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Abstract 
This paper explores the problem of learning from exam- 
ples when feature measurement costs are significant. It 
then extends two effective and familiar learning meth- 
ods, ID3 and IBL, to address this problem. The exten- 
sions, CS-ID3 and CS-IBL, are described in detail and 
are tested in a natural robot domain and a synthetic do- 
main. Empirical studies support the hypothesis that the 
extended methods are indeed sensitive to feature costs: 
they deal effectively with varying cost distributions and 
with irrelevant features. 

Introduction 

Consider a simple mobile robot whose primary goal is 
to pick-up cups and discard them. At some point the 
robot must determine which of its sensing procedures 
allow it to distinguish between different types of cups 
and other objects. In the general situation, an agent 
must decide which of its available information resources 
are actually useful. If sensing procedures could be ex- 
ecuted instantaneously, this problem would be greatly 
simplified (thus this assumption is frequently made); 
however, sensing procedures may incur significant ex- 
pense, limiting the ability of the robot to routinely 
execute large numbers of sensing procedures. 

As the robot determines the relationships between 
sensing procedures and object types, it is learning from 
examples (LFE) , where objects in its environment map 
to examples, sensing procedures map to features of 
examples, and appropriate ways to pick up objects 
map to classes of examples. Like sensing procedures, 
measuring features of examples may also be expen- 
sive. From this point of view, researchers have typi- 
cally studied a degenerate case of LFE where feature 
expense is assumed to be negligible, and thus all (or 
nearly all) features are evaluated for each example. 
In general, individual features incur different measure- 
ment costs, and thus cost-sensitive learning methods 
must limit the overall expense of evaluating features 
during construction and use of class descriptions. (For 
convenience, we refer to feature measurement cost as 
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feature cost.) This may involve evaluating many in- 
expensive features or a few expensive ones as the sit- 
uation dictates. This paper presents two incremental, 
cost-sensitive LFE methods, CS-ID3 and CS-IBL, gen- 
eralizations of ID3 (Q uinlan 1986) and IBL (Aha & Ki- 
bler 1989), and it empirically evaluates the four meth- 
ods in the robot’s domain and a synthetic domain. 

Cost-Sensitive Learning Methods 

Two notable cost-sensitive learning methods are 
Nunez’s (1988) extension to ID3 and Gennari’s (1989) 
focus-of-attention extension to COBWEB. Nunez’s 
approach focuses on minimizing feature evaluation for 
test examples (i.e., during classification) but assumes 
that all features are evaluated for training examples 

( i.e., during learning). As such, it represents more 
of an approach to cost-sensitive classification rather 
than cost-sensitive learning. Gennari’s approach, while 
addressing the more complex task of concept forma- 
tion, assumes it is sufficient to reduce the number of 
features evaluated, independent of individual feature 
costs. Both of the LFE methods we describe here relax 
this latter assumption, instead assuming that features 
may vary in cost, and they attempt to reduce the over- 
all cost of evaluating features during both construction 
and use of class descriptions. After describing the mo- 
tivating domain in some detail, this section focuses on 
two effective LFE methods, namely ID3 and IBL, and 
presents extensions designed to make them sensitive to 
feature costs during learning and classification. 

The Robot Cup Collecting Domain 

Consider again the robot whose task is to collect dis- 
carded cups. For this task we have experimented with 
a Heath Hero 2000, a mobile robot with a five degree 
of freedom arm (torso, arm, elbow, pitch, and roll) and 
a two finger hand. The Hero robot has a wrist sonar 
with range of 127 and accuracy of 0.5 inches. To locate 
objects, the robot uses a ceiling-mounted vision system 
and a heuristic path-planner. 

We have currently defined four sensing procedures 
for the robot by composing arm movements with inter- 
mittent sonar sensings: two forward-facing, rotating 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



Table 1. ID3’s feature selection measure, where F is a feature, J$ is the ith value of F, and (C} is the set of classes. 

I(F) = c -p(Ci) log,p(Ci) xp(F = K) c -p(CjlF = K) log,p(CjlF = K) 1 
] L”G’ 

sweeps (bottom-up and left-to-right) - V-sweep and 
H-sweep, and two translating scans (forward-facing 
and downward-facing) - H-scan and D-scan. The costs 
of the sensing procedures vary from 28 to 60 seconds. 
Each sensing procedure yields one or more sensory- 
based features of the environment.’ For instance, 
V-sweep yields the height-deg feature. We have 
also defined five specific instantiations of more general 
grasping procedures for the robot: a front-facing, wide- 
open grasp - front-wrap, two overhead, downward, 
wide-open grasps - top-grip and top-wrap, and two 
overhead, edge grasps - low-pinch and high-pinch. 

There are seven types of objects in the robot’s 
world, five to be grasped (32 oz. plastic cups stand- 
ing or lying down, 16 oz. waxed paper cups, 8 oz. 
Styrofoam cups, and tennis ball cans) and two 
to be ignored (rectangular boxes standing or ly- 
ing down). Appropriate actions for these objects 
are high-pinch, top-wrap, low-pinch, top-grip, 
front-wrap, ignore, and ignore, respectively. 

To map the robot’s task into LFE, we utilize addi- 
tional knowledge about the task. Specifically, sensing 
procedures yield different values at different places be- 
cause objects’ appearances vary with viewing angle and 
distance. To reduce this ‘noise,’ sensing procedures are 
instantiated at particular distances and orientations 
with respect to the object measured. Rather than in- 
stantiate sensing procedures at all distances and orien- 
tations, a domain-dependent procedure identifies a few, 
preferred distances and orientations (Tan 1990). For 
the sensing procedures and objects listed above, this 
yields three preferred, relative distances (6, 13, and 26 
inches) and four relative orientations (0, 90, 180, and 
270 degrees). Therefore, the possible features of an ex- 
ample are the sensor-based features resulting from ap- 
plying sensing procedures at each distance-orientation 
pair. The class of an example is simply its appropriate 
grasping procedure. 

Feature costs arise from the complexity of a sensing 
procedure and the amount of motion required to get to 
a preferred distance-orientation pair. Moving costs are 
roughly proportional to distance: for 12 inches, the 
robot requires approximately 30 seconds to aim, move, 
and position itself. However, as the robot confronts 
its environment, it may encounter obstacles that force 

lThese features are noisy and are filtered by sonar-specific 
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additional navigation and increase moving costs. 
This domain requires sensitivity to the costs of 

measuring features. Brute-force methods that apply 
all sensing procedures as they build class descriptions 
would take more than 30 minutes to gather data on 
each potential cup. Cost-sensitive methods illustrate 
that less than 2 minutes is typically needed. In gen- 
eral, without cost-sensitive learning methods, users are 
penalized for including additional, potentially useful 
features and are forced to determine feature relevance, 
a job perhaps better left to the learning method. 

Learning Decision Trees 

ID3 is a LFE method that constructs decision trees 
to represent concepts (Quinlan 1986). Given a train- 
ing set of examples with their features and classes, it 
produces a discrimination tree whose nodes indicate 
useful feature tests and whose leaves assign classes to 
examples. ID3 uses a divide-and-conquer algorithm, 
selecting feature tests to divide the training set and re- 
cursively building subtrees to describe partitions. To 
select new features, ID3 applies an information theo- 
retic measure to estimate the correlation between ex- 
ample features and classes. Specifically, ID3 selects the 
feature that maximizes the equation in Table 1. The 
process terminates when the training examples have 
the same class or when there are no more features to 
test. To classify new examples, ID3 repeatedly tests 
the feature at the current subtree root and follows the 
matching branch. When it reaches a leaf, it predicts 
that the new example’s class is the most common. 

Cost-Sensitive ID3 First, to make ID3 cost- 
sensitive, its feature selection measure should be a 
function of feature costs as well as I. Nunez (1988) 
uses this approach, making feature selection inversely 
proportional to cost. Our cost-sensitive ID3 (CS-ID3) 
follows Nunez’s approach and uses the function 12/C, 
where C is the cost of evaluating a feature. 

Second, unlike ID3 and Nunez’s work, CS-ID3 can- 
not assume that all features are evaluated for all ex- 
amples, so during learning its termination criteria must 
consider empty examples which have only a class label 
but no feature values. In this case, if there is a class 
ambiguity at a leaf, CS-ID3 continues discrimination 
by evaluating the next least expensive feature. If fur- 
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ther discrimination is required, CS-ID3 evaluates the 
next least expensive feature, and so on. This greedy 
strategy is biased toward using many, inexpensive fea- 
tures and against using a few, expensive ones. 

Third, to facilitate comparison with incremental 
systems, CS-ID3 incrementally processes its training 
examples in two aspects: (a) it does not evaluate newly 
suggested features for previous examples, and (b) it in- 
crementally revises its decision tree based on features 
currently preferred by the feature selection measure. 
The first constraint is enforced by evaluating for a new 
example only the features referenced by the decision 
tree during the new example’s classification. A result- 
ing implication is that CS-ID3 may require significantly 
more examples to converge than ID3. Also, training 
examples may not have a value for each tested fea- 
ture; these partially-valued examples are used to com- 
pute the feature selection measure but are otherwise 
ignored. For the second constraint, ID5 demonstrates 
a computationally efficient method to revise trees (IJt- 
goff 1989), but given our interest here in environmen- 
tal costs and for simplicity of implementation, CS-ID3 
simply rebuilds trees from scratch. 

Detailed Example Returning to the robot’s do- 
main, consider how CS-ID3 builds and uses a decision 
tree to determine how to grasp the seven object types. 
Assume the robot is 35 inches away from and at a 270’ 
orientation to the objects. The first object is a box 
lying down. Since CS-ID3 has no prediction, it sim- 
ply saves this empty example. The second object is 
a standing box. CS-ID3 builds a degenerate, empty 
tree, correctly predicts that this object should also be 
ignored, and saves it in the training set. The third 
object is a tennis ball can. This time the prediction 
is incorrect, and to distinguish between objects to be 
ignored and those grasped with front-wrap, CS-ID3 
applies the cheapest sensory procedure, V-sweep, at 
the most convenient, preferred distance and orienta- 
tion, 26 inches and 270’. The resulting value of 17 
for the feature height-deg is added to this example 
before it is saved. The fourth object is an 8 oz. cup. 
The simple tree applies V-sweep and returns a value 
of 6 for height-deg; CS-ID3 incorrectly predicts the 
tennis can’s grasping procedure. The values 17 and 6 
are sufficient for discrimination, so no other features 
are evaluated before the fourth object is stored. When 
the fifth object (16 oz. cup) is processed, CS-ID3’s tree 
applies V-sweep and gets a value of 12. Because the 
current tree splits height-deg at 11.5, CS-ID3 incor- 
rectly predicts the tennis ball can class. CS-ID3 could 
discriminate between 12 and 6 with an additional bi- 
nary split, but it prefers to find features that discrimi- 
nate in a single split. It applies the next cheapest sen- 
sory procedure V-sweep at the next closest distance 13 

inches before storing the fifth object. 
As more examples are processed, CS-ID3’s feature 

selection measure becomes more useful, and after 21 
examples it converges to the tree depicted in Figure 1. 
Note that CS-ID3 prefers to reuse features (with their 
zero subsequent cost). For comparison to CS-IBL (in 
the following section), after 35 examples, CS-ID3 has 
made 8 prediction errors, saved all 35 examples, and 
applied sensory procedures an average of 1.5 times per 
example. 

Learning Instance-Based Descriptions 

Like ID3, instance-based learning (IBL) is also an effec- 
tive LFE method (Aha & Kibler 1989). In its simplest 
form, instead of constructing an explicit, abstract rep- 
resentation of the training examples, IBL simply saves 
examples and relies on abstract matching. Given a new 
example to classify, IBL finds the most similar example 
in memory and predicts its class for the new example. 
The similarity measure IBL uses is the negation of the 
Euclidean distance between two examples, where nu- 
meric features are normalized to the range [O,l] and 
non-numeric features have a difference of 0 if equal 
in value and 1 otherwise. At its simplest IBL saves 
all new examples, but it is more effective to save only 
those which were incorrectly predicted. Other, more 
sophisticated extensions are possible, and they appear 
to improve performance in difficult learning situations 
(Aha & Kibler 1989). 

Cost-Sensitive IBL To make IBL cost-sensitive, 
the classification process it uses to find similar, stored 
examples must specify which features (and how many) 
should be evaluated for a new example. Following the 
spirit of IBL, our approach (CS-IBL) uses stored ex- 
amples to serve as templates for feature evaluation. In- 
stead of evaluating all features of all stored examples, 
CS-IBL repeatedly selects one stored, cost-effective ex- 
ample and evaluates one of its features for the new 
example until the closest example has been found. 

First, because all stored examples are equally close 
to a new, empty example, CS-IBL selects the closest 
example that: (a) has features that are not yet eval- 
uated for the new example, (b) has common feature 
values, and (c) uses inexpensive features. Specifically, 
CS-IBL selects the example that maximizes the ratio 
of expected match success to cost. The former is es- 
timated by the product of independent feature-value 
probabilities, and the latter, by summing over feature 
costs times their decreasing likelihood of being eval- 
uated. Eq. 1 implements this ratio, where Pij is the 
frequency that feature j has the value it does for stored 
example i, {F’} is the set of features evaluated for the 
stored example but not for the new example (sorted 
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top-wrap top-grip front-wrap 
(32 oz. lying) (8 oz. cups) 

high-pinch 
(tennis cans) (32 oz. standing) 

Figure 1. CS-ID3’s decision tree for distance = 35 inches, orientation = 270’. Within nodes lines are: the 
appropriate motion command and its cost in seconds, the sensory procedure to be applied, and the feature to be 
evaluated. Leaves in the tree correspond to predicted grasping procedures. 

in decreasing order of Paj /C(Fi)) (cf. Cox 1988)) and 
C( Fj ) is the cost of evaluating feature j. 

rI- 3E{F’} fij 

c jE{F’) c(Fj) X II&:(1 - f’ilc) 
0) 

Second, given an example to guide feature selec- 
tion, CS-IBL chooses a feature which has a likely value 
and is inexpensive, or maximizes Pij /C( Fj ). CS-IBL 
repeats this and the above step until the upper bound 
on the distance from the selected stored example is 
less than the lower bound for one from any other class. 
This stopping criteria is conservative and reminiscent 
of Gennari’s (1989) criteria for focus-of-attention in 
COBWEB. 

A final modification ensures that CS-IBL does not 
end up storing a set of empty or insufficiently described 
examples. After a prediction error, CS-IBL evaluates 
one or more additional features for the new example if 
it appears identical to the stored one. New features to 
evaluate are first drawn from the closest stored example 
and then on a cost basis until the two examples are 
sufficiently different. 

Detailed Example Returning again to the robot’s 
domain, CS-IBL initially stores examples and evaluates 
features in a manner similar to CS-ID3, but later pro- 
cessing reveals three primary differences. First, unlike 
CS-ID3 which saves all objects, CS-IBL does not save 
those whose class was correctly predicted. Second, CS- 
IBL is lazier with respect to expanding the set of evalu- 
ated features than CS-IDS. Whereas CS-ID3 evaluates 

more features when a single binary split is insufficient 
for discrimination, CS-IBL waits until two examples 
from different classes cannot be discriminated at all. 
Third, if CS-IBL is mislead by the cost-driven heuris- 
tics to evaluate an irrelevant feature value, the mistake 
is subsequently propagated, and whenever a stored ex- 
ample with that feature is selected, the irrelevant fea- 
ture will be re-evaluated for new examples. Though 
not as bad as evaluating all irrelevant features (as IBL 
does), it is not as good as evaluating none (as CS-ID3 
does). CS-IBL converges after processing 35 examples 
and has made 11 errors, saved 12 examples, and ap- 
plied sensory procedures an average of 1.7 times per 
example. Compared to CS-IDS, this represents slower 
convergence, more errors, fewer saved examples, and 
comparable numbers of features evaluated. At an ab- 
stract level, one difference between the two methods is 
that CS-IBL avoids committing to a particular test or- 
dering, and we suspect that this may make it easier to 
tolerate feature noise and dynamic changes in feature 
costs. 

Empirical Evidence 

One might expect that LFE methods which evalu- 
ate all example features are more expensive and incur 
fewer errors prior to convergence than cost-sensitive 
methods. The empirical results of this section bear this 
out. This leaves two open questions: how cost efficient 
are the methods, and how many errors do they incur 
prior to convergence given different feature cost distri- 
butions and numbers of irrelevant features? To provide 
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Table 2. Performance of the four learning methods in the robot’s domain. 

0 IRRELEVANT FEATURES 12 IRRELEVANT FEATURES 
AVERAGE COST (SEC) TOTAL ERRORS AVERAGE COST (SEC) TOTAL ERRORS 

ID3 2111.0 5.5 3118.5 5.5 
CS-ID3 101.8 9.3 106.1 9.7 
IBL 2111.0 6.0 3118.5 6.0 
CS-IBL 100.5 11.6 109.1 15.5 

initial answers to these questions, this section compares 
ID3 and three incremental methods CS-ID3, IBL, and 
CS-IBL in the robot’s domain and in a synthetic one. 
For these studies, ID3 is applied as a brute-force incre- 
mental method, rebuilding the tree from scratch after 
predicting the class of each new example. 

Revisiting The Robot’s Domain 

Applying the four methods to the robot’s domain gen- 
erally indicates that the cost-sensitive methods are 
more efficient but may incur more errors prior to con- 
vergence. Table 2 summarizes two dependent measures 
prior to convergence given 24 relevant features plus 0 
or 12 irrelevant features: (a) the average cost of fea- 
ture evaluation per example during classification and 
learning, and (b) the total errors incurred. Given an 
initial distance of 35 inches, data are an average over 
five object orders and the four preferred orientations. 
Irrelevant features were designed to simulate out-of- 
range sonar readings and had constant values; these 
features were assigned random costs consistent with 
the variance of other feature costs. Note that the cost- 
sensitive methods are highly cost-efficient compared to 
ID3’s and IBL’s strategy of evaluating all features for 
each example, representing an order of magnitude sav- 
ings. In terms of errors, ID3 and IBL outperform their 
cost-sensitive derivatives by approximately two to one. 
Further note that the cost-sensitive methods appear to 
scale well given irrelevant features; adding 50% more 
features results in at most a 9% increase in average 
cost and at most a 33% increase in errors. This latter 
observation is somewhat surprising and is investigated 
further in the next subsection. 

‘Using A Synthetic Domain 

The robot domain reflects realistic properties of LFE, 
but it can be difficult to accurately assess those prop- 
erties. Synthetic domains, conversely, afford precise 
control over experimental conditions. The experi- 
ments in this subsection use a simple Boolean concept, 
(A A B) v (C A D), t o study the effects of differing 
costs and numbers of irrelevant features. Given four 
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N of Examples 

Figure 2. Total errors prior to convergence given 
four irrelevant features and moderately uneven feature 
costs. 

irrelevant features and moderately uneven costs (Con- 
dition 3 below), Figure 2 depicts total errors prior to 
convergence for each of the four methods ID3, CS-IDS, 
IBL, and CS-IBL.2 ID3 yields the fewest errors; IBL 
comes in second (also the slowest to converge) with 
CS-ID3 and CS-IBL bringing up the rear. 

For the same conditions, Figure 3 depicts the num- 
ber of features measured by each of the methods as 
training progresses. The cost-sensitive methods mea- 
sure considerably fewer features than ID3 and IBL. As 
both cost-sensitive methods search the space of feature 
sets, CS-ID3 settles to evaluating a near optimum num- 
ber of features, but CS-IBL does not. We suspect that 
this is an artifact of CS-IBL’s conservative stopping 
criteria. 

To be efficient, cost-sensitive methods should be 
sensitive to differential feature costs. Specifically, 
they should use less expensive features when available. 
Standard deviation is one quantitative measure of fea- 
ture cost skew; identical costs have a zero standard 
deviation, and uneven costs have a standard deviation 

2Results are averaged over five executions; bars denote stan- 
dard deviation. 
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Figure 3. Features evaluated per example prior to con- 
vergence given four irrelevant features and moderately 
uneven feature costs. 

much greater than one (when some features are much 
less expensive than others). Given this metric, we can 
vary the relative costs of features and observe the re- 
sulting cost-sensitive behavior of the four methods. Us- 
ing the simple Boolean concept above, we divide 40 
cost units among groups of 4 features to yield 4 con- 
ditions: (1) each feature costs 10, (2) 1 feature costs 
1, and 3 features cost 13, (3) 2 features cost 1, and 2 
features cost 19,3 and (4) 3 features cost 1, and 1 fea- 
ture costs 37. When irrelevant features are included, 
they are assigned the same costs as relevant features. 
Given four irrelevant features, Figure 4 depicts the av- 
erage feature costs per example, and Figure 5, total 
errors prior to convergence as a function of different 
relative feature costs. In terms of average cost, both 
cost-sensitive methods exhibit close to optimal asymp- 
totic performance. They are also considerably less than 
ID3 and IBL. In terms of errors, the methods sepa- 
rate naturally into three groups, from best to worst, 
ID3, IBL, and the cost-sensitive methods. This latter, 
poor performance may arise because the cost-sensitive 
methods must search for an effective set of features to 
evaluate. 

Cost-sensitive methods should also be sensitive to 
the number of features as focus-of-attention methods 
are (cf. Gennari 1989). Using the simple Boolean con- 
cept, we added 0, 2, 4, and 8 irrelevant features that 
have random binary values. Given moderately uneven 
costs (Condition 3), Figure 6 depicts average feature 
costs per example, and Figure 7, total errors prior to 
convergence as a function of the number of irrelevant 
features. In terms of costs, the cost-sensitive methods 

3For simplicity of analysis, in this condition features A and 
B cost 1. 

q  CS-ID3 
q  CS-IBL 

. . ID3, IBL 
O Optimal 

I I 

0 17 
Standard Deviation of Feature Costs 

Figure 4. Average feature cost per example prior to 
convergence given four irrelevant features. 

q  CS-ID3 
q  CS-IBL 

T o ID3 

0 17 
Standard Deviation of Feature Costs 

Figure 5. Total errors prior to convergence given four 
irrelevant features. 

again perform at a near optimal level. (CS-ID3 appears 
slightly below due to its early behavior.) In terms of 
errors, the methods appear to fall into three groups, 
from best to worst: ID3, CS-ID3, and the instance- 
based methods. Both of the instance-based methods 
incur a sharply increasing number of errors as irrel- 
evant features increase, something that may be reme- 
died by more sophisticated version of IBL (cf. Aha Ki- 
bler 1989). Unlike the lower performance of CS-ID3 
compared to ID3, CS-IBL and IBL appear equal. 

Summary 

This paper addresses the general problem of learning 
from examples when features have non-trivial costs. 
Though this work utilizes inductive methods, comple- 
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N of irrelevant Features 

Figure 6. Average feature costs per example prior to 
convergence given moderately uneven costs. 

0 2 4 6 8 

N of Irrelevant Features 

Figure 7. Total errors prior to convergence given mod- 
erately uneven costs. 

mentary research has investigated similar issues using 
analytic, or explanation-based learning methods. For 
instance, Keller (1987) d escribes a system that trades 
off the operationality of a concept description for pre- 
dictive accuracy: typically expensive, fine-grained tests 
are pruned for the sake of overall improvement. Like 
Keller’s system, CS-ID3 and CS-IBL also attempt to 
make concept descriptions more operational by min- 
imizing feature measurement costs, but they do not 
trade off cost for accuracy. 

Despite encouraging empirical evidence supporting 
the hypothesis that CS-ID3 and CS-IBL are sensi- 
tive to costs, there are still several open questions: 
how relevant is CS-IBL’s classification flexibility (as 
compared to CS-IDS), how can cost-sensitive meth- 

ods reason about parallel feature evaluation, and can 
cost-sensitive methods tolerate noise? Notwithstand- 
ing these, modifying methods to deal with feature costs 
appears feasible, and we suspect necessary, in future 
machine learning research. 
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