linear, since we have already 
assumed that the linear coefficients are optimal. The 
implication of a functional relationship between x and 
the residuals would thus be a non-linear relationship 
between x and y. 

res 

plex. In general, we might expect that systematic lack 
of fit is grounds for suspecting that a relationship is 
not the one proposed by a scientist and hence that it 
will be useful as an evaluation criterion. 

Evaluating Power Proport ionalit ies 
Having introduced these general ideas, let me now de- 
scribe how they form the basis of E*‘s specific crite- 
ria for evaluating power proportionalities. A statisti- 
cian might measure the fit of a relationship of the form 
Y = Icxn by regressing y on xn (without including an 
intercept) and checking the associated R2 value.’ In 
E*, the basic measure of fit is a monotonic transfor- 
mation of this statistic:2 

1 
MF=- 

I- fitc’ 

E* thus begins by measuring MF for each of six power 
proportionalities noted above. The relationship with 
the greatest degree of fit-the highest MF value-is 
selected for further evaluation. As a measure of the 
distinction of this relationship, which I will call the 
candidate, E* uses the ratio of its MF value to the 
next highest value among the original six. This ra- 
tio, D, will be two if the best relationship leaves half 
as much unexplained variation in y as the next-best 
relationship, ten if it cuts this next-best unexplained 
variation by a factor of ten and so on. In general, 
the higher the value of D, the more the candidate is 
distinguished from other low-order power proportion- 
alities and the more confident E* may be in reporting 
it. 

Significance is applied by E* somewhat indirectly. 
Since the algorithm is considering the relation y = ZCX*, 
a statistician would likely consider a test of the statis- 
tical significance of the coefficient Ic. That is, he or she 
might attempt to show that we are unlikely to have 
collected data which so strongly supports a non-zero 
value of Ic, if k: is, in fact, zero. 

E* reverses the application. It considers a more com- 
plicated relationship, y = ?QX* + Ha, and uses standard 
regression techniques to calculate an optimal value for 
?Q. Then, however, it attempts to show that it would 
not be unlikely to collect data that supports a non- 
zero value for ?Q as strongly as the actual observed 
data even if ZC~ is, in fact, zero. If this is true, it sug- 
gests that any apparent benefit of adding the intercept 

Figure 1: Data to Illustrate Lack of Fit 

If we plot the residuals against x for the data of the 
example, as in the righthand graph of Figure 1, how- 
ever, we do find an extremely clear pattern. In this 
case, we say that the proposed linear relationship suf- 
fers from systematic lack of fit. The graph provides 
strong evidence that the relationship between x and y 
in the example is not linear and, in fact, the scientist’s 
hypothesized relationship in this case is far more com- 

‘For those wi thout statistical training, [Schaffer, 199Oa] 
provides the background necessary to understand the ap- 
proach sketched here. 

2The advantage of this measure is simply that it is easier 
to interpret when R2 is close to unity, as is very often the 
case with the scientific data I have examined. Consider, 
for example, two relationships with respective R2 values 
of .9891 and .9981. These raw numbers make it hard to 
see just how much better the second relationship is than 
the first. The corresponding MF values 91.74 and 526.3, 
however, allow us to see easily that the second relationship 
cuts the unexplained variation by roughly a factor of five. 
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is spurious and, hence, provides evidence in favor of 
the original relationship y = Icon. 

Evidence regarding the significance of /Q is provided 
by the statistician’s t-statistic. This will be large in 
absolute value if it is unlikely that an apparent non- 
zero value of Ez is due to purely random fluctuations 
in the data-that is, if the non-zero value appears 
significant-and it will be near zero otherwise. 

To summarize, E* calculates the t-statistic for Ica. 
It considers large absolute values as evidence of the 
significance of this intercept-hence, evidence against 
the candidate y = Icx”. Conversely, it considers near- 
zero values as evidence against the intercept and in 
favor of the candidate.3 

Having calculated the indicators D and t, then, E* 
must combine information provided by these to decide 
whether to report the best-fitting of the six power pro- 
portionalities it considers. The basis of the combina- 
tion rule is the graph of Figure 2. This figure contains 
one point for each data set in the preliminary cases. 
This point is plotted according to the values of D and 
t calculated for the candidate function. Note that I 
have taken logarithms of D and t, since the raw values 
span many orders of magnitude. 

W) 

7.91 

-4.04 

-- 

WD) 

Figure 2: Using t and D to Evaluate Power Propor- 
tionalities 

In the graph, a + symbol represents a data set in 
which the candidate function matches the scientist’s 
reference function and a - symbol represents one in 
which these functions are different. In the first case, 

3Statistical sophisticates might worry here about two 
points. First, the degree to which a given value of the 
t-statistic may be considered “large” depends on the num- 
ber of observations on which it is based. E* uses the raw 
value of t without adjusting for this effect, which may be 
substantial for very small data sets. Second, normal use of 
the t-statistic depends on certain strong assumptions about 
the meaning of the phrase “purely random fluctuations” 
and these are likely to be violated severely in many of the 
Physical Review cases. Together, these points suggest that 
the value of t may be a misleading measure of significance 
in some cases. See [Schaffer, 199Oa] for further discussion 
of this point. 

E* should report the candidate; in the second, it should 
not. The evaluation question thus boils down to iden- 
tifying the largest possible region of the D-t plane in 
which we may be fairly sure that a new point is much 
more likely to represent a + than a - case. 

Standard pattern recognition techniques are cer- 
tainly applicable here, but the region in question 
seemed so clear to me when I first examined this graph 
that I simply drew the dotted line shown in the figure 
by eye and adopted it as the evaluation criterion for 
E*. The equation of the line is: 

lnt = .6lnD - 2 

Hence, E* reports the candidate power proportionality 
if lnt < .6lnD - 2. 

Evaluating linear relationships 

If this criterion rejects the best-fitting power propor- 
tionality, E* considers the linear relationship y = 
Icrx + Icz. In evaluating this new candidate, three eval- 
uation criteria come into play. 

First, as with power proportionalities, E* compares 
the fit of the candidate to other functional forms with 
which it might easily be confused. The candidate may 
be written as y = Erx’ + L,; hence, E* checks functions 
of the form y = klxn + Ic2 for n near 1. Normally, the 
values used for n are .5 and 1.5. If any value of x 
is negative, however, the transformations xs5 and x1e5 
are impossible and E* uses the values - 1 and 2 for n 
instead. 

E* begins, then, by calculating the measure of fit 
MF for each of three fitted functions, the candidate 
and y = krxn + E2 for n in either {.5,1.5} or {-1,2}. 
Having done so, however, the algorithm does not look 
for the fit of the candidate to be sharply better than 
its rivals, as in the case of power proportionalities, but 
rather simply checks if it is the best of the three-a 
kind of local maximum. This is clearly a very different 
instantiation of the concept of distinction than the one 
presented above, although the abstract purpose in both 
cases is to provide evidence that the candidate may be 
distinguished from similar functional forms. 

If the candidate is distinguished in the new, weak 
sense, E* proceeds to consider a second criterion, 
which applies the concept of significance in a rather 
straightforward fashion. Having fit the linear formula 
y = Icrx+12 by regression, E* calculates the t-statistics 
associated with the two fitted coefficients and rejects 
the formula unless both are of absolute value greater 
than two.4 

4As noted before, the use of the t-statistics is normally 
conditioned on acceptance of strong assumptions about the 
type of random noise affecting measurements and, even in 
this case, the cutoff value should depend on the number 
of data points. I am relying here on faith-and empirical 
evidence-that even when abused as I have described, the 
t statistic is useful in evaluation. 
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Finally, E* checks to make sure the linear relation- 
ship does not suffer from systematic lack of fit. Since 
it cannot rely on visual inspection of plots, the algo- 
rithm makes do with a rough numerical approach. It 
begins by calculating the residuals r of the best-fitting 
linear relationship and then continues by carrying out 
a second regression to determine optimal coefficients 
in the quadratic equation 

r = E1x2 + E2x + k3 

If, in fact, there is no functional relationship between 
x and r, we would expect the significance of these co- 
efficients to be low. On the other hand, if there is 
a functional relationship between x and r and if a 
second-order approximation to this relationship is at 
all accurate over the given range, we would expect the 
coefficients to appear significant. 

Thus, E* considers the t-values associated with the 
coefficients ICI, Ic2 and Icg and concludes that it has 
detected systematic lack of fit if the absolute value of 
any of these is greater than five.5 In this case, it re- 
jects the candidate linear relationship between x and 
y and reports that no relationship was identified in the 
input data. Otherwise, the linear candidate has satis- 
fied each of the three criteria I have described and E* 
will propose it. 

Results of a Prospective Test 

Code for the algorithm I have just described is given in 
[Schaffer, 199Oa]. It runs through the 100 test cases- 
a total of 192 data sets-in about 11 minutes of real 
time on a Sun-3 workstation. As noted above, the 
algorithm was designed in its entirety before any test 
cases were collected. The first row of Table 1 thus 
shows the results of a purely prospective test of E* on 
these cases. 

B( 1.875) 
B(3.75) 
B(7.5) 
W5) 
ww 

1 B(50) 

Correct 
31.50 

.50 
4.58 

12.83 
17.75 
24.91 
33.00 
37.91 

Table 1: Results for E* and B(A) Compared 

For purposes of comparison, the remaining rows of 
the table show the results of a prospective test of a 
reimplementation of the Bacon algorithm on the same 
cases. Like the original, this implementation employs 

5A more conventional criterion would make use of the F 
statistic. See [Schaffer, 199Oa] for discussion of this point. 
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a tolerance parameter A which critically affects perfor- 
mance. The table shows results for a range of A values 
specified before the test cases were collected: B(A) de- 
notes the reimplemented Bacon algorithm with toler- 
ance set at A percent. Details and code are provided in 
[Schaffer, 199Oa]; f or p resent purposes, I only want to 
note that the indicated performance of B(A) is slightly 
better than we could expect from the original Bacon 
program. 

The results tabulated above suggest a number of im- 
portant points. First, they make it possible to charac- 
terize the performance of E* as suggested earlier in this 
paper. When analyzing bivariate data sets of the kind 
published in the Physical Review in the first quarter of 
this century, E* has approximately a 30 percent chance 
of giving the same answer as the reporting scientist. 
Moreover, the algorithm operates in this environment 
at a cost of roughly one incorrect answer for every three 
correct ones.’ Note that, although the algorithm may 
be considered as proven only in the specified environ- 
ment, we may reasonably expect that it would perform 
comparably in others. The Physical Review of the early 
1900s published work in a wide range of subdisciplines 
of physics and chemistry and is thus a good candidate 
to serve as a general representative of the quantitative 
physical science of that time. 

Second, the Bacon algorithm operates in the Physi- 
cal Review environment at a cost of roughly one incor- 
rect answer for every correct one over a very wide range 
of A settings. E* thus cuts function-finding costs-or, 
equivalently, increases function-finding reliability-by 
about a factor of three. 

Third, concentration on reliability has had very lit- 
tle effect on the range of application of E*. Though 
it considers just seven relationships instead of an in- 
finite space of formulas, E* handles nearly as many 
cases correctly as the most noise-tolerant of the B(A) 
algorithms. 

Finally, it is worth noting that the performance re- 
sults reported here for both E* and B(A) are the 
first evidence ever presented to show that domain- 
independent function-finding systems can operate suc- 
cessfully on problems not specially selected by their 
authors. I personally find it rather striking that, while 
scientists bring a huge store of detailed domain knowl- 
edge to bear in analyzing data, it is possible without 
relying on such knowledge to duplicate their conclu- 
sions with some reliability in this environment in as 
many as a third of reported cases. 

: 

Comments 
For an extensive and careful consideration of many 
points I have touched on briefly above, please refer 
to [Schaffer, 199Oa]. In particular, [Schaffer, 199Oa] 

‘See [Schaffer, 199Oa] for caveats regarding these esti- 
mates and confidence intervals to suggest how much they 
may be affected by sample variability. 



balances the positive conclusions of this paper against 
indications of the limitations of domain-independent 
function finding. 

In concluding, let me anticipate a possible objection, 
namely that the Bacon algorithm is a weak straw man 
against which to compare a new function-finding ap- 
proach. In fact, though Bacon is the oldest and sim- 
plest of AI function finders, my experience suggests 
that it is quite difficult to outperform. I expect that 
more recent systems-including the new IDS [Nord- 
hausen, 1989]- would do worse than Bacon in a sim- 
ilar test. Certainly, I am prepared to make the trial, 
if the author of any such system is willing to provide 
code and suggest appropriate parameter settings. 
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