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Abstract 

The candidate elimination algorithm for inductive 
learning with version spaces can require both expo- 
nential time and space. This article describes the 
Incremental Non-Backtracking Focusing (INBF) 
algorithm which learns strictly tree-structured con- 
cepts in polynomial space and time. Specifically, it 
learns in time O(pnrC) and space 0( nk) where p is 
the number of positives, n the number of negatives, 
and k the number of features. INBF is an extension 
of an existing batch algorithm, Avoidance Focus- 
ing (AF). Although AF also learns in polynomial 
time, it assumes a convergent set of positive exam- 
ples, and handles additional examples inefficiently; 
INBF has neither of these restrictions. Both the 
AF and INBF algorithms assume that the positive 
examples plus the near misses will be sufficient for 
convergence if the initial set of examples is con- 
vergent. This article formally proves that for tree- 
structured concepts this assumption does in fact 
hold. 

Introduction 
The candidate elimination (CE) algorithm [Mitchell, 
19821 learns a concept from a set of positive and neg- 
ative examples of that concept. The concept to be 
learned is called the target concept. A concept is usually 
described by a tuple of featzlres each of which can have 
one of several values. These values can be discrete, tree- 
structured, or lattice-structured. The features and their 
possible values comprise the generalization language for 
a particular domain. 

The CE algorithm learns the target concept by 
searching a hypothesis space consisting of all concepts 
described by the generalization language. The concepts 
are organized into a lattice defining a partial order of 
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generality on the concepts. This space is searched bidi- 
rectionally for the target concept. The top-down search 
maintains a set, G, of the maximally general concepts 
in the space which are still candidates for the target 
concept. A negative example causes all concepts in G 
which cover it to be specialized just enough to exclude 
the example. A positive example prunes concepts in G 
which do not cover it. The bottom-up search maintains 
a set, S, of maximally specific candidates. A positive 
example generalizes concepts in S which do not include 
it just enough to include the example. A negative ex- 
ample prunes concepts from S which do not cover it. 
Initially, S contains the first positive example and G 
contains the maximally general concept in the space. 
The examples are then processed incrementally until 
convergence (S = G). At this point, there is only one 
concept remaining in S U G which is consistent with the 
examples (assuming a conjunctive concept language). 
This is the target concept, C. 

That the CE algorithm can consume space exponen- 
tial in the number of negative examples has been shown 
in [Haussler, 19881. This rapid growth is caused by 
fragmentation of the G set. When G is specialized by a 
common class of negative examples known as fur misses 
(described later), each concept in G is specialized into 
several concepts (always the same number for a given 
far miss). Each of these specializations appears in the 
specialization of G, so a given far miss can be thought of 
as fragmenting each concept in G into several concepts. 

Fragmentation means G can grow exponentially in 
the number of far misses. Since the candidate elimina- 
tion algorithm requires examination of every concept in 
G for each new example, time is also exponential. When 
learning concepts with all tree-structured features, S 
contains exactly one concept [Bundy et al., 19851 and 
thus does not impact the time and space bounds. So 
for such concepts, if G could be kept from fragment- 
ing, then the time and space bounds could possibly be 
brought into polynomial ranges in the number of exam- 
ples. This is the central principle behind the Incremen- 
tal Non-Backtracking Focusing (INBF) algorithm. 

The INBF algorithm is an extension of the avoidance 
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focusing (AF) algorithm [Bundy et al., 1985]. In gen- 
eral, focusing algorithms for tree- or lattice-structured 
concepts [Young and Plotkin, 19771 bound the search 
space with two concepts, upper and lower, instead of 
with two sets, S and G. For a negative example, up- 
per is specialized on one feature to exclude the value of 
the example on that feature. If this feature’s value is 
not included by the target concept, then this is a cor- 
rect specialization, otherwise the specialization leads to 
incorrect concept formation. When the mistake is dis- 
covered, the focusing algorithm backtracks and selects 
a different feature on which to specialize upper. Back- 
tracking is focusing’s equivalent of fragmentation. 

The AF algorithm [Young and Plotkin, 1977; Bundy 
et at., 19851 is a batch algorithm that avoids backtrack- 
ing by assuming that it has been given a convergent set 
of examples, and processing all the positive examples 
first so that lower is at the target concept, and then 
processing just the near misses[Winston, 19751 to con- 
verge upper to the target concept. This assumes that 
the near misses will always be sufficient for convergence. 
Converging upper to the target concept confirms that 
the examples are consistent. A near miss is an example 
for which only one feature is not covered by the target 
concept. Since lower is at the target concept, all the 
near misses can be correctly identified along with the 
feature that is not covered by the target concept. Since 
this feature is known for each near miss, choosing this 
feature always leads to a correct specialization, and so 
the AF algorithm never backtracks. 

INBF uses a similar approach to avoid backtrack- 
ing (fragmentation). However, there are some inherent 
drawbacks to the AF algorithm which INBF avoids. AF 
assumes that there are enough positive examples for 
lower to converge to the target concept. If there are 
insufficient positive examples, so that lower is below C, 
then correct identification of all the near misses can not 
be guaranteed. Furthermore, if more examples are pre- 
sented later, they may generalize lower, in which case 
the original negatives must be reprocessed since they 
may now be identifiable as near misses. But because 
AF is a batch algorithm, reprocessing the old negatives 
is very inefficient, especially with many new example 
sets. Lastly, many induction problems require an in- 
cremental algorithm, not a batch algorithm. Though 
AF could be rerun with the new examples, it would be 
terribly inefficient, even when modified to save as much 
work as possible from previous batches. 

This article introduces the INBF algorithm, an in- 
cremental focusing algorithm which has tri-polynomial 
space and time bounds in the number of positive exam- 
ples, negative examples, and features. This algorithm 
is limited to learning tree-structured concepts’ in con- 
junctive languages. Being incremental, additional ex- 

‘Discussion with Richard Young leads us to believe that 
INBF should be extensible to upper semi-lattices, as de- 
scribed in [Young and Plotkin, 19771. 

amples are handled efficiently, and it uses less space 
than its batch counterpart. Unlike the AF algorithm, 
the INBF algorithm (with extensions) can learn from 
an incomplete set of positive examples. In this case, 
the concept learned will be incomplete, but equivalent 
to the one learned by the CE algorithm from the same 
set of examples. 

The rest of this article first describes the fragmen- 
tation problem, then explains the INBF algorithm and 
how it avoids this problem. This is followed by time 
and space comparisons of the INBF, AF, and CE al- 
gorithms. Next, it is, proven that the near misses 
plus the positive examples are indeed sufficient for con- 
vergence if the entire set of examples is convergent, 
as is required by both the AF and INBF algorithms. 
Though several authors have suggested that this is the 
case [Young and Plotkin, 1977; Bundy et al., 1985; 
Hirsh, 19901, no formal proof appears in the literature. 
Finally, an extension to INBF is suggested that handles 
non-convergent examples, and limitations of the INBF 
algorithm are discussed. 

Fragmentation 
When G is specialized by a negative example, the spe- 
cialization must cover the target concept but not the 
negative example. Only specializatons of G made on 
certain features, called guiZty features, will satisfy these 
criterion. Specifically, guilty features are exactly those 
features, f, for which feature f of the negative example 
is not covered by feature f of the target concept. Frag- 
mentation occurs because it is not generally possible 
to distinguish the guilty features of a negative example 
from the non-guilty features. At best, only some of the 
non-guilty features can be identified. These are exhon- 
eruted features. The non-exhonerated features include 
all of the guilty features and some non-guilty features. 
This is the set of possibZy guilty features. Since the 
CE algorithm can not accurately select a single guilty 
feature from this set, it specializes G on uZZ of the fea- 
tures in the set. Specializations made from non-guilty 
features will not cover the target concept and will even- 
tually be pruned by positive examples. Only specializa- 
tions made from the guilty features will remain. Each 
possibly guilty feature makes its own specialization of 
each concept in G. So if there are n possibly guilty fea- 
tures, then for every concept in G there are n concepts 
in the specialization of G. G has fragmented. 

But why can’t the guilty features be distinguished 
from the others? Guilty features are those features of a 
negative example which are not covered by the target 
concept. But the target concept is not known a priori, 
so the guilty features can not always be distinguished 
from the others. Some features, though, can be exhon- 
erated as definitely not guilty. All concepts subsumed 
by S are subsumed by the target concept, so if fea- 
ture f of the negative example is subsumed by feature 
f of a concept in S, then f can not be guilty. How- 
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ever, some concepts subsumed by the target concept 
are not subsumed by S, so some non-guilty features can 
not be exhonerated. Since all of the non-guilty features 
can not be exhonerated, the guilty features can not be 
distinguished from the non-guilty features. The more 
general S is, the more concepts it covers and the more 
non-guilty features it can exhonerate. When S reaches 
the target concept, all of the non-guilty features can be 
exhonerated. 

The only kind of negative example guaranteed not 
to fragment G is a near miss. These examples have 
only one possibly guilty feature, so each concept in G 
maps to only one concept in G’s specialization. By con- 
trast, a negative example with more than one possibly 
guilty feature is called a fur miss. The more specific 
S is, the few& non-guilty features it can exhonerate, 
and the more features it must therefore label as possi- 
bly guilty. Thus a negative example which has several 
possibly guilty features (a far miss) with respect to a 
specific S may have only one possibly guilty feature (be 
a near miss) with respect to a more general S. Since S 
increases monotonically in generality to the target con- 
cept, examples which are initially classifiable only as 
far misses may later be identifiable as near misses. The 
INBF algorithm relies on this phenomenon. 

The Algorithm 
The INBF algorithm is an incremental version of the 
batch AF algorithm. Like the AF algorithm, the INBF 
algorithm exploits the fact that upper is guaranteed to 
converge without backtracking to the target concept 
when specialized only by all of the near misses from 
a convergent set of examples. The key is guaranteeing 
that all of the near misses can be recognized, and there- 
fore used. But a near miss could possibly be classified 
as a far miss if lower is more specific than C. The batch 
algorithm guarantees identification of all near misses by 
processing all of the positive examples first so that lower 
is at C (assuming a convergent set of examples). Then 
just the near miss negatives are processed, and the far 
misses are discarded. 

An incremental algorithm, however, can not expect 
all the positive examples first, so lower is more spe- 
cific than C during most of the learning. Therefore 
INBF can not simply discard far misses as does AF: 
near misses that should be processed might be dis- 
carded because they were temporarily misclassified as 
far misses. Since these far misses may later be recog- 
nizable as near misses as lower converges to C, INBF 
saves the far misses on a list until they can be recog- 
nized. Avery time lower is generalized, the list of saved 
far misses is scanned for far misses which are now rec- 
ognizable as near misses. These near misses are used to 
specialize upper, and are then removed from the list. 

Figure 1 presents the INBF algorithm. lower is initial- 
ized to the first positive example, p’; upper is initialized 
to the maximally general concept, (ANY, . . . , ANY); 

INBF() 
lower= pl; upper = (ANY, . . . , ANY); wait-list= {} 
LOOP until upper = lower OR collapse 

For a positive example, p 
Generalize lower to include p 
FOR each negative example, n, in wait-list Do 

PROCESS-NEGATIVE(n) 
For a negative example, n 

IF n is not covered by (less than) upper 
THEN Discard n 
ELSE PROCESS-NEGATIVE(n) 

PROCESS-NEGATIVE(n) 
Compare n and lower to determine number of 
possibly guilty features. 
CASE (number of possibly guilty features) OF 

guilty = 0 : collapse 
guilty = 1 : Specialize upper on the single 

guilty feature of n. 
Remove n from wait-list. 

guilty > 1 : Add n to wait-list if it’s 
not already there. 

Figure 1: Incremental Non-Backtracking Focusing 

and the list of saved negative examples, wait-list, is ini- 
tialized to empty. If the algorithm receives a positive 
example, lower is generalized to include it. Some far 
misses may be recognizable as near misses by the new 
lower, so wait-list is scanned for near misses. upper is 
specialized to exclude any newly discovered near misses, 
and the near misses are removed from the list of saved 
negatives. If after an example has been processed up- 
per and lower are equal, then they have converged to 
the target concept, and the algorithm has succeeded. 
Otherwise, the next example is processed. 

Negative examples are first compared to upper. 
Those not less than upper would be classified as negative 
anyway, and are discarded. The CE algorithm performs 
a similar test. Otherwise, the negative is compared to 
lower to determine the number of possibly guilty fea- 
tures. If the example is guilty in zero features, then 
the version space is inconsistent. If the example is a 
near miss then it specializes upper. If the example is 
a far miss, then it is saved on wait-list until it can be 
recognized as a neaS miss. 

Time/Space Summary 
The INBF algorithm uses considerably less time and 
space than the CE algorithm in the worst case, and the 
same amount in the best case. The worst case bounds 
are derived as follows. Let p be the number of posi- 
tive examples, n the number of negatives, and k the 
number of features. Each concept requires O(k) units 
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of storage (for k features). INBF maintains only three 
variables: upper, lower, and wait-list. upper and lower 
are single concepts, and wait-list clearly has an upper 
bound of n concepts. Thus the total space requirement 
is O(k) + O(k) + O(nk) = O(nk). PROCESS-NEGATIVE 
can be done in O(k) time if its argument, n, a nega- 
tive example, can be added or deleted from wait-list in 
constant time, and if the guilt of a feature of n can be 
determined in constant time. The latter is possible if 
examples are represented in vector notation, explained 
in the next section. Additions can be done in constant 
time by adding to the front of the list. For deletions, 
INBF knows where n is in wait-list at the time INBF 
Cdk PROCESS-NEGATIvE. If we pass this pointer to 
PROCESS-NEGATIVE along with n, then n can be deleted 
from wait-list in constant time. Each positive example 
calls PROCESS-NEGATIVE once for each example in wait- 
list. Each negative example makes a single call. Total 
time is thus O(pnk) + O(nk) = O(pnk). Derivation 
of the other results appear in [Smith and Rosenbloom, 
19901. 

Worst Case Analysis 1 

INBF AF 
Time O(pnk) O(pk + nk) $km+‘) 
Space 0( nk) O(pk + nk) O(kn”) 

The AF algorithm performs poorly on additional 
batches. All the negatives seen so far must be repro- 
cessed for each new batch in order to find near misses 
not recognized in previous batches. The following is 
based on b batches of one positive and one negative 
example each. 

Worst Case Analysis: Multiple Batches 
II INBF I AF 1 CE 

J 
Time O(b2k) O(b3k) O(kb+‘) 
Space O(bk) w4 O(kb+l) 

The best case for all the algorithms occurs when all 
the negative examples are near misses. For the INBF 
algorithm, the list of saved negatives is always empty. 
For the CE algorithm, G never fragments. 

Best Case Analysis 
INBF AF CE 

Time O(pk + nk) O(pk + nk) O(pk + nk) 
Space O(k) O(pk + nk) O(k) 

Near Miss Convergence Theorem 
The Near Miss Convergence Theorem is the crucial re- 
sult upon which both the INBF and AF algorithms rely. 
That is, that the positive examples plus the near misses 
alone are sufficient for convergence if the entire set of 
examples (positives plus negatives) are convergent. The 
theorem and proof are given formally below. The proof 
relies on a vector notation which is explained first, fol- 
lowed immediately by the proof of the theorem. 

P = {e 1 e is a positive example} 
F = {e 1 e is a far miss negative example} 
M= {e 1 e is a near miss negative example} 
N = {e 1 e is a negative example} = F U M 

Theorem 1 (Near Miss Convergence Theorem) 
If a set of strictly tree-structured examples P U F U M 
of a concept is suficient for convewence (G = S = C) 
of the Candidate Elimination Algorithm, then PU M is 
also suficient for convergence. 

Vector Notation 
Concepts and examples with tree-structured attributes 
can be represented as vectors. This notation is used 
throughout the proof to simplify the arguments. Each 
feature of a concept (or example) is a component of the 
vector and is assigned an integer indicating its distance 
from p’, the first positive example. The distance be- 
tween feature i of a concept and feature i of p1 is the 
number of nodes that feature i of p1 must be moved 
up in the feature tree to reach a value which subsumes 
feature i of the concept. 

For example, assume we have a concept with two fea- 
tures, each feature having the structure shown in Fig- 
ure 2. If p’ = (d,e), then the vector for (b,b) would be 

ANY 
/ \ 

P A 
d e f 

Figure 2: Feature Tree 

(1,2). Feature i of vector p is denoted pi. For any given 
tree-structured feature, i, the values that could be part 
of the target concept must lie between pi and ANY. This 
constrains the values to a single path from ANY to pt. 
Thus, vector notation indicates, for a particular value, 
where that value lies on the path. Values off of the path 
are never part of the target concept, so each vector de- 
fines a unique concept. For example, if pt = e, then the 
only possible values for Ci are e, c, and ANY. 0 refers to 
e, 1 to c, and 2 to ANY. 

If Ai 1 Bi then A subsumes B on feature i. If ViAi 1 
.& then concept A subsumes concept B (A 2 B). Vec- 
tors form a partial order of generality, with smaller vec- 
tors being more specific than larger vectors. 

Concept A can be generalized to include concept B 
by setting each feature, i, of A to max(A;, B;). Then 
V;A, 2 Bi, so A subsumes B. Furthermore A is the 
maximally specific concept which does so. A can be 
specialized to exclude B by causing A to not subsume 
B on some feature, i. This is done by setting Ai to 
B, - 1. Since B; - 1 is the smallest integer which fails to 
subsume &, A is the maximally general concept which 
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excludes B on feature i. Aside from notational simplic- 
ity, this method also makes specialization and gener- 
alization very fast operations. The usual tree searches 
can be avoided altogether once a concept’s vector has 
been established with respect to p’. 

Definitions, Lemmas, and Observations 
Definition 1 (Least Upper Bound of G: LIG) 
The Least Upper Bound of G, written uG, is the vec- 
tor (uG1, uG2,. . . , uG~), where each uG~ is the most 
specific value for feature i s.t. tlgE G U Gi 2 gi. 

Observation 1 For tree-structured features, UG; can 
also be defined as the least common parent of the set 
of values taken by concepts in G on feature i. That is, 
uG~ is the least common parent of the values in the set 
bib E G) h w ere i is a tree structured feature. 

has either one, or multiple elements (in a consistent ver- 
sion space, G can not have zero elements). Assume G 
has multiple elements. By Definition 1, VgE G g 5 IJG. 
But {uG} = S by assumption, and since the version 
space only contains concepts with tree-structured fea- 
tures, S has only one element, s. Thus Vg f G g 5 s. 
But the version space collapses when every concept in 
G is strictly less than some concept in S, so there must 
be at least one element, g, of G that is equal to s. Since 
s subsumes every concept in G, so does g. But G con- 
tains only concepts which are not subsumed by other 
concepts in G, so G = 69). This violates our assump- 
tion that G has multiple elements. Therefore G must 
have exactly one element. Call it t . Then by Obser- 
vation 3, UG = Z; but {uG) = S by assumption, and 
thus S = (uG3 = {z) = G. So G = S. 0 

Observation 2 Let V be a set of tree structured val- 
ues. Let the least common parent of these values be 
denoted UV (by Observation 1, the least common par- 
ent of V is also the least upper bound of V, hence the 
notation). Adding OT deleting a value, v, from V will 
have no effect on UV as long as v is subsumed by some 
other value in V. Formally, UV is the least common 
parent of the following sets of tree structured values: V, 
V U (v), and V - (v) where v is subsumed by a value 
in V. 

Proof of Lemma 2 
Let f be a consistent far miss, and G’ be the set of con- 
cepts that results from specializing G with f. G’ can 
be constructed from G and f by the construction algo 
rithm (Figure 3) in two stages. Call the sets formed in 
these stages G1 and G2 respectively. The construction 
algorithm is the vector-notation equivalent of the ac- 
tion taken by the CE algorithm on a negative example. 
G2 is then returned as G’. For each feature, i, let Vi 
be the set of values for feature i held by concepts in G, 
i.e., Vi = {g; jg E G). Similarly, I$’ = {gt lg’ E GL) and 
V,’ = {gz]g2 E G2). We will show that for any feature, 
the set of values for the feature held by the concepts in 
each stage is formed by adding or deleting zero or more 
values which are subsumed by values in the previous 
stage. Thus by repeated application of Observation 2, 
UK = lJv,l = UVi2. Then by Observation 1, UG; = UVi 
and uG{ = uVi2. Thus uGi = UGI, and since this holds 
for all i, UG = UG’. 

Lemma 1 In an uncollapsed version space with strictly 
tme-structured attributes G = S ifi {uG) = S. 
Lemma 2 If G’ is the set of concepts that result from 
specializing a set of tree-structured concepts, G, with a 
consistent far miss negative example, then UG’ = UG. 
Observation 3 If a set, G, contains only one element, 
x, then UG = x. 

We must show that P u M yields G = S = C. Assume 
Proof of Theorem 1 

that all the positive examples have been seen, and thus 
that S = C. By Lemma 1 it is therefore sufficient to 
show UG = C. But by Lemma 2 we know that F 
has no effect on UG, and thus whether or not G = C is 
independent of F. Therefore since PUMUF is sufficient 
for UG = C, so must be P U M. 0 

where Ei is a set of values subsumed by values in Vi. 
First we show that for every feature, i, Vi1 = V; U Ei 

In stage one, G1 is initially empty. Every concept g 
in G then adds one concept to G1 for every possibly 
guilty feature of f. When a given concept g in G, is 
specialized on a possibly guilty feature j, g adds one 
concept to G1 with a value for feature j of m.in(gj, fj - 
1). When specialized on a possibly guilty feature k # j, 
each g in G adds a concept to G1 with a value of gj for 

Proof of Lemma 1 feature j. So if there are at least two possibly guilty 
(1) If G = S then {uG) = S 
Assume that G = S and that the concepts in the ver- 
sion space have only tree-structured features. For ver- 
sion spaces with such concepts, S has only one element 
[Bundy et al., 19851. Call this element s. G = S by 
assumption, so G = {s). By Observation 3, UG = s 
and thus (uG) = (s) = S. 

(2) If {uG) = S then G = S 
Assume that {uG) = S, and that concepts in the ver- 
sion space have only tree-structured features. Then G 

(1) FOR each possibly guilty feature, i, off E F DO 
FOR each concept g in G DO 

9’ = 9 
gl = min(gi, fi - 1) 
Add g’ to G’ 

(2) Remove from G’ every concept subsumed by . 
another concept in G’. 

Figure 3: Construction Algorithm 
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features, then for every feature i, the set of values, Vi’, 
taken by the concepts in G1 on feature i is {g;lg E 
G} U (min(g;,f; - 1)/g E G) = Vi U Ei. If i is not a 
possibly guilty feature, E; = {}. We are guaranteed 
at least two possibly guilty features since G is being 
specialized by a far miss, f, and far misses always have 
multiple possibly guilty features. Note that for every i, 
min(gi, fi - 1) 5 g;, i-e, min(gi, fi - 1) is subsumed by 
gi. Thus for every i, every value in Ei is subsumed by 
some value in Vi, so by Observation 2, LIVE = uVil. 

Next we show that q2 is vi1 - & where & is a set of 
values subsumed by values in I<‘, and i is any feature. 
In stage two, G2 is formed by removing from G1 all 
concepts which are subsumed by another concept in G1. 
Let the set of removed concepts be R. Thus Vi2 is Vi1 
minus the set of values, & taken by concepts in R on 
feature i. But every concept in R is subsumed by a 
concept in G1, so every value in Ri is subsumed by 
some value in Vi’. Therefore Vi2 = Vi1 - &, and fi is 
subsumed by Vi’, so by Observation 2, LIVE’ = uVi2. 0 

Incompletely Learned Concepts 
There are many learning domains in which the avail- 
ability of examples is limited, or for which prohibitively 
many examples are required for convergence. In such 
domains there are insufficient examples for convergence, 
so the set of examples is non-convergent and the target 
concept is incompletely learned. However, we would 
still like to classify new instances as being positive or 
negative examples of the incompletely learned target 
concept. In the CE algorithm, examples subsumed by 
S are always positive, those not subsumed by G are neg- 
ative, and those between S and G can not be classified. 

In the INBF algorithm, examples below lower are 
positive, and those not below upper are negative. But 
there could be examples under upper which the CE al- 
gorithm would classify as negative. This is because not 
all the near misses have been recognized and thus upper 
bounds the target concept more loosely than does G. 

Let G-final be the G set after the CE algorithm 
has processed the (incomplete) set of examples. INBF 
can generate G-final from upper by processing all the 
saved negatives the same way the CE algorithm does. 
In the CE algorithm, G converges on G-final non- 
monotonically. Negative examples cause G to increase 
in size by fragmenting it, and positive examples reduce 
G by pruning concepts. Under many example order- 
ings, G can initially fragment beyond the size of G-final, 
meaning that the size of G fluctuates as it approaches 
G-final. By contrast, the size of the G set in the INBF 
algorithm increases monotonically to the size of G-final. 
This is because only the saved negative examples are be- 
ing processed to specialize upper. A negative example 
can only cause G to increase in size, so G must increase 
monotonically from one concept (upper) to several (G- 
final). Thus the maximum size attained by G for INBF 
is usually less, and never greater, than the maximum 

size of G for the CE algorithm. The degree to which 
the maximum sizes differ depends on the order of the 
examples. 

Since the space bound of both algorithms is propor- 
tional to the maximum size attained by G, INBF saves 
space over the CE algorithm for most example order- 
ings. For the remaining orderings, both algorithms have 
equivalent space bounds. Since time is proportional to 
space, these savings apply to the running time as well. 

Conclusions and Limitations 
For strictly tree-structured concepts, INBF is prov- 
ably equivalent to the CE algorithm, but is polyno- 
mial rather than exponential. Unlike the AF algorithm, 
INBF can efficiently process additional examples, and 
can deal with non-convergent sets of examples and in- 
completely learned concepts. For such sets, INBF has 
the same worst-case time and space bounds as the CE 
algorithm, but better best-case bounds. 

The INBF algorithm is restricted to learning strictly 
tree-structured concepts (and possibly upper semi- 
lattices). It is, at present, unable to learn concepts with 
arbitrary lattice-structured features. Lattice structured 
features allow pairs of values to have more than one 
least common parent. This means that there is more 
than one way to generalize a concept to include a pos- 
itive example, and thus S can fragment. It also means 
that a near miss no longer specifies a unique specializa- 
tion (generalization) of G (S), and thus near misses can 
not prevent fragmentation. Learning lattice-structured 
concepts is an area of future research. 
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